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ON TORICELLI’S PROBLEM IN INNER PRODUCT SPACES

S. S. DRAGOMIR, D. COMĂNESCU, Y. J. CHO, AND S. S. KIM

Abstract. It is well known in Elementary Geometry the problem proposed
and solved by Toricelli in the 17th century, to minimize the sum of the distances
of a variable point to three fixed points in the plane.
In this paper, we extend and solve completely the problem in inner product
spaces.

1. Introduction

It is well known in Elementary Geometry the problem proposed and solved by
Toricelli in the 17th century, to minimize the sum of the distances of a variable
point to three fixed points in the plane.

He found that the point for which the minimum is realized is either a vertex of
the fixed triangle, if the size of the corresponding angle is greater than 2π

3 , or the
unique point for each edge is seen under 2π

3 .
In this paper we consider and solve Toricelli’s problem in a real inner product

space H of dimension greater than 1.
Of course, Toricelli’s problem can be put in a general metric space (X, d) , but if

we would like to have nice properties in characterizing Toricellian points, we have
to restrict ourselves to the case of normed linear spaces, and in this context, the
Hilbertian case should be considered first.

Definition 1. Let (X, ‖·‖) be a real normed space and {a1, a2, a3} be a set of three
distinct points. We shall say that the element x0 ∈ X is a Toricellian point for the
set {a1, a2, a3} provided the following condition holds,

3∑
i=1

‖x0 − ai‖ ≤
3∑
i=1

‖x− ai‖ for all x ∈ X.(1.1)

That is, the element x0 minimizes the (nonlinear) functional T : X → [0,∞) called
Toricelli’s functional which is given by

T (x) :=
3∑
i=1

‖x− ai‖ .

For a given pair of distinct elements a, b ∈ X, a 6= b, we define the right line
determined by the elements a and b by

dr (a, b) := {λa+ (1− λ) b|λ ∈ R}
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and the segment determined by a and b, by

[a, b] := {λa+ (1− λ) b|λ ∈ [0, 1]} .

A set of points M ⊂ X will be called colinear iff there exists a right line dr (a, b)
such that M ⊆ dr (a, b) .

Finally, the set of elements {a1, a2, a3} ⊂ X will be called a “triangle” in X if
M0 := {a1, a2, a3} is not collinear in the above sense.

Of course, the problem of Toricelli can be extended for n > 3 points, but because
in that case there is also the possibility of having a number of m ≥ 3 collinear points
which deserve special attention, we restrict ourselves to the original problem of
Toricelli. We also note that this simpler case has a valued geometric interpretation
as shown by Toricelli himself in the 17th century.

2. The Existence and Unicity

We start with the following lemma which holds in inner product spaces which
are not necessarily Hilbert spaces.

Lemma 1. Let (H; (·, ·)) be a real inner product space and G a finite-dimensional
subspace in H. Then, for all x ∈ H there exists a unique element x1 ∈ G and a
unique element x2 ∈ G⊥ (the orthogonal complement of G) such that

x = x1 + x2.(2.1)

We denote this by H = G
⊕
G⊥.

Proof. Let x ∈ H. If x ∈ G, then x = x + 0 with 0 ∈ G⊥ and the decomposition
(2.1) holds.
If x ∈ X\G, then, by the well known theorem of best approximation element
from finite-dimensional linear subspaces, there exists an element x1 ∈ G such that
d (x, x1) = d (x,G) .
Put x2 := x− x1. Then for all y ∈ G and λ ∈ R, one has

‖x2 + λy‖ = ‖x− x1 + λy‖ = ‖x− (x1 − λy)‖ ≥ ‖x− x1‖ = ‖x2‖ ,

which is clearly equivalent to x2 ⊥ y, i.e., x2 ∈ G⊥ and the representation (2.1)
holds.
Now, suppose that there exists another representation x = y1 +y2 with y1 ∈ G and
y2 ∈ G⊥. Then we have

G 3 x1 − y1 = y2 − x2 ∈ G⊥,

and since G ∩ G⊥ = {0} , we deduce that x1 = y1 and x2 = y2 and the unicity in
decomposition (2.1) is proved.

