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A GRUSS TYPE INEQUALITY FOR MAPPING OF BOUNDED
VARIATION AND APPLICATIONS TO NUMERICAL ANALYSIS

S. S. DRAGOMIR AND I. FEDOTOV

ABSTRACT. A Griiss type inequality for Lipschitzian mappings and functions
of bounded variation is given. Applications for the numerical integration prob-
lem of the Riemann-Stieltjes integral are also considered.

1. INTRODUCTION

In 1935, G. Griiss [9] proved an inequality which establishes a connection between
the integral of a product of two functions and the product of the integrals. Namely,
he has shown that:

b—a/f dx——/f )dx - / (z)dx

< @) 7).

provided f and g are two integrable functions on [a,b] and satisfy the condition:

p<f(x)<Pandy<g(z) <T

for all z € [a,b].
The constant %L is the best possible one and is achieved for

f (@) =g (@) = sgn (x“;b).

In the recent paper [7], S.S. Dragomir and I. Fedotov proved the following results
of Griiss type for Riemann-Stieltjes integral:

Theorem 1. Let f,u: [a,b] — R be so that u is L-Lipschitzian on [a,b], i.e

(1.1) ju(w) — u(y)| < Lje —y]

forallz,y € [a,b], f is Riemann integrable on [a,b] and there exists the real numbers
m, M so that

(1.2) m < f(x) < M,

for all x € [a,b]. Then we have the mequalzty

[ st 820 i

and the constant % is sharp, in the sense it can not be replaced by a smaller one.

(1.3) % (M —m)(b—a),
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2 S. S. DRAGOMIR AND I. FEDOTOV

For other results related to Griss inequaity, generalizations in inner product
spaces, for positive linear functionals, discrete versions, determinantal versions, etc.,
see Chapter X of the book [11] and the papers [1]-[10] , where further references
are given.

In this paper we point out an inequality of Griiss type for Lipschitzian map-
pings and functions of bounded variation as well as its applications in numerical
integration for the Riemann-Stieltjes integral.

2. INTEGRAL INEQUALITIES

The following result of Griiss type holds.

Theorem 2. Let f,u: [a,b] — R be such that u is L-lipschitzian on [a,b], and f
is a function of bounded variation on [a,b]. Denote by \/Z f the total variation of
f onla,b]. Then the following inequality holds

b b b
(2.1) /u(x)df(x)wx/u(t)dt g%(bfa)\/f.

The constant % is sharp, in the sense that it cannot be replaced by a smaller one.

Proof. As f is a function of bounded variation on [a,b] and u is continuous on [a, b] ,
we have

7@@@(@-%7“@6&
_ 7 u(x)bia7u(t)dt df ()

(2:2) = e [lw@ —wra\ .

Using the fact tha w is L—Lipschitzian on [a,b], we can state, for any x € [a,b],
that:
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and by (2.2)-(2.3) we get:
1
(2.4) sup |u(x) —
z€[a,b] b—

a 2

/u(t)dt SM

whence we obtain (2.1).
To prove the sharpness of the inequality (2.1), let us choose

atb 1 if z=a
u(@)=2——— and f(z)=< 0 if a<z<d
1 if =0

Then wu is Lipschitzian with L = 1, and f is of bounded variation. Also we have

b

b
/u(m)df(x)—w x/u(t)dt

a a

[(-e3t)ae
<w—a;b>f(x)

On the other hand, the right hand side of (2.1) is equal to b — a, and hence the
sharpness of the constant is proved. i

p b
—/f(m)dx:b—a.

The following corollaries hold:

Corollary 1. Let f : [a,b] — R be as above and u : [a,b] — R be a differentiable

mapping with a bounded derwative on [a,b], that is, ||[u'|| . = sup |[v/ (t)] < oo.
t€la,b]
Then we have the inequality:

b b b

(2.5) /u(m) df (x) — M

a a

1
The inequality (2.5) is sharp in the sense that the constant 5 cannot be replaced by

a smaller one.

Corollary 2. Let u be as above and f : [a,b] — R be a differentiable mapping
whose derivative is integrable, i.e.,

b
£, = [ 17 0ldt < .
Then we have the inequality:

b b
(2.6) /u(x)f’ @) dz - 1O x/u(t)dt < Wl ).

a
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Remark 1. If we assume that g : [a,b] — R is continuous on [a,b] and if we set

fx) = /g(:r) dz, then from (2.6) we get the following Griss type inequality for

a
the Riemann integral:

2.7) bia/ (@) g (x dm——/ £)dt- —/

/
S wwzwmwi@.
Corollary 3. Assume that u : [a,b] — R is differentiable on (a,b), u(a) #
w(d), and v : [a,b] — R is bounded on (a,b). Then we have the trapezoid in-

equality:

b
(2.8) M.(ba)/u(ﬂdt <%.(ba)?

