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A NEW UPPER BOUND FOR THE KULLBACK-LEIBLER
DISTANCE AND APPLICATIONS

S.S. DRAGOMIR

Abstract. In this paper we obtain another upper bound for the Kullback-
Leibler distance than the bound obtained in [2] by N.M. Dragomir and S.S.
Dragomir and point out that it can be better than the first one in certain
cases.

1. Introduction

The relative entropy is a measure of the distance between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio. The relative
entropy D(p‖q) is a measure of the inefficiency of assuming that the distribution
is q when the true distribution is p. For example, if we knew the true distribution
of the random variable, then we could construct a code with average description
length H(p). If, instead, we used the code for a distribution q, we would need
H(p) +D(p‖q) bits on the average to describe the random variable [1, p. 18].

Definition 1.1. The relative entropy or Kullback-Leibler distance between two prob-
ability mass functions p(x) and q(x) is defined by

Db(p‖q) : =
∑
x∈X

p(x) logb

(
p(x)
q(x)

)
(1.1)

= Ep logb

(
p(X)
q(X)

)
.

In the above definition, we use the convention (based on continuity arguments)
that 0 logb

(
0
q

)
= 0 and p logb

(
p
0

)
=∞.

It is well-known that relative entropy is always non-negative and is zero if and
only if p = q. However, it is not a true distance between distributions since it is
not symmetric and does not satisfy the triangle inequality.

The following theorem is of fundamental importance [1, p. 26].

Theorem 1.1. (Information Inequality) Let p(x), q(x) ∈ X , be two probability
mass functions. Then

Db(p‖q) ≥ 0 (1.2)

with equality if and only if

p(x) = q(x) for all x ∈ X . (1.3)
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Actually, the inequality (1.2) can be improved as follows (see , [1, p. 300]):

Theorem 1.2. Let p, q be as above. Then

Db(p‖q) ≥
1

2 ln b
‖p− q‖21 (1.4)

where ‖p− q‖1 =
∑
x∈X
|p(x)− q(x)| is the usual 1-norm of p− q. The equality holds

iff p = q.

We remark that the argument of (1.4) is not based on the convexity of the map
− log(.).

To evaluate the relative entropy Db(p‖q) it would be interesting to establish
some upper bounds.

Before we do this, let us recall some other important concepts in Information
Theory.

We introduce mutual information, which is a measure of the amount of informa-
tion that one random variable contains about another random variable. It is the
reduction in the uncertainty of one random variable due to the knowledge of the
other [1, p. 18].

Definition 1.2. Consider two random variables X and Y with a joint probability
mass function p(x, y) and marginal probability mass function p(x) and q(y). The
mutual information is the relative entropy between the joint distribution and the
product distribution, i.e.

Ib(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) logb

(
p(x, y)
p(x)q(y)

)
(1.5)

= Db (p(x, y) ‖ p(x)q(y))

= Ep(x,y) logb

(
p(X,Y )
p(X)q(Y )

)
.

The following corollary of Theorem 1.1 holds [1, p. 27].

Corollary 1.3. (Non-negativity of mutual information): For any two random vari-
ables, X, Y we have

Ib(X;Y ) ≥ 0 (1.6)

with equality if and only if X and Y are independent.

An improvement of this result via Theorem 1.2 is as follows

Corollary 1.4. For any two random variables, X, Y we have

Ib(X;Y ) ≥ 1
2 ln b

∑
x∈X

∑
y∈Y

|p(x, y)− p(x)q(y)|

2

≥ 0 (1.7)

with equality if and only if X and Y are independent.

Now, let u(x) = 1
|X | be the uniform probability mass function on X and let p(x)

be the probability mass function for X.
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It is well-known that [1, p. 27]

Db(p‖u) =
∑
x∈X

p(x) logb
p(x)
u(x)

(1.8)

= logb |X | −Hb(X).

The following corollary of Theorem 1.1 is important [1, p. 27].

Corollary 1.5. Let X be a random variable and |X | denotes the number of ele-
ments in the range of X. Then

Hb(X) ≤ logb |X | (1.9)

with equality if and only if X has a uniform distribution over X .

Using Theorem 1.2 we also can state

Corollary 1.6. Let X be as above. Then

logb |X | −Hb(X) ≥ 1
2 ln b

[∑
x∈X

∣∣∣∣p(x)− 1
|X |

∣∣∣∣
]2

≥ 0. (1.10)

The equality holds iff p is uniformly distributed on X .

In the recent paper [2], the authors proved between other the following upper
bound for the relative entropy and employed it in Coding Theory in connection to
Noiseless Coding Theorem:

Theorem 1.7. Under the above assumptions for p (x) and q (x) we have the in-
equality

1
ln b

[∑
x∈X

p2(x)
q(x)

− 1

]
≥ Db(p‖q) (1.11)

with equality if and only if p (x) = q (x) for all x ∈ X .

