

Other Proofs of Monotonicity for Generalized Weighted Mean Values

This is the Published version of the following publication

Qi, Feng, Mei, Jia-Qiang and Xu, Sen-Lin (1999) Other Proofs of Monotonicity for Generalized Weighted Mean Values. RGMIA research report collection, 2 (4).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17227/

OTHER PROOFS OF MONOTONICITY FOR GENERALIZED WEIGHTED MEAN VALUES

FENG QI, JIA-QIANG MEI, AND SEN-LIN XU

ABSTRACT. In this article, another two simple and short proofs of monotonicity for the generalized weighted mean values with two parameters are given.

1. INTRODUCTION

The generalized weighted mean values $M_{p,f}(r,s;x,y)$ with two parameters r and s are defined by the first author in [5] as follows:

Let $x, y, r, s \in \mathbb{R}$, $p(u) \neq 0$ be a nonnegative and integrable function and f(u) a positive and integrable function on the interval between x and y, then

(1.1)
$$M_{p,f}(r,s;x,y) = \left(\frac{\int_x^y p(u) f^s(u) du}{\int_x^y p(u) f^r(u) du}\right)^{\frac{1}{s-r}}, (r-s)(x-y) \neq 0$$

(1.2)
$$M_{p,f}(r,r;x,y) = \exp\left(\frac{\int_x^y p(u) f^r(u) \ln f(u) du}{\int_x^y p(u) f^r(u) du}\right), x - y \neq 0;$$

 $M_{p,f}(r,s;x,x) = f(x).$

For our own convenience, we write

$$M_{p,f}(r,s;x,y) = M_{p,f}(r,s) = M_{p,f}(x,y) = M_{p,f},$$

shifting notations to suit the context.

Note that most two variable mean values are special cases of $M_{p,f}$. If s = 0, then $M_{p,f}(r,0;x,y) = M^{[r]}(f,p;x,y)$ is called the weighted mean of order r of the function f on the interval between x and y with weight p in [3] and [4]. If we take $p(u) \equiv 1, f(u) = u$ and x, y > 0, then $M_{p,f}(r-1, s-1; x, y) = E(r, s; x, y)$ are called the extended mean values in [1] and [4].

The extended mean values E are increasing with r and s, or with x and y. It has been proven by many mathematicians, for instance [1], [2], [4], [7], [9] and [12]. The study of E has a rich literature, for details, please see [5]. The monotonicity of $M_{p,f}$ was verified by the first author in [5] and [8] using the Chebychev integral inequality, the Cauchy-Schwarz-Buniakowsky integral inequality, and the mean value theorem.

In this article, from the ideas and viewpoints used in [6], [9], [10] and [11], we prove the monotonicity of $M_{p,f}(r,s;x,y)$ by two new and simple methods. That is

Date: July, 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26A48; Secondary 26D15.

Key words and phrases. Monotonicity, generalized weighted mean values, integral form.

The first author was supported in part by NSF of Henan Province, The People's Republic of China.

Theorem 1. Let $p(u) \neq 0$ be a nonnegative and continuous function, f(u) a positive, increasing (or decreasing, respectively) and continuous function. Then the generalized weighted mean values $M_{p,f}(r, s; x, y)$ increase (or decrease, respectively) with respect to either x or y,

2. The First Proof of the Theorem

Let

(2.1)
$$h_{p,f}(t;x,y) = \int_{x}^{y} p(u) f^{t}(u) du, \ t \in \mathbb{R},$$

where x, y, p and f are defined as stated in Section 1.

It is easy to see that

(2.2)
$$\frac{\partial^n h_{p,f}\left(t;x,y\right)}{\partial t^n} = \int_x^y p\left(u\right) f^t\left(u\right) \left[\ln f\left(u\right)\right]^n du.$$

Set $Q_{p,f}(r,s;x,y) = \ln M_{p,f}(r,s;x,y)$, then

$$(2.3) \qquad Q_{p,f}\left(r,s;x,y\right) = \frac{1}{s-r} \int_{r}^{s} \frac{\frac{\partial h_{p,f}(t;x,y)}{\partial t}}{h_{p,f}\left(t;x,y\right)} dt, \ (r-s)\left(x-y\right) \neq 0;$$

(2.4)
$$Q_{p,f}(r,r;x,y) = \frac{\frac{\partial P_{p,f}(r;x,y)}{\partial r}}{h_{p,f}(r;x,y)}, x, y \neq 0$$

To verify the monotonicity of $M_{p,f}(r,s;x,y)$ with x and y, it is sufficient to prove the monotonicity of $\frac{\frac{\partial h_{p,f}(t;x,y)}{\partial t}}{h_{p,f}(r;x,y)}$ in $Q_{p,f}(r,s;x,y)$ with x and y for any t. This is a special case of the following

Lemma 1. The functions

(2.5)
$$\frac{\frac{\partial^{2(k+i)+1}h_{p,f}(t;x,y)}{\partial t^{2(k+i)+1}}}{\frac{\partial^{2k}h_{p,f}(t;x,y)}{\partial t^{2k}}}$$

are increasing (or decreasing, respectively) with x and y if f(u) is increasing (or decreasing, respectively) for i and k being nonnegative integers.