The following theorem of existence and unicity for the Toricellian point holds.

Theorem 1. Let (H; (·, ·)) be a real inner product space of dimension greater than
1 and {a1, a2, a3} a “triangle” in H. Then, there exists a unique Toricellian point
associated with this “triangle”.

Proof. The existence. Consider G = Sp [a1, a2, a3] the subspace generated by
{a1, a2, a3} . By Lemma 1, we have H = G

⊕
G⊥.

Now, let x ∈ H\G. Then there exists a unique element x1 ∈ G and a unique
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x2 ∈ G⊥ such that x = x1 + x2 and x2 6= 0.
For all a ∈ G, we have

‖x− a‖ = ‖x1 + x2 − a‖ = ‖x2 + (x1 − a)‖(2.2)

=
(
‖x2‖2 + ‖x1 − a‖2

) 1
2
> ‖x1 − a‖

as ‖x2‖ > 0. Thus, for a = a1, a2, a3; we get

T (x) =
3∑
i=1

‖x− ai‖ >
3∑
i=1

‖x1 − ai‖ = T (x1) ,

which shows that the points which minimize the functional T on H are in the finite
dimensional space G.
Let x0 ∈ G. Since lim‖x‖→∞ T (x) = ∞, there exists a r > 0 such that T (y) >
T (x0) for all y ∈ G with ‖y‖ > r, which shows that the points which minimize T
on G are within the closed ball B̄g (0, r) , where

B̄g (0, r) = B̄ (0, r) ∩G,

and

B̄ (0, r) := {x ∈ H| ‖x‖ ≤ y}

is the closed ball in H. As B̄g (0, r) is compact in the finite-dimensional subspace
G and since T is continuous on B̄g (0, r) , it follows, by Weirstrass’ Theorem, that
there exists an element xm ∈ B̄g (0, r) such that

T (xm) = inf
x∈B̄g(0,r)

T (x) ;

and so xm is the Toricellian point for the “triangle” {a1, a2, a3} in the entire space
H.
The unicity. We are going to prove firstly that the Toricellian map T (x) =∑3
i=3 ‖x− ai‖ is strictly convex on H.

As T is a sum of convex mappings ‖· − ai‖ , it is obvious that it is a convex map
in H and so

T (λy1 + (1− λ) y2) ≤ λT (y1) + (1− λ)T (y2) ,(2.3)

for all λ ∈ [0, 1] and y1, y2 ∈ H.
Now, let λ ∈ (0, 1) and y1, y2 ∈ H, with y1 6= y2 and assume that the inequality
(2.3) becomes an equality, that is,

3∑
i=1

‖λ (y1 − ai) + (1− λ) (y2 − ai)‖ = λ

3∑
i=1

‖y1 − ai‖+ (1− λ)
3∑
i=1

‖y2 − ai‖ ,

which implies (by the triangle inequality and an obvious argument) that

‖λ (y1 − ai) + (1− λ) (y2 − ai)‖ = ‖λ (y1 − ai)‖+ ‖(1− λ) (y2 − ai)‖ ,(2.4)

for all i ∈ {1, 2, 3} . Taking the square in both parts of (2.4) , we get

λ2 ‖y1 − ai‖2 + 2λ (1− λ) (y1 − ai, y2 − ai) + (1− λ)2 ‖y2 − ai‖2

= λ2 ‖y1 − ai‖2 + 2λ (1− λ) ‖y1 − ai‖ ‖y2 − ai‖+ (1− λ)2 ‖y2 − ai‖2 ,
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which is equivalent to

(y1 − ai, y2 − ai) = ‖y1 − ai‖ ‖y2 − ai‖ for all i ∈ {1, 2, 3} .(2.5)

