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ON SIMPSON’S INEQUALITY AND APPLICATIONS

S.S. DRAGOMIR, R.P. AGARWAL, AND P. CERONE

Abstract. New inequalities of Simpson type and their application to quad-
rature formulae in Numerical Analysis are given.

1. Introduction

The following inequality is well known in the literature as Simpson’s inequality :∣∣∣∣∣
∫ b

a

f (x) dx− b− a
3

[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣(1.1)

≤ 1
2880

∥∥∥f (4)
∥∥∥
∞

(b− a)5
,

where the mapping f : [a, b] → R is assumed to be four times continuously differ-
entiable on the interval (a, b) and for the fourth derivative to be bounded on (a, b) ,
that is,

‖ f (4) ‖∞:= sup
x∈(a,b)

∣∣∣f (4) (x)
∣∣∣ <∞.

Now, if we assume that In : a = x0 < x1 < ... < xn−1 < xn = b is a partition of the
interval [a, b] and f is as above, then we have the classical Simpson’s quadrature
formula: ∫ b

a

f (x) dx = AS (f, In) +RS (f, In)(1.2)

where AS(f, In) is the Simpson rule

AS (f, In) =:
1
6

n−1∑
i=0

[f (xi) + f (xi+1)]hi +
2
3

n−1∑
i=0

f

(
xi + xi+1

2

)
hi(1.3)

and the remainder term RS (f, In) satisfies the estimate

| RS (f, In) |≤ 1
2880

‖ f (4) ‖∞
n−1∑
i=0

h5
i(1.4)

where hi := xi+1 − xi for i = 0, ..., n− 1.
When we have an equidistant partitioning of [a, b] given by

In : xi := a+
b− a
n
· i, i = 0, ..., n;(1.5)
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then we have the formula∫ b

a

f (x) dx = AS,n (f) +RS,n (f)(1.6)

where

AS,n (f) : =
b− a
6n

n−1∑
i=0

[
f

(
a+

b− a
n
· i
)

+ f

(
a+

b− a
n
· (i+ 1)

)]
(1.7)

+
2 (b− a)

3n

n−1∑
i=0

f

(
a+

b− a
n
· 2i+ 1

2

)
,

and the remainder satisfies the estimation

| RS,n (f) |≤ 1
2880

· (b− a)5

n4 ‖ f (4) ‖∞ .(1.8)

For some other integral inequalities see the recent book [1] and the papers [2]-[4]
and [5]-[37].

The main purpose of this survey paper is to point out some very recent devel-
opments on Simpson’s inequality for which the remainder is expressed in terms of
lower derivatives than the fourth.

It is well known that if the mapping f is neither four times differentiable nor
is the fourth derivative f (4) bounded on (a, b) , then we cannot apply the classical
Simpson quadrature formula, which, actually, is one of the most used quadrature
formulae in practical applications.

The first section of our paper deals with an upper bound for the remainder in
Simpson’s inequality for the class of functions of bounded variation.

The second section provides some estimates for the remainder when f is a Lip-
schitzian mapping while the third section is concerned with the same problem
for absolutely continuous mappings whose derivatives are in the Lebesgue spaces
Lp [a, b] .

The fourth section is devoted to the application of a celebrated result due to
Grüss to estimating the remainder in Simpson quadrature rule in terms of the
supremum and infimum of the first derivative. The fifth section deals with a gen-
eral convex combination of a trapezoid and interior point quadrature formula from
which, in particular, we can obtain the classical Simpson rule.

The last section contains some results related to Simpson, trapezoid and mid
point formulae for monotonic mappings and some applications for probability dis-
tribution functions.

Last, but not least, we would like to mention that every section contains a special
subsection in which the theoretical results are applied for the special means of two
positive numbers: identric mean, logarithmic mean, p-logarithmic mean etc...and
provides improvements and related results to the classical sequence of inequalities

H ≤ G ≤ L ≤ I ≤ A,

where H,G,L, I and A are defined in the sequel.
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2. Simpson’s Inequality for Mappings of Bounded Variation

2.1. Simpson’s Inequality. The following result holds [2]

Theorem 1. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] . Then
we have the inequality

∣∣∣∣∣
∫ b

a

f (x) dx− b− a
3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣(2.1)

≤ 1
3

(b− a)
b∨
a

(f) ,

where
∨b
a (f) denotes the total variation of f on the interval [a, b] . The constant 1

3
is the best possible.

Proof. Using the integration by parts formula for Riemann-Stieltjes integral we
have:

∫ b

a

s (x) df (x) =
b− a

3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]
−
∫ b

a

f (x) dx,(2.2)

where

s (x) :=

 x− 5a+b
6 , x ∈

[
a, a+b

2

)
x− a+5b

6 , x ∈
[
a+b

2 , b
] .

Indeed,

∫ b

a

s (x) df (x)

=
∫ a+b

2

a

(
x− 5a+ b

6

)
df (x) +

∫ b

a+b
2

(
x− a+ 5b

6

)
df (x)

=
[(
x− 5a+ b

6

)
f (x)

] a+b
2

a

+
[(
x− a+ 5b

6

)
f (x)

]b
a+b

2

−
∫ b

a

f (x) dx

=
b− a

3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]
−
∫ b

a

f (x) dx,

and the identity is proved.
Now, assume that ∆n : a = x

(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a sequence of di-

visions with ν (∆n)→ 0 as n→∞, where ν (∆n) := maxi∈{0,...,n−1}

(
x

(n)
i+1 − x

(n)
i

)
and ξ

(n)
i ∈

[
x

(n)
i , x

(n)
i+1

]
. If p : [a, b]→ R is continuous on [a, b] and v : [a, b]→ R is
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of bounded variation on [a, b] , then∣∣∣∣∣
∫ b

a

p (x) dv (x)

∣∣∣∣∣ =

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p
(
ξ

(n)
i

) [
v
(
x

(n)
i+1

)
− v

(
x

(n)
i

)]∣∣∣∣∣(2.3)

≤ lim
ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ ∣∣∣v (x(n)
i+1

)
− v

(
x

(n)
i

)∣∣∣
≤ max

x∈[a,b]
|p (x)| sup

∆n

n−1∑
i=0

∣∣∣v (x(n)
i+1

)
− v

(
x

(n)
i

)∣∣∣
= max

x∈[a,b]
|p (x)|

b∨
a

(v) .

Applying the inequality (2.3) for p (x) = s (x) and v (x) = f (x) we get∣∣∣∣∣
∫ b

a

s (x) df (x)

∣∣∣∣∣ ≤ max
x∈[a,b]

|s (x)|
b∨
a

(f) .(2.4)

Taking into account the fact that the mapping s is monotonic nondecreasing on the
intervals

[
a, a+b

2

)
and

[
a+b

2 , b
]

and

s (a) = −b− a
6

,

s

(
a+ b

2
− 0
)

=
1
3

(b− a) ,

s

(
a+ b

2

)
= −1

3
(b− a)

and

s (b) =
b− a

6
,

we deduce that

max
x∈[a,b]

|s (x)| = 1
3

(b− a) .

Now, using the inequality (2.4) and the identity (2.2) we deduce the desired result
(2.1).
Now, for the best constant.
Assume that the following inequality holds∣∣∣∣∣

∫ b

a

f (x) dx− b− a
3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣ ≤ C (b− a)
b∨
a

(f)

with a constant C > 0.
Let us choose the mapping f : [a, b]→ R given by

f (x) =

 1 if x ∈
[
a, a+b

2

)
∪
(
a+b

2 , b
]

−1 if x = a+b
2

.
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Then we have∣∣∣∣∣
∫ b

a

f (x) dx− b− a
3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣ =
4
3

(b− a)

and

(b− a)
b∨
a

(f) = 4 (b− a) .

Now, using the above inequality, we get 4C (b− a) ≥ 4
3 (b− a) which implies that

C ≥ 1
3 and then 1

3 is the best possible constant in (2.1).

It is natural to consider the following corollary which follows from identity (2.2) .

Corollary 1. Suppose that f : [a, b] → R is a differentiable mapping whose deriv-
ative is continuous on (a, b) and

‖f ′‖1 :=
∫ b

a

|f ′ (x)| dx <∞.

Then we have the inequality∣∣∣∣∣
∫ b

a

f (x) dx− b− a
3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣(2.5)

≤ 1
3
‖f ′‖1 (b− a)2

.

