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A DISCRETE GRUSS TYPE INEQUALITY AND APPLICATIONS
FOR THE MOMENTS OF RANDOM VARIABLES AND
GUESSING MAPPINGS

S. S. DRAGOMIR AND N. T. DIAMOND

ABSTRACT. A new discrete Griiss type inequality and applications for the
moments of random variables and guessing mappings are given.

1. INTRODUCTION

In 1935, G. Griiss proved the following integral inequality which gives an ap-
proximation of the integral of a product in terms of the product of integrals as
follows

I I I
(1) = [t [ @ = [a@a
< 1@-p) -9,
where f,g : [a,b] — R are integrable on [a, b] and satisfying the assumption
(1.2) p<f(z)<P,y<g(z)<T

for each = € [a,b] where @, ®,~,T are given real constants.

Moreover, the constant % is sharp in the sense that it can not be replaced by a
smaller one.

For a simple proof of (1.1) as well as for some other integral inequalities of Griiss’
type see Chapter X of the recent book [4] by Mitrinovié¢, Pecari¢ and Fink.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardzewski established the following
discrete version of Griiss’ inequality [4, Chap. X]:

Theorem 1. Let a = (ay,...,an),b = (b1,...,b,) be two n-tuples of real numbers
such thatr < a; < R and s <b; < S fori=1,...,n. Then one has

1< 1< 1<
Ezale—EZaZEsz
=1 i=1 i=1

(-2 s

where |x]| is the integer part of x,x € R.

(1.3)

A weighted version of Griiss’ discrete inequality was proved by J.E. Pecarié¢ in
1979, [4, Chap. X]:
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Theorem 2. Let a,b and p be three monotonic n-tuples with all elements of p
positive. Then

1 n 1 n 1 n
(1.4) B, ;piaibi B ;piai "B ;pibi
PPy
< — — _ R R
=~ |an a1| |bn b1| 13%?;(_1 < Pr% )

where P, = Y. p; , Piy1 = Py — Pry1-
i=1

In 1981, A. Lupasg [4, Chap. X] proved some similar results for the first difference
of a as follows :

Theorem 3. Let a,b two monotonic n-tuples in the same sense and p a positive
n-tuple. Then

2
. 1 & ey
(1.5) 1<IZ1117111 laivr1 — aq 1Srir%1711171 [biv1 — by B g 1°p; — <Pn Eﬁ zpi>

n n
1
< szaz i — Zpiai == pibs
P P" i=1 " oi=1
1 < 1 < ’
.2 .
< 1;{?571 laiv1 — ail 1<max |biy1 — bi B Z;l pi — (-Pn Z;sz)
1= 1=

If there exists the numbers a,ay,r,71,(rr1 > 0) such that ar = a + kr and by, =
ay + kry, then in (1.5) the equality holds.

In this paper we point out some other Griiss type inequalities and apply them
for the moments of discrete random variables and for the moments of guessing
mappings.

2. THE RESULTS

The following inequality of Griiss type holds for sequences of complex numbers:

Theorem 4. Let a;,b; (i =1,...,n) be complex numbers and p; (i=1,...,n) be a
probability distribution, i.e., p; >0 (i =1,..,n) and > ., p; = 1. Then we have
the inequality

(21) szaz 4 szaz sz %

maxk:l,nfl ‘ak'i‘l - ak‘ max, n |b1‘ Z:‘L,jzl pipPj |Z - .7| )

Q=

1 1
0¥ maxy_pi= ae — al (S 67 (S0, pipd li—317) "

IN

if5+:=1p>1,

nmaxXe 757 lagr1 — ak| D7y |bi max; ;—Tn {pipj i —jl}.
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Proof. First of all, we observe that we have the identity

I : = szaz i szaz sz 7
= szaz i ZP;% sz i

n n
= Zpibi a; — ijaj
=1 j=1
n

= szb Z (i —a;)p

n

= > pibs ij ai—a;)+ Y pilai—ap)
i=1

t=it1 |
n (i1 n i

= Y i |D> pilai—a;)— Y pila—ai)
i=1 =1 t=it1

n i—1 n
= > pibi ijz Uy —ag) — Y ptz a1 —ar) |,
i=1 k=j

7j=1 t=i+1 =3

as it is easy to see that

i—1
a; —a; = Z (ag+1 —ag) (i > 7)
k=i
and

t—1

at—ai:Z(alH—al) (t>1).