It is well known that the case of equality in Schwartz’s inequality in inner product
spaces

|(z, u)| ≤ ‖z‖ ‖u‖ , z, u ∈ H;(S)

holds iff z = µu, with µ ∈ R. Therefore, from (2.5) , it follows that there exists
µi ∈ R (i = 1, 2, 3) such that

y1 − ai = µi (y2 − ai) , ∀i ∈ {1, 2, 3} ,
which is equivalent to

(1− µi) ai = y1 − µiy2, ∀i ∈ {1, 2, 3} .(2.6)

Now, if we assume that µi = 1, then we get y1 = y2, which contradicts the above
assumption. Hence, µi 6= 1 for all i ∈ {1, 2, 3} , and then we deduce

ai =
1

1− µi
· y1 −

µi
1− µi

· y2 = αiy1 + (1− αi) y2, i ∈ {1, 2, 3} ,

where αi := 1
1−µi

, which contradicts the fact that {a1, a2, a3} are not collinear.
Consequently, we obtain that T is a strictly convex mapping on H.
Now, suppose that there exist two elements x1, x2 ∈ H with x1 6= x2, and so that
T (x1) = T (x2) = infx∈H T (x) = m. Consider the convex combination of x1, x2,
that is, xt := tx1 + (1− t)x2 with t ∈ (0, 1) . Therefore, xt 6= x1, x2. Since T is
strictly convex, we have

T (xt) = T (tx1 + (1− t)x2) < tT (x1) + (1− t)T (x2) = m,

which is a contradiction, and the unicity of the Toricellian point is proved.

3. Characterization of the Toricellian Point

In this section we solve the location problem of the Toricellian point.

Theorem 2. Let (H; (·, ·)) be a real inner product space of dimension greater that
1 and {a1, a2, a3} a “triangle” in H. The following statements are equivalent

(i) a2 is the Toricellian point for {a1, a2, a3} ;
(ii) We have the inequality∥∥∥∥ a1 − a2

‖a1 − a2‖
+

a3 − a2

‖a3 − a2‖

∥∥∥∥ ≤ 1;(3.1)

(iii) The angle between a1 − a2 and a3 − a2 is greater than 2π
3 , that is,

cos θ :=
(a1 − a2, a3 − a2)
‖a1 − a2‖ ‖a3 − a2‖

≤ −1
2
.(3.2)

Proof. By the calculation rules in inner product spaces, the condition (3.1) is equiv-
alent to

‖a1 − a2‖2

‖a1 − a2‖2
+ 2 · (a1 − a2, a3 − a2)

‖a1 − a2‖ ‖a3 − a2‖
+
‖a3 − a2‖2

‖a3 − a2‖2
≤ 1,

i.e.,

2 + 2 · (a1 − a2, a3 − a2)
‖a1 − a2‖ ‖a3 − a2‖

≤ 1,
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which is equivalent to (3.2) .
To prove the equivalence “(i)⇐⇒ (ii) ”, we use the following lemma which is a

known result in convex optimization.

Lemma 2. Let F : X → R be a convex mapping in the real linear space X. The
following statements are equivalent:

(i) x0 ∈ X minimizes the functional F on X;
(ii) One has the inequalities

lim
t→0+

F (x0 + tx)− F (x0)
t

≥ 0 ≥ lim
s→0−

F (x0 + sx)− F (x0)
s

(3.3)

for all x ∈ X.

For the sake of completeness, we give a short proof of this lemma.

Proof. Consider the mapping Ψx0,x : R→ R given by Ψx0,x (t) := F (x0 + tx) ,
x ∈ X.
A simple calculation shows that Ψx0,x is convex on R for all x ∈ X. Hence the
following limits exist:

lim
t→0+

Ψx0,x (t)−Ψx0,x (0)
t

, lim
s→0−

Ψx0,x (s)−Ψx0,x (0)
s

and
Ψx0,x (t)−Ψx0,x (0)

t
≥ lim

t→0+

Ψx0,x (t)−Ψx0,x (0)
t

≥ lim
s→0−

Ψx0,x (s)−Ψx0,x (0)
s

≥ Ψx0,x (s)−Ψx0,x (0)
s

for all s < 0 < t. That is, in terms of the mapping F, we have

F (x0 + tx)− F (x0)
t

≥ lim
t→0+

F (x0 + tx)− F (x0)
t

(3.4)