The following corollary for Simpson’s composite formula holds:

Corollary 2. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] and Ih
a partition of [a, b] . Then we have the Simpson’s quadrature formula (1.2) and the
remainder term RS (f, Ih) satisfies the estimate:

|RS (f, Ih)| ≤ 1
3
γ (h)

b∨
a

(f) ,(2.6)

where γ (h) := max {hi|i = 0, ..., n− 1} .

The case of equidistant partitioning is embodied in the following corollary:

Corollary 3. Let In be an equidistant partitioning of [a, b] and f be as in Theorem
1. Then we have the formula (1.6) and the remainder satisfies the estimate:

|RS,n (f)| ≤ 1
3n

(b− a)
b∨
a

(f) .(2.7)

Remark 1. If we want to approximate the integral
∫ b
a
f (x) dx by Simpson’s for-

mula AS,n (f) with an accuracy less that ε > 0, we need at least nε ∈ N points for
the division In, where

nε :=

[
1
3ε
· (b− a)

b∨
a

(f)

]
+ 1

and [r] denotes the integer part of r ∈ R.
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Comments. If the mapping f : [a, b] → R is neither four time differentiable
nor the fourth derivative is bounded on (a, b) , then we cannot apply the classical
estimation in Simpson’s formula using the fourth derivative. But if we assume that
f is of bounded variation, then we can use instead the formula (2.6).

We give here a class of mappings which are of bounded variation but which have
the fourth derivative unbounded on the given interval.

Let fp : [a, b]→ R, fp (x) := (x− a)p where p ∈ (3, 4) . Then obviously

f ′p (x) := p (x− a)p−1
, x ∈ (a, b)

and

f (4)
p (x) =

p (p− 1) (p− 2) (p− 3)
(x− a)4−p , x ∈ (a, b) .

It is clear that fp is of bounded variation and

b∨
a

(f) = (b− a)p <∞,

but limx→a+ f
(4)
p (x) = +∞.

2.2. Applications for Special means. Let us recall the following means:

1. The arithmetic mean

A = A (a, b) :=
a+ b

2
, a, b ≥ 0;

2. The geometric mean

G = G (a, b) :=
√
ab, a, b ≥ 0;

3. The harmonic mean

H = H (a, b) :=
2

1
a + 1

b

, a, b > 0;

4. The logarithmic mean

L = L (a, b) :=
b− a

ln b− ln a
, a, b > 0, a 6= b;

5. The identric mean

I = I (a, b) :=
1
e

(
bb

aa

) 1
b−a

, a, b > 0, a 6= b;

6. The p-Logarithmic mean

Lp = Lp (a, b) :=
[
bp+1 − ap+1

(p+ 1) (b− a)

] 1
p

, p ∈ R\ {−1, 0} , a, b > 0, a 6= b.

It is well known that Lp is monotonic nondecreasing over p ∈ R with L−1 := L
and L0 := I. In particular, we have the following inequalities

H ≤ G ≤ L ≤ I ≤ A.

Using Theorem 1, some new inequalities are derived for the above means.
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1. Let f : [a, b]→ R (0 < a < b) , f (x) = xp, p ∈ R\ {−1, 0} . Then

1
b− a

∫ b

a

f (x) dx = Lp (a, b) ,

f (a) + f (b)
2

= A (ap, bp) ,

f

(
a+ b

2

)
= Ap (a, b)

and

‖f ′‖1 = |p| (b− a)Lp−1
p−1, p ∈ R\ {−1, 0, 1} .

Using the inequality (2.5) we get∣∣∣∣Lpp (a, b)− 1
3
A (ap, bp)− 2

3
Ap (a, b)

∣∣∣∣ ≤ |p|3 Lp−1
p−1 (b− a)2

.

2. Let f : [a, b]→ R (0 < a < b) , f (x) = 1
x . Then

1
b− a

∫ b

a

f (x) dx = L−1 (a, b) ,

f (a) + f (b)
2

= H−1 (a, b) ,

f

(
a+ b

2

)
= A−1 (a, b)

and

‖f ′‖1 =
b− a

G2 (a, b)
.

Using the inequality (2.5) we get

|3AH −AL− 2HL| ≤ (b− a)2

G2 LHA.

3. Let f : [a, b]→ R (0 < a < b) , f (x) = lnx. Then

1
b− a

∫ b

a

f (x) dx = ln I (a, b) ,

f (a) + f (b)
2

= lnG (a, b) ,

f

(
a+ b

2

)
= lnA (a, b)

and

‖f ′‖1 =
b− a
L (a, b)

.

Using the inequality (2.5) we obtain∣∣∣∣ln [ I

G
1
3A

2
3

]∣∣∣∣ ≤ (b− a)2

3L
.
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3. Simpson’s Inequality for Lipschitzian Mappings

3.1. Simpson’s Inequality. The following result holds [3]:

Theorem 2. Let f : [a, b]→ R be an L−Lipschitzian mapping on [a, b] . Then we
have the inequality∣∣∣∣∣

∫ b

a

f (x) dx− b− a
3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣(3.1)

≤ 5
36
L (b− a)2

.

Proof. Using the integration by parts formula for Riemann-Stieltjes integral we
have (see also the proof of Theorem 1) that∫ b

a

s (x) df (x) =
b− a

3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]
−
∫ b

a

f (x) dx(3.2)

where

s (x) :=

 x− 5a+b
6 , x ∈

[
a, a+b

2

)
x− a+5b

6 , x ∈
[
a+b

2 , b
] .

Now, assume that ∆n : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a sequence of di-

visions with ν (∆n)→ 0 as n→∞, where ν (∆n) := maxi∈{0,...,n−1}

(
x

(n)
i+1 − x

(n)
i

)
and ξ(n)

i ∈
[
x

(n)
i , x

(n)
i+1

]
. If p : [a, b]→ R is Riemann integrable on [a, b] and v : [a, b]

→ R is L-Lipschitzian on [a, b] , then∣∣∣∣∣
∫ b

a

p (x) dv (x)

∣∣∣∣∣(3.3)

=

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p
(
ξ

(n)
i

) [
v
(
x

(n)
i+1

)
− v

(
x

(n)
i

)]∣∣∣∣∣
≤ lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i )
∣∣∣ (x(n)

i+1 − x
(n)
i

) ∣∣∣∣∣∣
v
(
x

(n)
i+1

)
− v

(
x

(n)
i

)
x

(n)
i+1 − x

(n)
i

∣∣∣∣∣∣
≤ L lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i )
∣∣∣ (x(n)

i+1 − x
(n)
i

)
= L

∫ b

a

|p (x)| dx.

Applying the inequality (3.3) for p (x) = s (x) and v (x) = f (x) we get∣∣∣∣∣
∫ b

a

s (x) df (x)

∣∣∣∣∣ ≤ L
∫ b

a

|s (x)| dx.(3.4)



SIMPSON’S INEQUALITY 9

Let us compute∫ b

a

|s (x)| dx =
∫ a+b

2

a

∣∣∣∣x− 5a+ b

6

∣∣∣∣ dx+
∫ b

a+b
2

∣∣∣∣x− a+ 5b
6

∣∣∣∣ dx
=

∫ 5a+b
6

a

(
5a+ b

6
− x
)
dx+

∫ a+b
2

5a+b
6

(
x− 5a+ b

6

)
dx

+
∫ a+5b

6

a+b
2

(
a+ 5b

6
− x
)
dx+

∫ b

a+5b
6

(
x− a+ 5b

6

)
dx

=
5
36

(b− a)2
.

Now, using the inequality (3.4) and the identity (3.2) we deduce the desired result
(3.1).

Corollary 4. Suppose that f : [a, b]→ R is a differentiable mapping whose deriv-
ative is continuous on (a, b). Then we have the inequality∣∣∣∣∣

∫ b

a

f (x) dx− b− a
3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣(3.5)

≤ 5
36
‖f ′‖∞ (b− a)2

.

The following corollary for Simpson’s composite formula holds:

Corollary 5. Let f : [a, b] → R be an L−Lipschitzian mapping on [a, b] and Ih
a partition of [a, b] . Then we have the Simpson’s quadrature formula (1.2)and the
remainder term RS (f, Ih) satisfies the estimation:

|RS(f, Ih)| ≤ 5
36
L

n−1∑
i=0

h2
i .(3.6)

The case of equidistant partitioning is embodied in the following corollary:

Corollary 6. Let In be an equidistant partitioning of [a, b] and f be as in Theorem
2. Then we have the formula (1.6) and the remainder satisfies the estimation:

|RS,n (f)| ≤ 5
36
· L
n

(b− a)2
.(3.7)

Remark 2. If we want to approximate the integral
∫ b
a
f (x) dx by Simpson’s for-

mula AS,n (f) with an accuracy less that ε > 0, we need at least nε ∈ N points for
the division In, where

nε :=
[

5
36
· L
ε

(b− a)2
]

+ 1

and [r] denotes the integer part of r ∈ R.