The following upper bound for the mutual information holds

Corollary 1.8. For any two random variables, X, Y we have

1
ln b

∑
x∈X

∑
y∈Y

p2(x, y)
p(x)q(y)

− 1

 ≥ Ib(X;Y )

with equality iff X and Y are independent.

Finally, we note that the following upper bound for the difference logb |X | −
Hb(X) is valid

Corollary 1.9. We have

1
ln b

[
|X |

∑
x∈X

p2(x)− 1

]
≥ logb |X | −Hb(X)

with equality if and only if p is uniformly distributed on X .
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2. Inequalities for Relative Entropy

Let X and Y be two discrete random variables having the same range and the
probability distributions p(x), q(x) > 0 for all x ∈ X .

The following upper bound for the relative entropy also holds.

Theorem 2.1. Under the above assumptions, we have

0 ≤ Db(p‖q) ≤
1

ln b

∑
x∈X

√
p(x)
q(x)

|p(x)− q(x)| , b > 1 (2.1)

with equality iff p(x) = q(x) for all x ∈ X .

Proof. We recall the following well known inequality between the geometric mean
G(a, b) :=

√
ab (a, b ≥ 0) and the logarithmic mean L(a, b), where

L(a, b) :=
{

a if b = a
b−a

ln b−ln a if b 6= a
(a, b > 0) ;

i.e., we recall it,

G(a, b) ≤ L(a, b) for all a, b > 0. (2.2)

Note that, this inequality is equivalent to

|ln b− ln a| ≤ |b− a|√
ab

; a, b > 0. (2.3)

The equality holds in (2.3) iff a = b.
Now, choose in (2.3), b = p(x), a = q(x) (x ∈ X ) to get

|ln p(x)− ln q(x)| ≤ |p(x)− q(x)|√
p(x)q(x)

, x ∈ X . (2.4)

If we multiply (2.4) by p(x) > 0, we get

|p(x) ln p(x)− p(x) ln q(x)| ≤

√
p(x)
q(x)

|p(x)− q(x)| , x ∈ X .

Summing over x ∈ X and using the generalized triangle inequality we get

0 ≤ Db(p‖q) = |Db(p‖q)|

=
1

ln b

∣∣∣∣∣∑
x∈X

p(x) ln
p(x)
q(x)

∣∣∣∣∣
≤ 1

ln b

∑
x∈X
|p(x) ln p(x)− p(x) ln q(x)|

≤ 1
ln b

∑
x∈X

√
p(x)
q(x)

|p(x)− q(x)|

and the inequality in (2.1) is proved.
The case of equality follows from the fact that in (2.4) we have equality if and

only if p(x) = q(x) for all x ∈ X .

The following corollary is obvious
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Corollary 2.2. Assume that p, q are as above and, in addition,

R := max
x∈X

p(x)
q(x)

<∞.

Then we have the inequality

0 ≤ Db(p‖q) ≤
√
R

ln b
‖p− q‖1 (2.5)

where ‖ · ‖1 is the usual 1− norm, i.e., ‖t‖1 :=
∑
x∈X |t(x)| .

Corollary 2.3. Assume that p, q are as above and, in addition,

∆ := max
x∈X
|p(x)− q(x)| .

Then, we have the inequality

0 ≤ Db(p‖q) ≤
∆

ln b
‖p
q
‖ 1

2
(2.6)

where ‖t‖ 1
2

:=
∑
x∈X |t(x)|1/2 .

Another bound in terms of the s−norm (s > 1) of the difference p−q also holds.

Corollary 2.4. Let p, q be as above. Then

0 ≤ Db(p‖q) ≤
1

ln b
‖p− q‖s

∥∥∥∥pq
∥∥∥∥1/2

l/2
(2.7)

where s > 1 and 1
s + 1

l = 1 and ‖t‖s :=
(∑

x∈X |t(x)|s
)1/s

.

Proof. The proof follows by Hölder’s inequality∑
x∈X

√
p(x)
q(x)

|p(x)− q(x)|

≤

(∑
x∈X

|p(x)− q(x)|s
) 1
s

×

∑
x∈X

(√
p(x)
q(x)

)l
1
l

and we omit the details.

Remark 2.1. For s = l = 2, we get the bound in terms of the euclidian norm of
p− q

0 ≤ Db(p‖q) ≤
1

ln b
‖p− q‖2

∥∥∥∥pq
∥∥∥∥1/2

1

≤
√
R |X |
ln b

‖p− q‖2

where R is as in Corollary 2.2.

The following corollary also holds.