Proof. If we choose in Corollary 2, f (x) = u (z), we get
b

b
(2.9) /u(m)u' (@) de - 2O 010 /u(t)dt e

a a

Now (2.8) follows from (2.9). Il

3. A NUMERICAL QUADRATURE FORMULA FOR THE RIEMANN-STIELTJES
INTEGRAL

In what follows, we shall apply Theorem 2 to approximate the Riemann-Stieltjes
b b

integral /u (z) df (x) in terms of the Riemann integral /u (t)dt.
Theorem 3. Let f,u: [a,b] — R be as in Theorem 2 and
In={a=z0<x1 <..<Tp_1<zn=>}

a partition of [a,b]. Denote h; = ;41 — x4, 1 =0,1,...,n — 1. Then we have:
b

(3.1) /U@NU@%:&AmﬁLJ+RMwﬁLJ

a

where

(3.2) Ay (u, £ I) = i M « / w () dt

Zi

and the remainder term Ry, (u, f,I1,) satisfies the estimation

(3.3) R (uf,Ih|<—z/ \/f

where v (h) = _fnax_ {h;}.
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Proof. Applying Theorem 2 on the interval [x;, z;41] ,¢ =0,1,....,n — 1 we get

u(x)df(m)—wx /u(t g \/f

Summing over ¢ from 0 to n — 1 and using the triangle inequality we obtain

b n—1 Ti41 n—1Ti41
[o@ar @) - v st < FXm 1@ m> V@
@ =0 z; i=0 x;

no|

b
m\/ f (z)

and the corollary is proved. i

Remark 2. Consider the equidistant partition I, given by

. a .
In: zi=a+1i- ,1=0,...,n

and define
An(uafa-[h)
1 a+(i+1)-2=2
- bi‘a;[f(a+(i+1).bn“)f(aﬂ'.bna)}x / u () dt.
a+i b;a

Then we have
b

/u@Mﬂ@:AMwﬁ+RMwﬁ

a

where the remainder R, (u, f) satisfies the estimation

b
B () < 22D\ @)

b
Thus, if we want to approrimate the integral /u () df (z) by the sum A, (u, f, In)

a
with an error of magnitude less than € we need at least

ng = [%;a)'\/f(l")

a

+1€N

points.

Corollary 4. Assume that u and f are as in Corollary 1. If Iy, is as above, then
(3.1) holds and the remainder term R, (u, f,Ip) satisfies the estimation

(3.4) B (u, £, In)| < 722 v (h)\/ f ().
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Corollary 5. Assume that u and f are as in Corollary 2. Then (3.1) holds and
the remainder term Ry, (u, f,Ip) satisfies the estimation

KR

(3.5) R (meL.V(h).

4. APPLICATION FOR THE TRAPEZOIDAL FORMULA

The following integral inequality of trapezoid type for a mapping of bounded
variation holds and has been proved by S. S. Dragomir in paper [8]. Here we give
another proof based on the Griiss type inequality (2.1) .

Theorem 4. Let g : [a,b] — R be a mapping of bounded variation. Then we have
the inequality:

(4.1) ();g (b—a) /g bia-\/g(t),

and the constant % s sharp.

Proof. Using the integration by parts formula for the Riemann-Stieltjes integral we
have:

(4.2) 7(x “;b> dg (z) = (L= (g(2b) —9(a)) f/g(x)dx.

Define the mappings f (z) = z — 2% and u (2) = g (). Then it is clear that f is
L-lipschitzian with L = 1 and u is of bounded variation. Applying the inequality
(2.1), we deduce:

b b

J-25) -2z w0

a

b—a\’
< — Vo).

a

b
As / (z — %2) da = 0, then using the identity (4.2) we obtain the desired result

(4.1).
Now consider the function g : [a,b] — N,

1 if 2=a
g(z) = 0 if a<z<d
1 if z=0

Then g is of bounded variation and:
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Thus

b
since b_Ta \/g () = b — a, and the equality is realized in (4.1). The sharpness of
the constant is thus proved. R
Corollary 6. Let g : [a,b] — R be a differentiable function whose derivative is

integrable on (a,b) . Then we have the inequality:

b

(1.3 20298 4o [gyan) <32 1ol

a

The following quadrature formula holds:

Theorem 5. Let g : [a,b] — R be a mapping of bounded variation and I =
{a=20 <21 < ... <Tp_1 < xy =0>} a partition of [a,b]. Denote h; = x;41 — x5,
1=0,1,..n— 1. Then we have

b
(4.4) /g (x)de =T, (9,In) + Ry (g, In)

where

n—1
X; + g (x;
=0

and the remainder term Ry, (g,In) satisfies the estimate

(1.5 0.1 < 752 Vo),

the constant % being sharp.