Comments. If the mapping f : [a, b] → R is neither four time differentiable
nor the fourth derivative is bounded on (a, b) , then we can not apply the classical
estimation in Simpson’s formula using the fourth derivative. But if we assume that
f is Lipschitzian, then we can use instead the formula (3.6).

We give here a class of mappings which are lipschitzian but having the fourth
derivative unbounded on the given interval.
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Let fp : [a, b]→ R, fp (x) := (x− a)p where p ∈ (3, 4) . Then obviously

f ′p (x) := p (x− a)p−1
, x ∈ (a, b)

and

f (4)
p (x) =

p (p− 1) (p− 2) (p− 3)
(x− a)4−p , x ∈ (a, b) .

It is clear that fp is Lipschitzian with the constant

L = p (b− a)p−1
<∞,

but limx→a+ f
(4)
p (x) = +∞.

3.2. Applications for Special Means. Using Theorem 2, we now point out some
new inequalities for the special means defined in the previous section.

1. Let f : [a, b]→ R (0 < a < b) , f (x) = xp, p ∈ R\ {−1, 0} . Then

‖f ′‖∞ = δp (a, b) :=

 pbp−1if p ≥ 1

|p| ap−1if p ∈ (−∞, 1) \ {−1, 0}
.

Using the inequality (3.5) we get

| Lpp (a, b)− 1
3
A (ap, bp)− 2

3
Ap (a, b) |≤ 5

35
δp (a, b) (b− a) .

2. Let f : [a, b]→ R (0 < a < b), f (x) = 1
x . Then

‖f ′‖∞ =
1
a2 .

Using the inequality (3.5) we get

|3HA− LA− 2LH| ≤ 5
12
· b− a
a2 LAH.

3. Let f : [a, b]→ R (0 < a < b), f (x) = lnx. Then

‖f ′‖∞ =
1
a
.

Using the inequality (3.5) we get∣∣∣∣ln [ I

G
1
3A

2
3

]∣∣∣∣ ≤ 5
36

(
b− a
a

)
.

4. Simpson’s Inequality in Terms of the p-Norm

4.1. Simpson’s inequality. The following result holds [4]:

Theorem 3. Let f : [a, b] → R be a an absolutely continuous mapping on [a, b]
whose derivative belongs to Lp [a, b] . Then we have the inequality∣∣∣∣∣

∫ b

a

f (x) dx− b− a
3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣(4.1)

≤ 1
6

[
2q+1 + 1
3 (q + 1)

] 1
q

(b− a)1+ 1
q ‖f ′‖p ,

where 1
p + 1

q = 1, p > 1.
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Proof. Using the integration by parts formula for absolutely continuous mappings,
we have:

∫ b

a

s (x) f ′ (x) dx =
b− a

3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]
−
∫ b

a

f (x) dx(4.2)

where

s (x) :=

 x− 5a+b
6 , x ∈

[
a, a+b

2

)
x− a+5b

6 , x ∈
[
a+b

2 , b
] .

Indeed,

∫ b

a

s (x) f ′ (x) dx

=
∫ a+b

2

a

(
x− 5a+ b

6

)
f ′ (x) dx+

∫ b

a+b
2

(
x− a+ 5b

6

)
f ′ (x) dx

=
[(
x− 5a+ b

6

)
f (x)

] a+b
2

a

+
[(
x− a+ 5b

6

)
f (x)

]b
a+b

2

−
∫ b

a

f (x) dx

=
b− a

3
·
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]
−
∫ b

a

f (x) dx,

and the identity is proved.
Applying Hölder’s integral inequality we obtain

∣∣∣∣∣
∫ b

a

s (x) f ′ (x) dx

∣∣∣∣∣ ≤
(∫ b

a

|s (x)|q dx

) 1
q

‖f ′‖p .(4.3)
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Let us compute

∫ b

a

|s (x)|q dx =
∫ a+b

2

a

∣∣∣∣x− 5a+ b

6

∣∣∣∣q dx+
∫ b

a+b
2

∣∣∣∣x− a+ 5b
6

∣∣∣∣q dx
=

∫ 5a+b
6

a

(
5a+ b

6
− x
)q

dx+
∫ a+b

2

5a+b
6

(
x− 5a+ b

6

)q
dx

+
∫ a+5b

6

a+b
2

(
a+ 5b

6
− x
)q

dx+
∫ b

a+5b
6

(
x− a+ 5b

6

)q
dx

=
1

q + 1

− (5a+ b

6
− x
)q+1

∣∣∣∣∣
5a+b

6

a

+
(
x− 5a+ b

6

)q+1
∣∣∣∣∣
a+b

2

5a+b
6

−
(
a+ 5b

6
− x
)q+1

∣∣∣∣∣
a+5b

6

a+b
2

+
(
x− a+ 5b

6

)q+1
∣∣∣∣∣
b

a+5b
6


=

1
q + 1

[(
5a+ b

6
− a
)q+1

+
(
a+ b

2
− 5a+ b

6

)q+1

+
(
a+ 5b

6
− a+ b

2

)q+1

+
(
b− a+ 5b

6

)q+1
]

=

(
2q+1 + 1

)
(b− a)q+1

3 (q + 1) 6q
.

Now, using the inequality (4.3) and the identity (4.2) we deduce the desired result
(4.1).

The following corollary for Simpson’s composite formula holds:

Corollary 7. Let f and Ih be as above. Then we have Simpson’s rule (1.2) and
the remainder RS(f, Ih) satisfies the estimate

|RS(f, Ih)| ≤ 1
6

[
2q+1 + 1
3(q + 1)

] 1
q

‖f ′‖p

(
n−1∑
i=0

h1+q
i

) 1
q

.(4.4)

Proof. Apply Theorem 3 on the interval [xi, xi+1] (i = 0, ..., n− 1) to obtain

∣∣∣∣∫ xi+1

xi

f (x) dx− hi
3

[
f (xi) + f (xi+1)

2
+ 2f

(
xi + xi+1

2

)]∣∣∣∣
≤ 1

6

[
2q+1 + 1
3 (q + 1)

] 1
q

‖f ′‖p h
1+ 1

q

i

(∫ xi+1

xi

|f ′(t)|p dt
) 1
p

.
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Summing the above inequalities over i from 0 to n−1, using the generalized triangle
inequality and Hölder’s discrete inequality, we get

|RS (f, Ih)|

≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f (x) dx− hi
3

[
f (xi) + f (xi+1)

2
+ 2f

(
xi + xi+1

2

)]∣∣∣∣
≤ 1

6

[
2q+1 + 1
3 (q + 1)

] 1
q n−1∑
i=0

h
1+ 1

q

i

(∫ xi+1

xi

|f ′(t)|p dt
) 1
p

≤ 1
6

[
2q+1 + 1
3 (q + 1)

] 1
q

[
n−1∑
i=0

(
h

1+ 1
q

i

)q] 1
q

×

(
n−1∑
i=0

[(∫ xi+1

xi

|f ′(t)|p dt
) 1
p

]p) 1
p

=
1
6

[
2q+1 + 1
3 (q + 1)

] 1
q

‖f ′‖p

(
n−1∑
i=0

h1+q
i

) 1
q

,

and the corollary is proved.

The case of equidistant partitioning is embodied in the following corollary:

Corollary 8. Let f be as above and if In is an equidistant partitioning of [a, b],
then we have the estimate

|RS,n (f)| ≤ 1
6n

[
2q+1 + 1
3 (q + 1)

] 1
q

(b− a)1+ 1
q ‖f ′‖p .

Remark 3. If we want to approximate the integral
∫ b
a
f (x) dx by Simpson’s for-

mula AS,n (f) with an accuracy less that ε > 0, we need at least nε ∈ N points for
the division In, where

nε :=

[
1
6ε

(
2q+1 + 1
3 (q + 1)

) 1
q

(b− a)1+ 1
q ‖f ′‖p

]
+ 1

and [r] denotes the integer part of r ∈ R.

Comments. If the mapping f : [a, b] → R is neither four time differentiable
nor the fourth derivative is bounded on (a, b) , then we can not apply the classical
estimation in Simpson’s formula using the fourth derivative. But if we assume that
f ′ ∈ Lp (a, b), then we can use the formula (4.4) instead.

We give here a class of mappings whose first derivatives belong to Lp (a, b) but
having the fourth derivatives unbounded on the given interval.