Proof. Using the integral expressions (2.1) and (2.2) of $h_{p,f}(t; x, y)$, by standard arguments, we have

$$\begin{aligned} \frac{\partial}{\partial y} \left(\frac{\frac{\partial^{2(k+i)+1}h_{p,f}(t;x,y)}{\partial t^{2(k+i)+1}}}{\frac{\partial^{2k}h_{p,f}(t;x,y)}{\partial t^{2k}}} \right) \\ &= \left[\frac{\partial}{\partial y} \left(\frac{\partial^{2(k+i)+1}h_{p,f}(t;x,y)}{\partial t^{2(k+i)+1}} \right) \cdot \frac{\partial^{2k}h_{p,f}(t;x,y)}{\partial t^{2k}} \right] \\ &- \frac{\partial^{2(k+i)+1}h_{p,f}(t;x,y)}{\partial t^{2(k+i)+1}} \cdot \frac{\partial}{\partial y} \left(\frac{\partial^{2k}h_{p,f}(t;x,y)}{\partial t^{2k}} \right) \right] \cdot \frac{1}{\left[\frac{\partial^{2k}h_{p,f}(t;x,y)}{\partial t^{2k}} \right]^2} \\ &= \frac{p(y) f^t(y) \left[\ln f(y) \right]^{2k}}{\left[\frac{\partial^{2k}h_{p,f}(t;x,y)}{\partial t^{2k}} \right]^2} \cdot \left[(\ln f(y))^{2i+1} \int_x^y p(u) f^t(u) \left[\ln f(u) \right]^{2k} du \\ &- \int_x^y p(u) f^t(u) \left[\ln f(u) \right]^{2(i+k)+1} du \right]. \end{aligned}$$

When f(u) increases (or decreases, respectively), the derivatives (2.6) are nonnegative (or nonpositive, respectively); hence, the desired monotonicity of (2.5) with respect to x and y follows, since the discussed functions (2.5) are symmetric in x and y. This completes the proof of the lemma.

3. The Second Proof of the Theorem

Let

(3.1)
$$\alpha(t) = \frac{p(y) f^t(y)}{\int_x^y p(u) f^t(u) du}.$$

Straightforward computation yields

(3.2)
$$\alpha'(t) = \frac{p(y) f^t(y) \int_x^y p(u) f^t(u) \ln \frac{f(y)}{f(u)} du}{\left(\int_x^y p(u) f^t(u) du\right)^2} \ge 0.$$

By straightforward computation, from the mean-value theorem, we know that there is at least one point ξ between r and s such that

.

(3.3)
$$\frac{\frac{\partial M_{p,f}(r,s;x,y)}{\partial y}}{M_{p,f}(r,s;x,y)} = \frac{\alpha\left(s\right) - \alpha\left(r\right)}{s-r} = \alpha'\left(\xi\right) \ge 0,$$

thus, we obtain that the generalized weighted mean values $M_{p,f}(r,s;x,y)$ increase in y and x, since $M_{p,f}(r,s;x,y)$ is symmetric with x and y.

References

- E. B. Leach and M. C. Sholander, *Extended mean values*, Amer. Math. Monthly 85 (1978), 84-90
- [2] László Losonczi, Inequalities for integral mean values, J. Math. Anal. Appl. 61 (1977), 586-606.
- [3] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
- [4] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- [5] Feng Qi, Generalized weighted mean values with two parameters, Proc. Roy. Soc. London Ser. A 454 (1998), no. 1978, 2723-2732.
- [6] Feng Qi, On a two-parameter family of nonhomogeneous mean values, Tamkang J. Math. 29 (1998), no. 2, 155-163.
- [7] Feng Qi and Qiu-Ming Luo, A simple proof of monotonicity for extended mean values, J. Math. Anal. Appl. 224 (1998), 356-359.
- [8] Feng Qi and Shi-Qin Zhang, Note on monotonicity of generalized weighted mean values, Proc. Roy. Soc. London Ser. A 45 (1999), no. 1989, 3259-3260.
- [9] Feng Qi, Sen-Lin Xu and Lokenath Debnath, A new proof of monotonicity for extended mean values, Intern. J. Math. Math. Sci. 22 (1999), no. 2, 415-420.
- [10] Feng Qi and Sen-Lin Xu, Refinements and extensions of an inequality, II, J. Math. Anal. Appl. 211 (1997), 616-620.
- [11] Feng Qi and Sen-Lin Xu, The function $\frac{b^x-a^x}{x}$: Inequalities and properties, Proc. Amer. Math. Soc. **126** (1998), no. 11, 3355-3359.
- [12] Ren-Er Yang and Dong-Ji Cao, Generalizations of the logarithmic mean, J. Ningbo Univ. 2 (1989), no. 2, 105-108.

Department of Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan $454000,~{\rm The~People's~Republic}$ of China

E-mail address: qifeng@jzit.edu.cn

(Jia-Qiang Mei & Sen-Lin Xu) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI CITY, ANHUI 230026, THE PEOPLE'S REPUBLIC OF CHINA