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OTHER PROOFS OF MONOTONICITY FOR GENERALIZED
WEIGHTED MEAN VALUES

FENG QI, JIA-QIANG MEI, AND SEN-LIN XU

ABSTRACT. In this article, another two simple and short proofs of monotonic-
ity for the generalized weighted mean values with two parameters are given.

1. INTRODUCTION

The generalized weighted mean values M), ¢ (r, s; z,y) with two parameters r and
s are defined by the first author in [5] as follows:

Let ,y,r,s € R, p(u) #Z 0 be a nonnegative and integrable function and f (u) a
positive and integrable function on the interval between x and y, then
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My ¢ (rys;z,z) = f(x).
For our own convenience, we write
My, (’I“, 5 a:,y) = M,y (7'7 S) =My (‘Tvy) = My,y,

shifting notations to suit the context.

Note that most two variable mean values are special cases of M, ¢. If s = 0,
then My, s (r,0;2,y) = MU (f,p;x,y) is called the weighted mean of order r of the
function f on the interval between z and y with weight p in [3] and [4]. If we take
p(u) =1, f(u) =wand z,y >0, then My, ¢ (r—1,5s—1;2,y) = E(r,s;z,y) are
called the extended mean values in [1] and [4].

The extended mean values E are increasing with r and s, or with = and y. It has
been proven by many mathematicians, for instance [1], [2], [4], [7], [9] and [12]. The
study of E has a rich literature, for details, please see [5]. The monotonicity of M), ¢
was verified by the first author in [5] and [8] using the Chebychev integral inequality,
the Cauchy-Schwarz-Buniakowsky integral inequality, and the mean value theorem.

In this article, from the ideas and viewpoints used in [6], [9], [10] and [11], we
prove the monotonicity of M, ; (r, s;x,y) by two new and simple methods. That is
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Theorem 1. Let p (u) # 0 be a nonnegative and continuous function, f(u) a pos-
itive, increasing (or decreasing, respectively) and continuous function. Then the
generalized weighted mean values M, y (r, s;x,y) increase (or decrease, respectively)
with respect to either x or y,

2. THE FIRST PROOF OF THE THEOREM

Let
y
(2.1) hp.r (tx,y) = / p(u) f* (u)du, t € R,

where z,y,p and f are defined as stated in Section 1.
It is easy to see that

e /:p (w) f* (u) [In £ (u0)]"

Set Qp. (r,s;2,y) =In M, ¢ (r,s;z,y), then

1 s Ohy s (t;z,y)
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2.4 Qp.s (rrmzy) = L, x,y # 0.
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To verify the monotonicity of M, f (r, s;z,y) with = and y, it is sufficient to prove
Bhp’f(t;m,y)

the monotonicity of W in Qp,y(r,s;2,y) with  and y for any ¢. This is a
P PR

special case of the folloﬁving

(2.2)

Lemma 1. The functions
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are increasing (or decreasing, respectively) with x and y if f (u) is increasing (or
decreasing, respectively) for i and k being nonnegative integers.

Proof. Using the integral expressions (2.1) and (2.2) of h, s (t;2,y), by standard
arguments, we have

PETIH Ry, p(tim,y)

g 9t2(k+i)+1
2k .z
y %M

[0 (PR (tay)\ 0% Ry, (62, y)

= oy ot2(k+i)+1 ' otk
06 B P2 (£, ) 0 0**h, 1 (t;2,9) . 1

- Ot2(k+i)+1 o o2k {a?khp,f(tmy)} 2
a2k

P) ) I )" ot 1 N
[azkhp tfz(kt Sy :| |:(1nf (y)) /I P(U) f (U) [lnf (u)]

/ ") £ ) I f (PO du} :



OTHER PROOFS OF MONOTONICITY FOR GENERALIZED WEIGHTED MEAN VALUES 3

When f (u) increases (or decreases, respectively), the derivatives (2.6) are nonneg-
ative (or nonpositive, respectively); hence, the desired monotonicity of (2.5) with
respect to x and y follows, since the discussed functions (2.5) are symmetric in
and y. This completes the proof of the lemma. I

3. THE SECOND PROOF OF THE THEOREM

Let
(3.1) a(t) =

Straightforward computation yields
pW) S ) [P () £ () o Fhdu .
2 puy
(f2 o (u) f* (u) du)

By straightforward computation, from the mean-value theorem, we know that there
is at least one point £ between r and s such that
OMp ¢ (1,8:,y)

(3:3) My, (f,ys; ry) . (82 - 7Of o € =0,

(3.2) o (1) =

thus, we obtain that the generalized weighted mean values M, ; (r, s; ,y) increase
in y and z, since M, ; (r, s;x,y) is symmetric with z and y.
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