Let fs : [a, b]→ R, fs (x) := (x− a)s where s ∈ (3, 4) . Then obviously

f ′s (x) := s (x− a)s−1
, x ∈ (a, b)

and

f (4)
s (x) =

s (s− 1) (s− 2) (s− 3)
(x− a)4−s , x ∈ (a, b) .

It is clear that limx→a+ f
(4)
s (x) = +∞, but ‖f ′s‖p = s · (b−a)

s−1+ 1
p

((s−1)p+1)
1
p
<∞.
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4.2. Applications for Special Means. (See Section 2.2 for the definition of the
means.)

1. Let f : [a, b]→ R (0 < a < b) , f (x) = xs, s ∈ R\ {−1, 0} . Then

1
b− a

∫ b

a

f (x) dx = Lss (a, b) ,

f

(
a+ b

2

)
= As (a, b) ,

f (a) + f (b)
2

= A (as, bs)

and

‖f ′‖p = |s|Ls−1
(s−1)p (b− a)

1
p .

Using the inequality (4.1) we get∣∣∣∣Lss (a, b)− 1
3
A(as, bs)− 2

3
As (a, b)

∣∣∣∣
≤ 1

6

[
2q+1 + 1
3 (q + 1)

] 1
q

|s|Ls−1
(s−1)p (a, b) (b− a) .

where 1
p + 1

q = 1, p > 1.
2. Let f : [a, b]→ R (0 < a < b), f (x) = 1

x . Then

1
b− a

∫ b

a

f (x) dx = L−1 (a, b) ,

f(
a+ b

2
) = A−1 (a, b) ,

f (a) + f (b)
2

= H−1 (a, b)

and

‖f ′‖p = L−2
−2p (a, b) (b− a)

1
p .

Using the inequality (4.1) we get

|3HA− LA− 2LH| ≤ 1
2
AHL

[
2q+1 + 1
3 (q + 1)

] 1
q

L−2
−2p (b− a)

1
p .

3. Let f : [a, b]→ R (0 < a < b) , f (x) = lnx. Then

1
b− a

∫ b

a

f (x) dx = ln I (a, b) ,

f

(
a+ b

2

)
= lnA (a, b) ,

f (a) + f (b)
2

= lnA (a, b)

and

‖f ′‖p = L−1
−p (a, b) (b− a)

1
p .
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Using the inequality (4.1) , we obtain∣∣∣∣ln [ I

G1/3A2/3

]∣∣∣∣ ≤ 1
6

[
2q+1 + 1
3 (q + 1)

] 1
q

L−1
−p (a, b) (b− a) .

5. Grüss Inequality for the Simpson Formula

5.1. Some Preliminary results. The following integral inequality which estab-
lishes a connection between the integral of the product of two functions and the
product of the integrals of the two functions is well known in literature as Grüss’
inequality [5, p. 296]:

Theorem 4. Let f, g : [a, b]→ R be two integrable functions such that ϕ ≤ f (x) ≤
Φ and γ ≤ g (x) ≤ Γ for all x ∈ (a, b); ϕ,Φ, γ and Γ are constants. Then we have
the inequality∣∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣(5.1)

≤ 1
4

(φ− ϕ) (Γ− γ) ,

and the inequality is sharp in the sense that the constant 1
4 can not be replaced by

a smaller one.

In 1938, Ostrowski (cf. , for example [1, p. 468]) proved the following inequality
which gives an approximation of the integral 1

b−a
∫ b
a
f (t) dt as follows:

Theorem 5. Let f : [a, b] → R be a differentiable mapping on (a, b) whose deriv-
ative f ′ : (a, b) → R is bounded on (a, b) , i.e., ‖f ′‖∞ := supt∈(a,b) |f ′ (t) dt| < ∞ .
Then: ∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞ ,(5.2)

for all x ∈ (a, b) .

In the recent paper [6], S.S. Dragomir and S. Wang proved the following version
of Ostrowski’s inequality by using the Grüss inequality (5.1).

Theorem 6. Let f : I ⊆ R → R be a differentiable mapping in the interior of I
and let a, b ∈ int(I) with a < b. If f ′ ∈ L1 [a, b] and

γ ≤ f ′ (x) ≤ Γ

for all x ∈ [a, b] , then we have the following inequality:∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

·
(
x− a+ b

2

)∣∣∣∣∣(5.3)

≤ 1
4

(b− a) (Γ− γ) ,

for all x ∈ [a, b].
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They also applied this result for special means and in Numerical Integration
obtaining some quadrature formulae generalizing the mid-point quadrature rule
and the trapezoid rule. Note that the error bounds they obtained are in terms of
the first derivative which are particularly useful in the case when f ′′ does not exist
or is very large at some points in [a, b] .

For other related results see the papers [7]-[37].
In this section of our paper we give a generalization of the above inequality which

contains as a particular case the classical Simpson formula. Application for special
means and in Numerical Integration are also given.

5.2. An Integral Inequality of Grüss Type. For any real numbers A, B, let
us consider the function [21]

p (t) ≡ px (t) =
{
t− a+A
t− b+B

if
a ≤ t ≤ x
x < t ≤ b .

It is clear that px has the following properties.

(a) It has the jump

[p]x = (B −A)− (b− a)

at point t = x and

dpx (t)
dt

= 1 + [p]x δ (t− x) .

(b) Let Mx := supt∈(a,b) px(t) and mx: = inft∈(a,b) px (t). Then the difference
Mx −mx can be evaluated as follows :

1. For B −A ≤ 0, we have

Mx −mx = − [p]x .

2. For B −A > 0, the following three cases are possible
(i) If 0 ≤ B −A ≤ 1

2 (b− a) , then

Mx −mx =

 −x+ b for a ≤ x ≤ a+ (B −A) ;
− [p]x for a+ (B −A) < x ≤ b− (B −A) ;
x− a for b− (B −A) < x ≤ b.

(ii) If 1
2 (a− b) < B −A ≤ (b− a), then

Mx −mx =

 −x+ b for a ≤ x < b− (B −A) ;
B −A for b− (B −A) ≤ x < a+ (B −A) ;
x− a for q + (B −A) ≤ x ≤ b.

(iii) If B −A > b− a, then

Mx −mx = [p]x .

The following inequality of Ostrowski type holds [21]

Theorem 7. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose deriv-
ative satisfies the assumption

γ ≤ f ′ (t) ≤ Γ for all t ∈ (a, b) ,(5.4)
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where γ,Γ are given real numbers. Then we have the inequality:∣∣∣∣∣(C −A) f (a) + (b− a−B +A) f (x) + (B − C) f (b)−
∫ b

a

f (t) dt

∣∣∣∣∣(5.5)

≤ 1
4

(Γ− γ) (Mx −mx) (b− a) ,

where

Cx :=
1

2 (b− a)
[(x− a) (x− a+ 2A)− (x− b) (x− b+ 2B)] ,

and A,B,Mx and mx are as above, x ∈ [a, b] .

Proof. Using the Grüss inequality (5.1) , we can state that∣∣∣∣∣ 1
b− a

∫ b

a

px (t) f ′ (t) dt− f (b)− f (a)
b− a

· 1
b− a

∫ b

a

px (t) dt

∣∣∣∣∣(5.6)

≤ 1
4

(Γ− γ) (Mx −mx) ,

for all x ∈ (a, b) .
Integrating the first term by parts we obtain:∫ b

a

px (t) f ′ (t) dt = Bf (b)−Af (a)−
∫ b

a

f (t) dt+ [p]x f (x) .(5.7)

Also, as ∫ b

a

px (t) dt =
1
2

[(x− a) (x− a+ 2A)− (x− b) (x− b+ 2B)] ,

then (5.6) gives the inequality:∣∣∣∣∣ 1
b− a

[
Bf (b)−Af (a)−

∫ b

a

f (t) dt+ [p]x f (x)

]
− Cx ·

f (b)− f (a)
b− a

∣∣∣∣∣
≤ 1

4
(Γ− γ) (Mx −mx),

which is clearly equivalent with the desired result (5.5).

Remark 4. Setting in (5.5) , A = B = 0 and taking into account, by the property
(b), that Mx −mx = b− a, we obtain the inequality (5.3) by Dragomir and Wang.

The following corollary is interesting:

Corollary 9. Let A,B real numbers so that 0 ≤ B − A ≤ (b−a)
2 . If f is as above,

then we have the inequality∣∣∣∣∣B −A2
f (a) + [b− a− (B −A)] f

(
a+ b

2

)
+
B −A

2
f (b)−

∫ b

a

f (t) dt

∣∣∣∣∣(5.8)

≤ 1
4

(Γ− γ) (b− a−B +A) (b− a) .