≥ lim
s→0−

F (x0 + sx)− F (x0)
s

≥ F (x0 + sx)− F (x0)
s

,

for all t > 0 > s.
“(i) ⇒ (ii) ” Assume that x0 minimizes the functional F. Then, F (x0 + tx) −
F (x0) ≥ 0 for all t ∈ R, which implies, by (3.5) , that (3.3) holds.
“(ii)⇒ (iii)”. If (3.3) holds, then, by (3.4) , we have the inequality

F (x0 + tx)− F (x0)
t

≥ 0 ≥ F (x0 + sx)− F (x0)
s

,

for all t > 0 > s, which implies that

F (x0 + ux) ≥ F (x0)

for all u ∈ R.
Choosing u = 1 and x = y − x0, we get F (y) ≥ F (x0) for all y ∈ H, i.e., x0
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minimizes the functional F.
Now, if T (x) =

∑3
i=1 ‖x− ai‖ is the Toricellian functional, then

T (x)− T (a2) = ‖x− a2‖+
3∑
i=1
i 6=2

(‖x− ai‖ − ‖a2 − ai‖)

= ‖x− a2‖+
3∑
i=1
i 6=2

‖x− a2‖2 + 2 (x− a2, a2 − ai)
‖x− ai‖+ ‖a2 − ai‖

.

Let y ∈ X and t ∈ R. Then we have

T (a2 + ty)− T (a2) = |t| ‖y‖+
3∑
i=1
i 6=2

t2 ‖y‖2 + 2t (y, a2 − ai)
‖ty + aj − ai‖+ ‖aj − ai‖

.

A simple calculation shows that

lim
t→0+

T (a2 + ty)− T (a2)
t

= ‖y‖ −

y, 3∑
i=1
i 6=2

ai − a2

‖ai − a2‖


and

lim
s→0−

T (a2 + sy)− T (a2)
s

= −‖y‖ −

y, 3∑
i=1
i 6=2

ai − a2

‖ai − a2‖

 .

“(i)⇒ (ii) ”. Assume that a2 minimizes the functional T. Then, by the implication
above, “(i)⇒ (ii) ” of the above Lemma 2, we have

‖y‖ −

y, 3∑
i=1
i 6=2

ai − a2

‖ai − a2‖

 ≥ 0 ≥ −‖y‖ −

y, 3∑
i=1
i 6=2

ai − a2

‖ai − a2‖

(3.5)

for all y ∈ X, which is equivalent to∣∣∣∣∣∣∣
y, 3∑

i=1
i 6=2

ai − a2

‖ai − a2‖


∣∣∣∣∣∣∣ ≤ ‖y‖ for all y ∈ H.(3.6)

Now, if we put in (3.6) , y = u, where

u =
3∑
i=1
i 6=2

ai − a2

‖ai − a2‖
,

we deduce the condition (3.1) .
“(ii)⇒ (i) ”. Suppose that (3.1) holds. That is, ‖u‖ ≤ 1, where u is as given above.
Then, by Schwartz’s inequality, we have |(y, u)| ≤ ‖y‖ ‖u‖ ≤ ‖y‖ for all y ∈ H.
That is, (3.6) holds, which is equivalent to (3.5) , i.e.,

lim
t→0+

T (a2 + ty)− T (a2)
t

≥ 0 ≥ lim
s→0−

T (a2 + sy)− T (a2)
s

,

which shows that a2 minimizes the Toricellian functional T.
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The second case concerning the location problem of the Toricellian point is em-
bodied in the following theorem.