=1

Taking the modulus and applying successively the triangle inequality, we can write:

n i1 i1 n i
\1\ = sz’bi ijZ(ak-H *ak Z ptz al+1*al
i=1 =1 k=j t=it1l =i
n
< Zp7|b| ijz arsr —ag) — Y pfz a1 — ar)
—j t=itl =i
n [ — n t—1 1
< Zpi|bi| ijZ(ak-H — ak)| + Z ptZ(al+1 — )
i=1 ||i=1  k=j t=it1 =i ]
n i-1 |ie1 n t—1 i
< Zpi|bi| ij Z(ak+1—ak) + Z Pt Z (@41 —ar)|| <
i=1 _j:l k=j t=i41 p=1 i
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n
< ZPHM ZPJZ|Gk+1—CLk|+ Z ptZ|al+1—az|
=1 I =j t=itl 1=
n [ i—1
= Zp”bi‘ knllax |ak+1—ak|2p] (i—1+1-j3)
. =

+ max |agy1 — agl Z p(t+1—1—14)
k=In—1 t=i+1

n i—1
= kﬂllaX1|ak+1—ak|Zpi|bi| ij (i—7)+ Z pe (t —1)
=hnT i=1 j=1 t=

=  max |ak+1—ak|zpz|b|ng i = jl

k=1,r i=1 j=1

= max |ak+1—ak|zpng z_.7||b‘
k=1,n—1 ii=1

Denote
n
=Y pipsli—jl bl
ii=1
Then we have
7< max o) 3 pin i1
7,5=1

and the first inequality in (2.1) is proved.
Using Hélder’s discrete inequality for double sums, we have

Q=

n ]-7
7o [ me] (S e
1,2=1 7,1=1
1
. n % n a
= nb <Z|bi|p) szpj li — |4
i=1 ij=1

and the second inequality in (2.1) is proved.
Finally, we observe that

J

IN

 nax_ {pzpj i —jl} Z |bs|

7]1

= n max. {pzpj Z—JI}ZIbI

i,j=1

and the last part of (2.1) is proved. I
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Corollary 1. With above assumptions, we have:

(22) szaz % szaz sz 4

(n 1)n( +1) 2
3 = P

max, 1,7 |ak+1 — ax| max,_i [bi] ,

1

1 1 .
nv Py MaXy, T -1 |ag1 — ar] (3252, [0if") 7 (EZ;‘:1 i — J|q) qa

IN

if 5 +3:=1p>1,

n (n - 1) P]%l maxy_71,-1 |a’k+1 - ak| Z?:l |bl‘ )
where Py = max {p;|i = T,n} .

Proof. The second and third inequalities are obvious by the corresponding inequal-
ities in (2.1), taking into account that p; < Py for all i € {1,...,n}.
To complete the proof, we have to compute

= li-il.

ij=1

We observe that

n
> li—il
j=1

Z\Z—JH Z i — ]

Jj=i+1
= Z(i—j)+ > G-
j=1 j=i+1
= E0 ST ST
= iQ—(n+1)i+M

2

21 1\?
_n n Z,_n—i—
4 2

(il@—al

Then

N
I
M=

1

i j=1

— - 2777,+1 M

P 2

n n—|—1) (2n+1) (r+n(n+1) n(nr+1)
- 6 2 T

n=1)n(n+1)
3 9
and the corollary is proved. i
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If we choose in the above theorem p; = 1, i = 1, ..., n, then we get the following

n
unweighted version of (2.1) :