Proof. Consider x = a+b
2 . Then, from (5.5) ,

x− a =
b− a

2
,
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x− b = −b− a
2

and

Cx =
A+B

2
, x ∈ [a+ (B −A) , b− (B −A)] .

By property (b) we have

Mx −mx = (b− a)− (B −A) .

Applying Theorem 7 for x = a+b
2 , we get easily (5.8).

Remark 5. If we choose in the above corollary B −A = b−a
2 , then we get∣∣∣∣∣12 ·

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]
(b− a)−

∫ b

a

f (t) dt

∣∣∣∣∣(5.9)

≤ 1
8

(Γ− γ) (b− a)2
,

which is the arithmetic mean of the mid-point and trapezoid formulae.

Remark 6. If we choose in (5.8) B = A, then we get the mid-point inequality∣∣∣∣∣(b− a) f
(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1
4

(Γ− γ) (b− a)2(5.10)

discovered by S.S. Dragomir and S. Wang in the paper [6] (see Corollary. 2)

Remark 7. If we choose in (5.8) B − A = b−a
3 , then we obtain the celebrated

Simpson’s formula ∣∣∣∣∣b− a6
·
[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
−
∫ b

a

f (t) dt

∣∣∣∣∣(5.11)

≤ 1
6

(Γ− γ) (b− a)2
,

for which we have an estimation in terms of the first derivative not as in the classical
case in which the forth derivative is required as follows:∣∣∣∣∣b− a6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
−
∫ b

a

f (t) dt

∣∣∣∣∣(5.12)

≤ ‖ f (4) ‖∞
2880

(b− a)5
.

The method of evaluation of the error for the Simpson rule considered above can
be applied for any quadrature formula of Newton - Cotes type.

For example, to get the analogous evaluation of the error for the Newton-Cotes
rule of order 3 it is sufficient to replace the function px (t) in (2.3) by the function

px (t) :=


t− a−A if a ≤ t ≤ a+ h;
t− a+b

2 + A+B
2 if a+ h < t ≤ b− h;

t− b−B if b− h < t ≤ b;

where B −A = b−a
4 , h = b−a

3 .
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5.3. Applications for Special Means. (See Section 2.2 for the definition of the
means.)

1. Consider the mapping f (x) = xp (p > 1) , x > 0. Then

Γ− γ = (a− b) (p− 1)Lp−2
p−2

for a, b ∈ R with 0 < a < b. Consequently, we have the inequality∣∣∣∣23Ap (a, b) +
1
2
A (ap, bp)− Lpp (a, b)

∣∣∣∣
≤ 1

6
(b− a)2 (p− 1)Lp−2

p−2.

2. Consider the mapping f (x) = 1
x , x > 0. Then

Γ− γ =
b2 − a2

a2b2
= 2 · (b− a)A (a, b)

G4 (a, b)

for 0 < a < b. Consequently we have the inequality:∣∣∣∣23A−1 (a, b) +
1
3
H−1 (a, b)− L−1 (a, b)

∣∣∣∣
≤ 1

3
(b− a)2 A (a, b)

G4 (a, b)

which is equivalent to∣∣∣∣23HL+
1
3
AL−AH

∣∣∣∣ ≤ 1
3

(b− a)2 A
2HL

G4 .

3. Consider the mapping f (x) = lnx, x > 0. Then we have

Γ− γ =
b− a
G2

for a, b ∈ R with 0 < a < b. Consequently, we have the inequality∣∣∣∣23 lnA+
1
3

lnG− ln I
∣∣∣∣ ≤ 1

6
(b− a)2

G2 ,

which is equivalent to∣∣∣∣∣ln
(
A

2
3G

1
3

I

)∣∣∣∣∣ ≤ 1
6
· (b− a)2

G2 .

5.4. Estimation of Error Bounds in Simpson’s Rule. The following theorem
holds.

Theorem 8. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose deriva-
tive satisfies the condition

γ ≤ f ′ (t) ≤ Γ for all t ∈ (a, b) ;

where γ,Γ are given real numbers. Then we have∫ b

a

f (t) dt = Sn (In, f) +Rn (In, f)(5.13)
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where

Sn (In, f) =
1
3

n−1∑
i=o

hi [f (xi) + 4f (xi + hi) + f (xi+1)] ,(5.14)

Ih is the partition given by

In : a = x0 < x1 < ... < xn−1 < xn = b

hi := 1
2 (xi+1 − xi) , i = 0, ..., n− 1 and the remainder term Rn (In, f) satisfies the

estimation:

|Rn (In, f)| ≤ 2
3

(Γ− γ)
n−1∑
i=0

h2
i .(5.15)

Proof. Let us set in (5.11)

a = xi, b = xi+1, 2hi = xi+1 − xi and xi + hi =
1
2

(xi + xi+1)

where i = 0, ..., n− 1.
Then we have the estimation:∣∣∣∣∣∣∣

hi
3

[f (xi) + 4f (xi + hi) + f (xi+1)]−
xi+1∫
xi

f (t) dt

∣∣∣∣∣∣∣ ≤
2
3

(Γ− γ)h2
i ,

for all i = 0, ..., n− 1.
After summing and using the triangle inequality, we obtain∣∣∣∣∣

n−1∑
i=0

hi
3

[f (xi) + 4f (xi + hi) + f (xi+1)]−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ 2

3
(Γ− γ)

n−1∑
i=0

h2
i ,

which proves the required estimation.

Corollary 10. Under the above assumptions and if we put ‖f ′‖∞ := supt∈(a,b) |f ′ (t)| <
∞, then we have the following estimation of the remainder term in Simpson’s for-
mula

|Rn (In,f)| ≤ 4
3
‖f ′‖∞

n−1∑
i=0

h2
i .(5.16)

The classical error estimates based on the Taylor expansion for the Simpson’s
rule involve the forth derivative ‖ f (4)‖∞ . In the case that f (4) does not exists or
is very large at some points in [a, b] , the classical estimates can not be applied, and
thus (5.15) and (5.16) provide alternative error estimates for the Simpson’s rule.

6. A Convex Combination

The following generalization of Ostrowski’s inequality holds [19]:
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Theorem 9. Let f : [a, b]→R be absolutely continuous on [a, b] , and whose deriv-
ative f ′ : [a, b]→R is bounded on [a, b] . Denote ‖f ′‖∞ := ess supt∈[a,b] |f ′ (x)| <∞.
Then ∣∣∣∣∣

∫ b

a

f (t) dt−
[
f (x) · (1− δ) +

f (a) + f (b)
2

· δ
]

(b− a)

∣∣∣∣∣(6.1)

≤

[
1
4

(b− a)2
[
δ2 + (δ − 1)2

]
+
(
x− a+ b

2

)2
]
‖f ′‖∞

for all δ ∈ [0, 1] and a+ δ · b−a2 ≤ x ≤ b− δ ·
b−a

2 .

Proof. Let us define the mapping p : [a, b]2 →R given by

p (x, t) :=

 t−
[
a+ δ · b−a2

]
, t ∈ [a, x]

t−
[
b− δ · b−a2

]
, t ∈ (x, b]

.

Integrating by parts, we have:∫ b

a

p (x, t) f ′ (t) dt(6.2)

=
∫ x

a

(
t−

[
a+ δ · b− a

2

])
f ′ (t) dt+

∫ b

x

(
t−
[
b− δ · b− a

2

])
f ′ (t) dt

= δ · (b− a)
(f (a) + f (b))

2
+ (1− δ) · f (x)−

∫ b

a

f (t) dt.

On the other hand,∣∣∣∣∣
∫ b

a

p (x, t) f ′ (t) dt

∣∣∣∣∣ ≤
∫ b

a

|p (x, t)| |f ′ (t)| dt ≤ ‖f ′‖∞
∫ b

a

|p (x, t)| dt

= ‖f ′‖∞

[∫ x

a

∣∣∣∣t− (a+ δ · b− a
2

)∣∣∣∣ dt+
∫ b

x

∣∣∣∣t− (b− δ · b− a2

)∣∣∣∣ dt
]

= : ‖f ′‖∞ L.

Now, let us observe that∫ r

p

|t− q| dt =
∫ q

p

(q − t) dt+
∫ r

q

(t− q) dt

=
1
2

[
(q − p)2 + (r − q)2

]
=

1
4

(p− r)2 +
(
q − r + p

2

)2

for all r, p, q such that p ≤ q ≤ r.
Using the previous identity, we have that∫ x

a

∣∣∣∣t− (a+ δ · b− a
2

)∣∣∣∣ dt
=

1
4

(x− a)2 +
(
a+ δ · b− a

2
− a+ x

2

)2
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and ∫ b

x

∣∣∣∣t− (b− δ · b− a2

)∣∣∣∣ dt
=

1
4

(b− x)2 +
(
b− δ · b− a

2
− x+ b

2

)2

.