Proof. Applying Theorem 4 on the interval [z;,z;11], we get

Tij41

9 (ziy1) + g (22) hi '\
gl I g <
5 hi g(t)dt| < 5 yg(x)
foralli=0,1,...,n—1.
Summing over ¢ from 0 to n — 1, we deduce
b 1n71w5+1
Jo@ar-Taom)| < 32V o
1 n—1%it1 1 b
< 5”(’1)2 \V g(@) = §V(h)\/9(5’3)-
=0 x; a

The case of the equality follows from Theorem 5 and we omit the details. i
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Remark 3. Consider the equidistant partition I;, given by

bh—
In:xz;=a+1- a,i:O,...,n;
and define
b—a A a —a
1) =52 3 [ (o G402 ) o (ari- 220
=0

Then we have:

/M@M:ﬂ@+MM

a

where the remainder Ry, (g) satisfies the estimation

(b—a)
2n

[Rn(9)] < 9 ().

\0‘ s::<c-

Thus, if we want to approzimate the integral | g (x)dx by the sum T,(g) with an

a
error of magnitude less than € we need at least

b
ng = l(b2_€a) \/9(517)

+1eN

points.

Corollary 7. Let g : [a,b] — R be a differentiable function whose derivative is
integrable on (a,b). If Iy, is as above, then (4.4) holds and the remainder satisfies
the estimation:

v(h
B (a1 < 222 g,

5. QUADRATURE METHODS FOR THE RIEMANN-STIELTJES INTEGRAL OF
CONTINUOUS MAPPINGS

Let I ={a =20 <21 < ... < Zp_1 < &, = b} be a partition of [a,b] and denote
hi = Tij41 — Ty, 1= 0, 1, ..n—1.
We start to the following lemma which is of interest in itself.

Lemma 1. Let f be a function from C [x;,x;11], i.e., f is continuous on [x;, x;11],
and let u be a function of bounded variation on the same interval. The following
inequality holds:

.
i1 Tit1

(5.1) / f (@) du(z) = [u(wir) = u (@) fil <wl[fih] \/ u(2)
) 1 Tit1 ‘
where f; = hj / f@)de, hi = g1 — 2, w[f, hi] = |zs—li|pg§|f(x) — [ ()], is the

;
modulus of continuity.
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Proof. Since f € Clx;,x;41] and u is a function of bounded variation, by the well
known property of such couple of functions we have

Therefore,

IN

IA

-
il Tit1

/ F @) du@)] < 1 llop e V w@).

.
z; i

Li41

/ (@) du(x) — [u(wipr) —u(x;)] fi| =

x;

Tit1

/ [f (x) — Fi] du ()

Zq

Tit1

15 @) = Fill ooy V (@)

sup | f(2) = fi| \/ u(x)

T€[Ti,Tit1]

Tit1

1 _
— sup |hif (x) — hif; u ()
h; z€[xi,@it1] ’ ’ Y

. Tig1 Tit1 Tit1
—  sup /f(l“)dt* / f@dt) \/ ()
hy TE€[T;,Tit1]

T
T Tq ¢

Lo | @l uw

1 x€[wi,wiy] P

Tt
sup 1 (@) = F OV ul)
r€[xi,wiqp1],tE (@i, @iq1] z;
Li41

w[f, hil \/u(x),

Ti

and the lemma is proved. R

Let f € C'[a,b]. The dual to C [a, ] is the space of functions of bounded varia-

b
tion, the general form of the functional on C'[a,b] is I (f) = /f (x) du (x) where u

belongs to the space of functions of bounded variation.
That is why in the theory of quadrature methods for continuous functions the
case of the integrals of such a type is the most interesting. For the integral with

b
continuous integrand / f(z)w(z)dz (w(z) > 0) we introduce the error functional
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for the quadrature rule (with the weights s, and nodes xy)

b n
f)z/f(t)w(t)dm721’(%)5%;1”(]0)
a k=0

by the formula
En(f)=1(f) = In(f)-

Here is the more general result for the composite quadrature rules for the func-

tions from C'[a, b].

Theorem 6. Let a and b be finite real numbers and let f,u : [a,b] — R be such
that f € Cla,b] and u is a function of bounded variation on [a,b]. If a = xg <
1 < oo < Tp—1 < Ty, = b is a division of |a,b] such that |h;| < 6,Vi =0,1,...,n—1
where h; = x;41 — x4, then the following estimation for the Error functional of the
Riemann-Stieltjes quadrature rule is true

b
(5.2) B () <wl[f,6] -\ u(x)

where

Ti41

Epome (f)—]f(:v) du(w)jZl “““ (z:) / fa

and w[f, 8] is the modulus of continuity of f with respect to é.

Proof. For a given division of [a, b] as above, we have
b n_1 Titl
[r@a@ =Y [ f@due.
: =0 7,

Then by Lemma 1, we can write successively:

(B (f)] = | [ f(a)d ”””1 (i) e
/ S /

n—1Titl n—1 w 1‘ +1 ;13 Lit1

_ K3 Z f
Z/ P
2 w(wip) —u(w) [

< (¢) - DU [ f(a)da| <
n—1 Ti41 n—1Ti41

< Swlfh] \ul@) <wlf.8Y V u@
1=0 x; =0 xz;

= wif.d\ul)

and the theorem is proved. i
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