Corollary 2. Under the above assumptions, we have

=1 i=1 i=1

n?-1
3 MaX; 75,7 |ak+1 — ak| max

|b2|7

1=1,n

1

1 . .
L maXy_ 7,1 |ag1 — ar] (3002, [0if”)” (ZZjil i — J|q) °

n-n4d

IA

2t maxy o lake — arl 200 [bil -
Remark 1. Suppose that p=q =2 in (2.3). Then we get

n

iﬂwﬂQ: E:Mmﬂjﬂ2nif<n0

i,j=1 i,j=1 i=1 i=1
_ |, ntD @t [n(ntl) 2
N 6 2
n?(n+1)(n—1)

6
In addition,

n.lné[n2(n+16)(n_1)]%={(n+1()375n—1)r

and then we get the inequality:

1 I 1O
Ezlazbz_ﬁgazﬁ;bl

1 n 3
(n—i—l)(n—l)]2 9

< 7 max |ap+1 —a b; .
< [ o k:17n><_1| k1 — Okl ;| |

The following theorem also holds:

(2.4)

Theorem 5. Under the assumptions of Theorem 4, we have the inequality:

n n n
(2.5) Zpiaibi - Zpiai Zpibi
i=1 i=1 i=1
man:l,nfl |ak+1 - ak| maXi:l,n {pl |bl|} Z;ij:l Di |Z - .]| )
n py L n . .1q %
max,, 15— [ak+1 — arl (32; pi[bif")? (Zi,j:l pip; li — jl ) 5
<

fr+s=1p>1

(n—1) maxy 1 ,-1 a1 — ax Z?:l i |bil -
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Proof. As in the proof of Theorem 4, we have

Zplal 0 Zp’ta/lzpl i

< max_|ag+1 — agl Z pip; |bs| [i — jl.
k=1,n—1 i,j=1

Using the above assumptions, we have:
J < max{p1|b [} ij li — 7]
3,j=1

and the first in equality in (2.5) is obtained.
Using Holder’s discrete inequality for double sums and weighted means, we have:

n Ca E
J < Z pip; |bil” Z pip; i — 4|
ij=1 ij=1
1 1
n n P n a
= ([ Dop D pilbil > i li = jI°
=1 =1 ii=1

. 1
n P n 4
(sz‘ bi|p> Z pipjli— 1" |

i=1 ii=1

Finally, we have

J < max |Z—j|2p7pj|b|

t,j=1,n—1 ij=1

= (nfl)ijsz’ |4
j=1 =1
= (n—1) sz' |bi ,

and the proof is completed. 1

The following corollary is useful.

Corollary 3. Under the above assumptions, we have the inequality

(2.6) szaz i szazsz i

[
[N

k=1,n—1

n n 2
< V2 max |appi — ag (sz |b; ] > nZiQpi - <Z ipi>
i=1 i=1
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Proof. Putting in (2.5) p = ¢ = 2, we obtain

Y opipi(i—5)? = > pip; (i 2ij + 5°)

ii=1 i,j=1

[ n
= 2> i’pip; — > ijpip
i=1 i,j

i n n 2
= 2| i’ <ZZP1> ;
| i=1 i=1
and the corollary is proved. i

3. APPLICATIONS FOR THE MOMENTS OF DISCRETE RANDOM VARIABLES
Consider the discrete random variable
X T1yeeey Ly
P1,---,Pn
which is taking the real positive values x1, zo, ..., £, with the probabilities p1, ..., pn.
Define the a—moment (a > 0) as follows:

M, (X):= szxf
i=1

Using Theorem 4 and the Corollary 1 we can state the following approximation
result which allows us to compare the (a + b) —Moment of X with the product of
a—Moment and b—Moment of X :

Proposition 1. Under the above assumptions, we have:
(3.1)  [Mass (X) = My (X) My (X))

max, 15 |74 — 2| maxe_r {22} 37 pins [ -

1 1
1 b\ P . . q
nrmax, 1,-7 !$%+1 - w%’ (Z?:l 7 )p (Z?,jzl P?p?- i — J|q) ’,

<
if p+g=1Lp>1,
nmax, _15-1 ‘xZH - x%‘ (Z?:1 xf) max; ;—Tn {pipj li — jI}
7("71)g(n+1)P]%4 max;_y,-7 |xz+1 — xz| max; i, {9:2} ;
1 1
159 a a n pb\ P n . AN
- nr Pyymax; g5 |xk+1 - Ik| (Zizl Ty ) (Zi,j:l i = J ) ;

if5+:=1p>1

n(n—1) Py maxy_7,-1 }Z%H - x%| i a?,
where Py :=max {p;li =1,n} and a,b > 0.