Then we get

L =
1
2
· (x− a)2 + (b− x)2

2
+
(
δ · b− a

2
− x− a

2

)2

+
(
b− x

2
− δ · b− a

2

)2

=
(b− a)2

4
·
[
δ2 + (δ − 1)2

]
+
(
x− a+ b

2

)2

and the theorem is thus proved.

Remark 8. (a) If we choose in (6.1) , δ = 0, we get Ostrowski’s inequality .
(b) If we choose in (6.1) , δ = 1 and x = a+b

2 we get the trapezoid inequality:∣∣∣∣∣
∫ b

a

f (t) dt− f (a) + f (b)
2

(b− a)

∣∣∣∣∣ ≤ 1
4

(b− a)2 ‖f ′‖∞(6.3)

Corollary 11. Under the above assumptions, we have the inequality:∣∣∣∣∣
∫ b

a

f (t) dt− 1
2

[
f (x) +

f (a) + f (b)
2

]
(b− a)

∣∣∣∣∣
≤

[
1
8

(b− a)2 +
(
x− a+ b

2

)2
]
‖f ′‖∞

for all x ∈
[
b+3a

4 , a+3b
4

]
, and, in particular, the following mixture of the trapezoid

inequality and mid-point inequality:∣∣∣∣∣
∫ b

a

f (t) dt− 1
2

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
(b− a)

∣∣∣∣∣(6.4)

≤ 1
8

(b− a)2 ‖f ′‖∞ .

Finally, we also have the following generalization of Simpson’s inequality:

Corollary 12. Under the above assumptions, we have∣∣∣∣∣
∫ b

a

f (t) dt− 1
6

[f (a) + 4f (x) + f (b)] (b− a)

∣∣∣∣∣
≤

[
5
36

(b− a)2 +
(
x− a+ b

2

)2
]
‖f ′‖∞

for all x ∈
[
b+5a

4 , a+5b
4

]
, and, in particular, the Simpson’s inequality∣∣∣∣∣

∫ b

a

f (t) dt− 1
6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
(b− a)

∣∣∣∣∣(6.5)

≤ 5
36

(b− a)2 ‖f ′‖∞ .
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6.1. Applications in Numerical Integration. The following approximation of
the integral

∫ b
a
f (x) dx holds [19].

Theorem 10. Let f : [a, b] →R be an absolutely continuous mapping on [a, b]
whose derivative is bounded on [a, b.] If In : a = x0 < x1 < ... < xn−1 < xn = b is
a partition of [a, b] and hi := xi+1 − xi, i = 0, ..., n− 1, then we have:∫ b

a

f (x) dx = Aδ (In, ξ, δ, f) +Rδ (In, ξ, δ, f)(6.6)

where

Aδ (In, ξ, δ, f) = (1− δ)
n−1∑
i=0

f (ξi)hi + δ

n−1∑
i=0

f (xi) + f (xi+1)
2

· hi,(6.7)

δ ∈ [0, 1] , xi + δ · hi2 ≤ ξi ≤ xi+1 − δ · hi2 , i = 0, ..., n − 1; and the remainder term
satisfies the estimation:

|Rδ (In, ξ, δ, f)|(6.8)

≤ ‖f ′‖∞

[
1
4

[
δ2 + (δ − 1)2

] n−1∑
i=0

h2
i +

n−1∑
i=0

(
ξi −

xi + xi+1

2

)2
]
.

Proof. Applying Theorem 9 on the interval [xi, xi+1] , i = 0, ..., n− 1 we get∣∣∣∣hi [(1− δ) · f (ξi) +
f (xi) + f (xi+1)

2
· δ
]
−
∫ xi+1

xi

f (x) dx
∣∣∣∣

≤

[[
δ2 + (δ − 1)2

] h2
i

4
+
(
ξi −

xi + xi+1

2

)2
]
‖f ′‖∞

for all δ ∈ [0, 1] and ξi ∈ [xi, xi+1] , i = 0, ..., n− 1.
Summing over i from 0 to n − 1 and using the triangle inequality we get the
estimation (6.8) .

Remark 9. a) If we choose δ = 0, then we get the quadrature formula∫ b

a

f (x) dx = AT (In, ξ, f) +RT (In, ξ, f)(6.9)

where AT (In, ξ, f) is the Riemann’s sum, i.e.,

AT (In, ξ, f) :=
n−1∑
i=0

f (ξi)hi, ξi ∈ [xi, xi+1] , i = 0, ..., n− 1;

and the remainder term satisfies the estimate (see also [8]):

|RT (In, ξ, f)| ≤ ‖f ′‖∞
n−1∑
i=0

[
h2
i

4
+
(
ξi −

xi + xi+1

2

)2
]
.(6.10)

b) If we choose δ = 1, then we get the trapezoid formula∫ b

a

f (x) dx = AT (In, f) +RT (In, f)(6.11)
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where AT (In, f) is the trapezoidal rule

AT (In, f) =
n−1∑
i=0

f (xi) + f (xi+1)
2

· hi

and the remainder terms satisfies the estimation

|RT (In, f)| ≤
‖f ′‖∞

4

n−1∑
i=0

h2
i .(6.12)

Corollary 13. Under the above assumptions we have∫ b

a

f (x) dx = BT (In, ξ, f) +QT (In, ξ, f)(6.13)

where

BT (In, ξ, f) =
1
2

[
n−1∑
i=0

f (ξi)hi +
n−1∑
i=0

f (xi) + f (xi+1)
2

· hi

]
,

ξi ∈
[
xi+1 + 3xi

4
,
xi + 3xi+1

4

]
,

and the remainder term satisfies the estimation

|QT (In, ξ, f)| ≤ ‖f ′‖∞

[
1
8

n−1∑
i=0

h2
i +

n−1∑
i=0

(
ξi −

xi + xi+1

2

)2
]
.(6.14)

In particular, we have ∫ b

a

f (x) dx = BT (In, f) +QT (In, f)(6.15)

where

BT (In, f) =
1
2

[
n−1∑
i=0

f

(
xi + xi+1

2

)
hi +

n−1∑
i=0

f (xi) + f (xi+1)
2

· hi

]
and QT (In, f) satisfies the estimation:

|QT (In, f)| ≤
‖f ′‖∞

8

n−1∑
i=0

h2
i .(6.16)

Finally, we have the following generalization of Simpson’s inequality whose re-
mainder term is estimated by the use of the first derivative only.

Corollary 14. Under the above assumptions we have:∫ b

a

f (x) dx = ST (In, ξ, f) +WT (In, ξ, f)(6.17)

where

ST (In, ξ, f) =
2
3

n−1∑
i=0

f (ξi)hi +
1
6

n−1∑
i=0

[f (xi) + f (xi+1)]hi,

ξi ∈
[
xi+1 + 5xi

6
,
xi + 5xi+1

6

]
,
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and the remainder term WT (In, ξ, f) satisfies the bound:

|WT (In, ξ, f)| ≤ ‖f ′‖∞

[
5
36

n−1∑
i=0

h2
i +

n−1∑
i=0

(
ξi −

xi + xi+1

2

)2
]

(6.18)

and, in particular, the Simpson’s rule:∫ b

a

f (x) dx = ST (In, f) +WT (In, f)(6.19)

where

ST (In, f) =
2
3

n−1∑
i=0

f

(
xi + xi+1

2

)
hi +

1
6

n−1∑
i=0

[f (xi) + f (xi+1)]hi

and the remainder term satisfies the estimation:

|WT (In, f)| ≤ 5
36
‖f ′‖∞

n−1∑
i=0

h2
i .(6.20)

6.2. Applications for Special Means. Now, let us reconsider the inequality
(6.1) in the following equivalent form:∣∣∣∣∣(1− δ) · f (x) +

f (a) + f (b)
2

· δ − 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣(6.21)

≤

[
(b− a)

[
δ2 + (δ − 1)2

4

]
+

(
x− a+b

2

)2
(b− a)

]
‖f ′‖∞

for all δ ∈ [0, 1] and x ∈ [a, b] such that

a+ δ ·
(
b− a

2

)
≤ x ≤ b− δ ·

(
b− a

2

)
.