Theorem 3. Let (H; (·, ·)) be a real inner product space of dimension greater than
one, x0 ∈ H and {a1, a2, a3} a “triangle” in H such that none of ai

(
i = 1, 3

)
are

the Toricellian points of {a1, a2, a3} . Then the following statements are equivalent
(i) x0 is the Toricellian point of {a1, a2, a3} ;

(ii) We have θ12 = θ23 = θ31 = 2π
3 where θij is the angle between ai − x0, aj −

x0; (i, j) ∈ {(1, 2) , (2, 3) , (3, 1)} , i.e.,

cos θij :=
(ai − x0, aj − x0)
‖x0 − ai‖ ‖x0 − aj‖

= −1
2
,(3.7)

for all (i, j) ∈ {(1, 2) , (2, 3) , (3, 1)} .

Proof. Firstly, let us compute

lim
t→0

T (x+ ty)− T (x)
t

,

where T is the Toricellian map associated to {a1, a2, a3} . We have

lim
t→0

T (x+ ty)− T (x)
t

(3.8)

= lim
t→0

3∑
i=1

(‖x+ ty − ai‖ − ‖x− ai‖)
t

= lim
t→0

[
1
t

3∑
i=1

‖x+ ty − ai‖2 − ‖x− ai‖2

‖x+ ty − ai‖+ ‖x− ai‖

]

= lim
t→0

[
1
t

3∑
i=1

2t (y, x− ai) + t2 ‖y‖2

‖x+ ty − ai‖+ ‖x− ai‖

]

=
3∑
i=1

(y, x− ai)
‖x− ai‖

=

(
y,

3∑
i=1

(x− ai)
‖x− ai‖

)
.

From Lemma 2, we know that x0 minimizes the functional T iff

lim
t→0+

T (x0 + ty)− T (x0)
t

≥ 0 ≥ lim
s→0−

T (x0 + sy)− T (x0)
s

, y ∈ H,(3.9)

and as T is Gatêaux differentiable, we conclude that (3.9) is equivalent to

lim
t→0

T (x0 + ty)− T (x0)
t

= 0, for all y ∈ H,(3.10)

that is, by the above equality (3.8) ,(
y,

3∑
i=1

x0 − ai
‖x0 − ai‖

)
= 0, for all y ∈ H,

which is equivalent to
3∑
i=1

x0 − ai
‖x0 − ai‖

= 0.(3.11)
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Now, if (3.11) holds, then

0 =

(
3∑
i=1

x0 − ai
‖x0 − ai‖

,
x0 − aj
‖x0 − aj‖

)
, for all j ∈ {1, 2, 3} ,(3.12)

which is equivalent to:

0 =

(
3∑
i=1

ai − x0

‖ai − x0‖
,
aj − x0

‖aj − x0‖

)
, for all j ∈ {1, 2, 3} .

Hence, we obtain the system −1 + cos θ12 + cos θ13 = 0
cos θ21 − 1 + cos θ23 = 0
cos θ31 + cos θ32 − 1 = 0

,

and as cos θij = cos θji, we get cos θij = − 1
2 .

Conversely, if cos θij = − 1
2 , then the relation (3.12) holds. If in (3.12) we sum over

j from 1 to 3, we obtain

0 =
3∑
j=1

(
3∑
i=1

x0 − ai
‖x0 − ai‖

,
x0 − aj
‖x0 − aj‖

)
=

∥∥∥∥∥
3∑
i=1

x0 − ai
‖x0 − ai‖

∥∥∥∥∥
2

,

which implies that

3∑
i=1

x0 − ai
‖x0 − ai‖

= 0,

that is,

lim
t→0

T (x0 + ty)− T (x0)
t

= 0 for all y ∈ H,

which is clearly equivalent to the fact that x0 is the Toricellian point for {a1, a2, a3} .

Extensions of the above results for n points (n > 3) in inner product spaces
which are not trivial (as we can have a number of m ≥ 3 points collinearly) will
be given in [1].

Some generalizations in normed spaces (Banach spaces, reflexive spaces, strictly
convex spaces) are considered in [2].
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