Using Theorem 5 we can state the similar result:
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Proposition 2. Under the above assumptions, we have
(3.2) [Masy (X) — Mo (X) My (X))

maXy 7 ,-1 |1’z+1 - x‘;é| maxy_1, {pﬂ:i} sz:1 pili—il;

1
b\ P . .
maxy_7,-1 |~’U%+1 - $Z| (Z?=1 pity )p (ZZj:l Pip; |1 *]|q) ¥

IN

fr+z=1p>1

n(n—1) max, 5,7 [Thig — xZ| M, (X)),
for all a,b > 0.

Now, in connection with the random variable X, let us consider the uniformly
distributed random variable

and its a—Moment

Now, let us consider the Corollary 2 and put in it a; = p;, p; > 0, but not necessarily
a probability distribution, and b; := z{ to get the following inequality:
1< 1< 1<
o P a
(3.3) - Z;plxi - ;pz - Z;acl
1= 1= 1=

2_
"snl maxX,_7,-1 |Pk+1 — Dl max;_1n {af}s

Q=

IN

l . .
nl%% maX,_1,-1 Ipr+1 — ol (o1 27)” (E?,j:1 i — J|q) )
2=l max, | —pe| S 28

n k=T,n—1 IPk+1 — Pk i=1i-

If in the same corollary we choose a; = z¢, b; = p;, we get the inequality:

(3.4) %Zpix;‘—%Zpi%Zz?
=1 =1 =1

2
n°—1 a a 2.
3n MaXy 7,77 |xk+1 - xk| Py

1 . . 1+
maxX,_7,-1 |9~"z+1 - IZ| (ZZ‘L:I x})” (szﬂ |i *]|q) Py

Q=
Q=

n—1 a _ pa
S maxy o |2 — 2| Par

In terms of moments of random variable, the previous inequalities can be stated as
follows.
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Proposition 3. Under the above assumptions, we have the estimations
(3.5) |Mq (X) — M (U)]

2
not maxy 5 [Pe+1 — Dkl max,_y; {zf};

Q=

IA

1 . .
% maxy 7,1 [Pk+1 — P (ZZL:1 ay) (sz‘:l i — .7|q) ;
n

(n—1) maxy 7,7 |Pet1 — Pl Doy @
and
(3.6) M, (X)— M, ()|

2
n-—1 a a 2 .
e max 1o |2y — 2| Pips

1 . . 1+
% Inaxk:l,n—l |$(k1+1 - x%’ (Z?:l xf)p (ZZ]‘:l |7’ - j|q> PM 5

n4a

Q=
Q|-

IN

if;+3=Lp>1,

(n—1) max, _1,-7 |Thpq — mﬁ‘ Py,

respectively, where a > 0.

4. APPLICATIONS FOR THE GUESSING MAPPING

J.L. Massey in [1] considered the problem of guessing the value of realization of
random variable X by asking questions of the form: “Is X equal to x 7 7 until the
answer is “Yes” .

Let G (X) denote the number of guesses required by a particular guessing strat-
egy when X =« .

Massey observed that F (G (z)), the average number of guesses, is minimized
by a guessing strategy that guesses the possible values of X in decreasing order of
probability.

We begin by giving a formal and generalized statement of the above problem by
following E. Arikan [2].

Let (X,Y) be a pair of random variables with X taking values in a finite set
X of size n,Y taking values in a countable set ). Call a function G (X) of the
random variable X a guessing function for X if G : X — {1,...,n} is one-to-one.
Call a function G (X | Y) a guessing function for X given Y if for any fixed value
Y =y,G (X | y) is a guessing function for X . G (X | y) will be thought of as the
number of guessing required to determine X when the value of Y is given.

The following inequalities on the moments of G (X) and G (X|Y") were proved
by E. Arikan in the recent paper [2].