1. Consider the mapping f : (0,∞)→ (0,∞) , f (x) = xp, p ∈ R\ {−1, 0} . Then,
for 0 < a < b, we have

‖f ′‖∞ =
{
|p| bp−1 if p > 1
|p| ap−1 if p ∈ (−∞, 1] \ {−1, 0} ,

and then, by (6.21) , we deduce that:∣∣(1− δ) · xp + δ ·A (ap, bp)− Lpp (a, b)
∣∣

≤

{
(b− a)

[
δ2 + (δ − 1)2

4

]
+

(x−A)2

(b− a)

}
δp (a, b)

where

δp (a, b) :=
{
|p| bp−1 if p > 1
|p| ap−1 if p ∈ (−∞, 1] \ {−1, 0}

and δ ∈ [0, 1] , x ∈
[
a+ δ · b−a2 , b− δ · b−a2

]
.

2. Consider the mapping f : (0,∞) → (0,∞) , f (x) = 1
x and 0 < a < b. We

have:

‖f ′‖∞ =
1
a2
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and then by (6.21) , we deduce, for all δ ∈ [0, 1] , and a+δ · b−a2 ≤ x ≤ b−δ ·
b−a

2
that:

|(1− δ) δL+ Lxδ − xδ|

≤ xδL

a2

[
(b− a)

[
δ2 + (δ − 1)2

4

]
+

(x−A)2

(b− a)

]
.

3. Consider the mapping f : (0,∞)→ R, f (x) = lnx and 0 < a < b. We have:

‖f ′‖∞ =
1
a
,

and then, by (6.21) , we deduce that

∣∣∣∣ln [x1−δGδ

I

]∣∣∣∣ ≤ 1
a

[
(b− a)

[
δ2 + (δ − 1)2

4

]
+

(x−A)2

(b− a)

]
,

for all δ ∈ [0, 1] , and x ∈
[
a+ δ · b−a2 , b− δ · b−a2

]
.

7. A Generalization for Monotonic Mappings

In [20], S.S. Dragomir established the following Ostrowski type inequality for
monotonic mappings.

Theorem 11. Let f : [a, b] → R be a monotonic nondecreasing mapping on [a, b].
Then for all x ∈ [a, b], we have the inequality:∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ 1

b− a

[2x− (a+ b)] f (x) +

b∫
a

sgn(t− x)f(t)dt


≤ 1

b− a
[(x− a) (f (x)− f (a)) + (b− x) (f (b)− f (x))]

≤

[
1
2

+

∣∣x− a+b
2

∣∣
b− a

]
(f (b)− f (a)) .

All the inequalities are sharp and the constant 1
2 is the best possible one.

In this section we shall obtain a generalization of this result which also contains
the trapezoid and Simpson type inequalities.

The following result holds [38]:
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Theorem 12. Let f : [a, b]→ R be a monotonic nondecreasing mapping on [a, b]
and t1, t2, t3 ∈ (a, b) be such that t1 < t2 <3. Then∣∣∣∣∣∣

b∫
a

f (x) dx− [(t1 − a) f (a) + (b− t3) f (b) + (t3 − t1) f(t)]

∣∣∣∣∣∣(7.1)

≤ (b− t3) f (b) + (2t2 − t1 − t3) f(t2)− (t1 − a) f (a) +

b∫
a

T (x) f (x) dx

≤ (b− t3) (f (b)− f(t3)) + (t3 − t2) (f(t3)− f(t2))
+ (t2 − t1) (f(t2)− f(t1)) + (t1 − a) (f(t1)− f(t2))

≤ max {t1 − a, t2 − t1, t3 − t2, b− t3} (f (b)− f (a))

where

T (x) =

 sgn(t1 − x), for x ∈ [a, t2]

sgn(t3 − x), for x ∈ [t2, b]
.

Proof. Using integration by parts formula for Riemann-Stieltjes integral we have

b∫
a

s (x) df (x) = (t1 − a) f (a) + (b− t3) f (b) + (t3 − t1) f(t2)−
b∫
a

f (x) d (x)

where

s (x) =

 x− t1, x ∈ [a, t2]

x− t3, x ∈ [t2, b]
.

Indeed,

b∫
a

s (x) df (x) =

t2∫
a

(x− t1)df (x) +

b∫
t2

(x− t3)df (x)

= (x− t1) f (x)|t2a + (x− t3) f(t)|bt2 −
b∫
a

f (x) d (x)

= (t1 − a) f (a) + (b− t3) f (b) + (t3 − t1) f(t2)−
b∫
a

f (x) dx.

Assume that An : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a sequence of

divisions with ν(An)→ 0 as n→∞, where ν(An) := max
i=0,...,n−1

(
x

(n)
i−1 − x

(n)
i

)
and

ξ
(n)
i ∈

[
x

(n)
i , x

(n)
i+1

]
. If p : [a, b] → R is a continuous mapping on [a, b] and v is
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monotonic nondecreasing on [a, b], then∣∣∣∣∣∣
b∫
a

p (x) dv (x)

∣∣∣∣∣∣ = lim
ν(An)→∞

n−1∑
i=0

p(ξ(n)
i )

[
v(x(n)

i+1)− v(x(n)
i )
]

(7.2)

≤ lim
ν(An)→∞

n−1∑
i=0

∣∣∣p(ξ(n)
i )
∣∣∣ ∣∣∣v(x(n)

i+1)− v(x(n)
i )
∣∣∣

= lim
ν(An)→∞

n−1∑
i=0

∣∣∣p(ξ(n)
i )
∣∣∣ (v(x(n)

i+1)− v(x(n)
i )
)

=

b∫
a

|p (x)| dv (x) .

Applying the inequality (7.2) for p (x) = s (x) and v (x) = f (x), x ∈ [a, b] we
can state:∣∣∣∣∣∣

b∫
a

s (x) df (x)

∣∣∣∣∣∣
≤

b∫
a

|s (x)| df (x)

=

t1∫
a

(t1 − x)df (x) +

t2∫
t1

(x− t1) df (x) +

t3∫
t2

(t3 − x)df (x) +

b∫
t3

(x− t3) df (x)

= (t1 − x)f (x)|
t1

a +

t1∫
a

f (x) dx+ (x− t1)f (x)|
t2

t1
−

t2∫
t1

f (x) dx+

+ (t3 − x)f (x)|
t3

t2
+

t3∫
t2

f (x) dx+ (x− t3)f (x)|
b

t3
+

b∫
t3

f (x) dx

= − (t1 − a) f (a) + (t2 − t1) f(t2)− (t3 − t2) f(t2)

+ (b− t3) f (b) +

b∫
a

T (x) f (x) dx.

which is the first inequality in (7.1).
If f : [a, b]→ R is monotonic nondecreasing in [a, b], we can also state

t1∫
a

f (x) dx ≤ f(t1)(t1 − a),

t2∫
t1

f (x) dx ≥ f(t2)(t2 − t1),
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t3∫
t2

f (x) dx ≤ f(t3)(t3 − t2),

and
b∫

t3

f (x) dx ≥ f(t3)(b− t3).

So,
b∫
a

T (x) f (x) dx

=

t1∫
a

f (x) dx−
t2∫
t1

f (x) dx+

t3∫
t2

f (x) dx−
b∫

t3

f (x) dx

≤ f(t1) (t1 − a)− f(t2)(t2 − t1) + f(t3) (t3 − t2)− f(t3) (b− t3) .

We have

− (t1 − a) f (a) + (t2 − t1) f(t2)− (t3 − t2) f(t2)

− (b− t3) f (b) +

b∫
a

T (x) f (x) dx

≤ − (t1 − a) f (a) + (t2 − t1) f(t2)− (t3 − t2) f(t2) + (b− t3) f (b)
+ (t1 − a) f(t1)− (t2 − t1) f(t1) + (t3 − t2) f(t3)− (b− t3) f(t3)

= (t1 − a) (f(t1)− f (a)) + (t2 − t1) (f(t2)− f(t1))
+ (t3 − t2) (f(t3)− f(t2)) + (b− t3) (f (b)− f(t3))

≤ max {t1 − a, t2 − t1, t3 − t2, b− t3} (f (b)− f (a)) .

The theorem is thus proved.

Remark 10. For t1 = 0, t2 = x, t3 = b, a generalized trapezoid inequality is
obtained and we get Theorem 11 from the above Theorem.

For t1 = t2 = t3 = x Theorem 12 becomes:

Corollary 15. Let f be defined as in Theorem 12. Then∣∣∣∣∣∣
b∫
a

f(t)dt− [(x− a) f (a) + (b− x)f (b)]

∣∣∣∣∣∣(7.3)

≤ (b− x)f (b)− (x− a) f (a) +

b∫
a

sgn(x− t)f(t)dt

≤ (b− x) (f (b)− f (x)) + (x− a) (f (x)− f (a))

≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] (f (b)− f (a)) .

All the inequalities in (7.3) are sharp and the constant 1
2 is the best possible.
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Proof. We only need to prove that the constant 1
2 is the best possible one. Choose

the mapping f0 : [a, b]→ R given by

f0 (x) =

 0, if x ∈ [a, b) ,

1, if x = b.

Then, f0 is monotonic nondecreasing on [a, b], and for x = a we have

∣∣∣∣∣∣
b∫
a

f(t)dt− [(x− a) f (a) + (b− x)f (b)]

∣∣∣∣∣∣
= (b− x)f (b)− (x− a) f (a) +

b∫
a

sgn(t− x)f(t)dt

= (b− x) (f (b)− f (x)) + (x− a) (f (x)− f (a))
= (b− a)

≤
[
C (b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] (f (b)− f (a))

=
(
C +

1
2

)
(b− a)

which prove the sharpness of the first two inequalities and the fact that C cannot
be less than 1

2 .

For x = a+b
2 we get the trapezoid inequality.

Corollary 16. Let f : [a, b]→ R be a monotonic nondecreasing mapping on [a, b].
Then

∣∣∣∣∣∣
b∫
a

f(t)dt− f (a) + f (b)
2

· (b− a)

∣∣∣∣∣∣(7.4)

≤ 1
2

(b− a) (f (b)− f (a))−
b∫
a

sgn
(
t− a+ b

2

)
f(t)dt

≤ 1
2

(b− a) (f (b)− f (a)).

The constant factor 1
2 is the best in both inequalities.
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Corollary 17. Let f be as in Theorem 9 and p, q ∈ R+ with p > q. Then∣∣∣∣∣∣
b∫
a

f (x) dx− q

p+ q
(b− a)

[
f (a) + f (b) +

p− q
q

f

(
a+ b

2

)]∣∣∣∣∣∣
≤ q

p+ q
(b− a) (f (b)− f (a)) +

b∫
a

T1 (x) f (x) dx

≤ q

p+ q
(b− a) (f (b)− f (a))

+
p− 3q

2(p+ q)
(b− a)

[
f

(
pb+ qa

p+ q

)
− f

(
pa+ qb

p+ q

)]
≤ max

{
q,
p− q

2

}
b− a
p+ q

(f (b)− f (a))

where

T1 (x) =


sgn

(
pa+qb
p+q − x

)
, if x ∈

[
a, a+b

2

]
sgn

(
pb+qa
p+q − x

)
, if x ∈

[
a+b

2 , b
] .

Proof. Set in Theorem 12: t1 = pa+qb
p+q , t2 = a+b

2 , t3 = qa+pb
p+q .

Remark 11. Of special interest is the case p = 5 and q = 1 where we get from
Corollary 17 the following result of Simpson type;∣∣∣∣∣∣

b∫
a

f (x) dx− 1
3

(b− a)
[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣∣
≤ b− a

6
(f (b)− f (a)) +

b∫
a

T2 (x) f (x) dx

≤ b− a
6

[
f (b)− f (a) + f

(
5b+ a

6

)
− f

(
5a+ b

6

)]
≤ 1

3
(b− a) (f (b)− f (a)),

where

T2 (x) =
{

sgn
( 5a+b

3 − x
)
,
x ∈

[
a, a+b

2

]
sgn

(
a+5b

3 − x
)
, x ∈

[
a+b

2 , b
]
.

Remark 12. For p→ q we get Corollary 16 from Corollary 17.

7.1. An Inequality for the Cumulative Distribution Function. Let X be a
random variable taking values in the finite interval [a, b], with cumulative distribu-
tions function F (x) = Pr(X ≤ x).

The following result from [20] can be obtained from Theorem 12.
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Theorem 13. Let X and F be as above. Then we have the inequalities∣∣∣∣Pr(X ≤ x)− b− E (x)
b− a

∣∣∣∣(7.5)

≤ 1
b− a

[2x− (a+ b)] Pr(X ≤ x) +

b∫
a

sgn (t− x)F (t)dt


≤ 1

b− a
[(b− x) Pr(X ≥ x) + (x− a) Pr(X ≤ x)]

≤ 1
2

+

∣∣x− a+b
2

∣∣
b− a

for all x ∈ [a, b] .
All the inequalities in (7.5) are sharp and the constant 1

2 is the best possible.

Now we shall prove the following result.

Theorem 14. Let X and F be as above. Then we have the inequalities

|E (x)− x| ≤ b− x+

b∫
a

sgn (x− t)F (t)dt(7.6)

≤ (b− x) Pr(X ≥ x) + (x− a) Pr(X ≤ x)

≤ b− a
2

+
∣∣∣∣x− a+ b

2

∣∣∣∣
for all x ∈ [a, b] .

All the inequalities in (7.6) are sharp and the constant 1
2 is the best possible.

Proof. Apply Corollary 15 for the monotonic nondecreasing mapping f(t) := F (t), t ∈
[a, b] to get

∣∣∣∣∣∣
b∫
a

F (t)dt− [(x− a)F (a) + (b− x)F (b)]

∣∣∣∣∣∣(7.7)

≤ (b− x)F (b) + (x− a)F (a) +

b∫
a

sgn (x− t)F (t)dt

≤ (b− x)(F (b)− F (x)) + (x− a) (F (x)− F (a))

≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] (F (b)− F (a))

and as

F (a) = 0, F (b) = 1
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by the integration by parts formula for Riemann-Stieltjes integrals

E (x) =

b∫
a

tdF (t) = tF (t)|ba −
b∫
a

F (t)dt

= bF (b)− aF (a)−
b∫
a

F (t)dt

= b−
b∫
a

F (t)dt.

That is,
b∫
a

F (t)dt = b− E (x) .

The inequalities (7.7) give the desired estimation (7.6).

Corollary 18. Let X be a random variable taking values in the finite interval [a, b],
with cumulative distribution function F (x) = Pr(X ≤ x) and the expectation E (x).
Then we have the inequality∣∣∣∣E (x)− a+ b

2

∣∣∣∣ ≤ 1
2

(b− a)−
b∫
a

sgn

(
t− a+ b

2

)
F (t)dt ≤ 1

2
(b− a) .

The constant 1
2 is the best in both inequalities.
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and applications for special means and numerical integration, Tamkang J. of Math., (ac-
cepted).

[15] S.S. DRAGOMIR, R.P. AGARWAL and N.S. BARNETT, Inequalities for Beta and Gamma
functions via some classical and new integral inequalities, Journal of Inequalities and Appli-
cations, accepted.

[16] S.S. DRAGOMIR, A generalization of Ostrowski integral inequality for mappings of bounded
variation and applications in numerical integration, Bull. Australian Math. Soc., accepted.

[17] S.S. DRAGOMIR,N.S. BARNETT and S. WANG, An Ostrowski type inequality for a ran-
dom variable whose probability density function belongs to Lp [a, b] , p > 1, Mathematical
Inequalities and Applications, accepted.

[18] S.S. DRAGOMIR and N.S. BARNETT, An Ostrowski type inequality for mappings whose
second derivatives are bounded and applications, The Journal of the Indian Mathematical
Society, accepted.

[19] S.S. DRAGOMIR, P. CERONE and J. ROUMELIOTIS, A new generalization of Ostrowski’s
integral inequality for mappings whose derivatives are bounded and applications in numerical
integration and for special means, Appl. Math. Lett., accepted.

[20] S.S. DRAGOMIR, Ostrowski’s inequality for monotonic mappings and applications, J.
KSIAM, accepted.

[21] I. FEDOTOV and S.S. DRAGOMIR, An inequality of Ostrowski type and its applications
for Simpson’s rule and special means, Preprint, RGMIA Res. Rep. Coll., 2(1) (1999), 13-20.
http://matilda.vu.edu.au/˜rgmia

[22] S.S. DRAGOMIR, On the Ostrowski’s integral inequality for mappings with bounded varia-
tion and applications, Preprint, RGMIA Research Report Collection, 2(1)(1999), 63-70.

[23] S.S. DRAGOMIR, On the Ostrowski’s integral inequality for Lipschitzian mappings with
bounded variation, Preprint, RGMIA Research Report Collection, 2(1)(1999), 89-94.

[24] S.S. DRAGOMIR, P. CERONE, J. ROUMELIOTIS and S. WANG, A weighted version of
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