Theorem 6. For an arbitrary guessing function G(X) and G(X |Y) and any
p > 0, we have:

(4.1) E(G(X)")> (1+1Inn)"?

1+p
> Px (fﬂ)”p]

reX
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and

(4.2) E(GX[Y)")=(1+n)">"
yey

1+p
Z Pxy (z,y) 1“’]

reX

where Px y and Px are probability distributions of (X,Y) and X, respectively.

Note that, for p = 1, we get the following estimations on the average number of
guesses:

T P <x>%]2

zeX

B(G(X)) 2 1+Inn

and

N

yeY

% L%:XPX’Y (@) r

E(G(X) = 1+1nn

In paper [3], Boztas proved the following analytic inequality and applied it for the
moments of guessing mappings:

Theorem 7. The relation

w3 [zpki] S (- D))
k=1 k=1

where v > 1 holds for any positive integer n, provided that the weights p1,...,p, are
nonnegative real numbers satisfying the condition:

i 1 1 i
(4.4) plg+1gE(pf—i—...—l—pg),k:l,Z,...,n—l.

To simplify the notation further, we assume that the x; are numbered such that
x), is always the k" guess. This yields:

E(GP) = kapk,p > 0.
k=1
If we now consider the guessing problem, we note that (4.1) can be written as [3]:

n 1 1+p
[Z P ] > B(G7) -~ B ((@-1)"™)
k=1

for guessing sequences obeying (4.4) .
In particular, using the binomial expansion of (G — 1)'™ we have the following
corollary [3]:

Corollary 4. For guessing sequences obeying (4.4) with r = 1+m , the m*" guess-
ing moment, when m > 1 is an integer satisfies:
(4.5) E(G™)

1

1+m

n 1+m

1
T+m
k

k=1

et e (75 e s
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The following inequalities immediately follow from Corollary 4:

¢ <l [zpk

and
1
<4 5]

We are able now to point out some new results for the p-moment of guessing map-
ping as follows.

Let us observe that for p € (0,1), the sequence x, = kP, k =1, ...,n, is concave
and for p € [1,00) it is convex, so

n? —(n—1)" ifpe[l,0),
2r —1 if pe (0,1).
Using Proposition 1, we can state that:

Proposition 4. If a,b € (0,00) and G is a guessing mapping as above, then we
have the inequality

(4.6) |E (G***) = E(G*) E (G")]
Sa (n)n® Y27y pipj i — j;

Q=

ba () 0% [Spy ()]7 [ 27,y pIpY Ji — 1"

<
-r 1 1 _ .
Zf;‘FE—l, p>1;
ndq (n) Sy (n) max;—1,, {pip; i — j|} ;
n— TLb+1 n
(n—1) : ( +1)p]2w5a (n);
1
1 2 1 n . .1q q
B EEAOEAC DI ) R

fo+:=1p>1

n(n—1) P{0q (n) Sy (n),
where Sy, (n) := zn: kP, p> 0.
k=1

A similar result can be stated if we use Proposition 2, but we omit the details.
Finally, by the use of Proposition 3, we have
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Proposition 5. Under the above assumtions, we have

(4.7) ’E (@) — %sa (n)

(n2—1)na72
3 MaXg=1,..n-1 |Pk+1 *Pk| )

1
1

% [Spa (n)]” (sz:l i — j|q> " maxp—1,..n—1|Pr+1 — Pl
n

IN

fp+te=1Lp>1L

n(n—1) 8, (n), maxg_1,__n—1|pr+1 — Pkl;

and

(48) B(G) - 25, (0)

n

w18, (n) Py

3n2

n..%1+§
L, (m) S () (S0, 1= d1") " Py

n

IN

if%+%=1,p>1;

(n—1)d4 (n) Py,

for all a > 0.

Remark 2. If we assume that a = 1,2 or 3 in the above inequalities, we can obtain
some bounds for E (G), E (GQ) or £ (GB) , which will complement the results from
Corollary 4 for m = 1,2, and 3. We omit the details.

(1]
(2]
(3]
(4]
(5]
[6]
[7]

(8]
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