Corollary 2.5. Under the above assumptions for p, q we have the inequality

0 ≤ Db(p‖q) ≤
1

ln b

[∑
x∈X

q(x)
(
p(x)
q(x)

− 1
)2
]1/2

. (2.8)

The equality holds iff p(x) = q(x) for all x ∈ X .
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Proof. We have

∑
x∈X

√
p(x)
q(x)

|p(x)− q(x)|

=
∑
x∈X

q(x)

√
p(x)
q(x)

∣∣∣∣p(x)
q(x)

− 1
∣∣∣∣ .

Using Cauchy-Buniakowski-Schwarz’s inequality, we have

∑
x∈X

q(x)

√
p(x)
q(x)

∣∣∣∣p(x)
q(x)

− 1
∣∣∣∣

≤

∑
x∈X

q(x)

(√
p(x)
q(x)

)21/2 [∑
x∈X

q(x)
(
p(x)
q(x)

− 1
)2
]1/2

=

(∑
x∈X

p(x)

)1/2 [∑
x∈X

q(x)
(
p(x)
q(x)

− 1
)2
]1/2

=

[∑
x∈X

q(x)
(
p(x)
q(x)

− 1
)2
]1/2

.

The case of equality is obvious.

The previous corollary has a consequence which can be more useful in practical
applications.

Consequence. Let ε > 0. If∣∣∣∣p(x)
q(x)

− 1
∣∣∣∣ ≤ ε ln b for all x ∈ X , (2.9)

then we have the inequality

0 ≤ Db(p‖q) ≤ ε. (2.10)

Proof. Using (2.8) and (2.9) , we have

Db(p‖q) ≤

[∑
x∈X

q(x)
(
p(x)
q(x)

− 1
)2
]1/2

≤

[∑
x∈X

q(x)
(
ε2 ln2 b

)2]1/2

= ε

and the statement is proved.

Remark 2.2. From the inequality (1.11) we have the upper bound

Db (p‖q) ≤ 1
ln b

[∑
x∈X

p2(x)
q(x)

− 1

]
(2.11)
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and from the inequality (2.1) the bound

Db(p‖q) ≤
1

ln b

∑
x∈X

√
p(x)
q(x)

|p(x)− q(x)| . (2.12)

It is natural to compare these two bounds.
Assume that |X | = 2, q(1) = q(2) = 1

2 , p(1) = p, p(2) = 1− p, p ∈ (0, 1) . Define

B1(p) :=
∑
x∈X

p2(x)
q(x)

− 1 = (2p− 1)2

and

B2(p) :=
∑
x∈X

√
p(x)
q(x)

|p(x)− q(x)| =
√

2
∣∣∣∣p− 1

2

∣∣∣∣ (√p+
√

1− p
)
.

The plot of the difference

B1 (p)−B2(p), p ∈ (0, 1) (2.13)

shows that for p ∈ (0, p0) ∪ (p1, 1), the second bound is better than the first one
while for p ∈ [p0, p1] the conclusion is the other way around. Note that p0 is the
first intersection with the op axis and is symmetric with p1 which is the second
intersection.

3. Applications for Entropy

Let X be a random variable having the probability mass function p(x) > 0,
x ∈ X . Then we have the following converse inequality

Theorem 3.1. Under the above assumptions, we have

0 ≤ logb |X | −Hb (X) (3.1)

≤ 1
ln b

√
|X |

∑
x∈X

√
p(x)

∣∣∣∣p(x)− 1
|X |

∣∣∣∣ .
The equality holds in both inequalities simultaneously iff p is uniformly distributed
on X .
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Proof. Choose in Theorem 2.1 q(x) = 1
|X | , x ∈ X to get

0 ≤ logb |X | −Hb (X)

≤ 1
ln b

∑
x∈X

√
p(x)

1
|X |

∣∣∣∣p(x)− 1
|X |

∣∣∣∣ .
which is equivalent to (3.1) .

The case of equality is obvious.

If we assume that we know more information about the probability distribution
p, i.e.,

max
x∈X

p(x) ≤ R̃

|X |
;
(
R̃ ≥ 1

)
(3.2)

then we can state the following corollary

Corollary 3.2. If the probability distribution satisfies the condition (3.2) , then we
have the inequality

0 ≤ logb |X | −Hb (X) ≤

√
R̃

ln b
‖p− u‖1 (3.3)

where u is the uniform distribution on X . The equality holds in both inequalities
simultaneously iff p = u.

Corollary 3.3. Let X be as above and assume that

∆̃ := max
x∈X

∣∣∣∣p(x)− 1
|X |

∣∣∣∣ .
Then we have the inequality

0 ≤ logb |X | −Hb (X) ≤ ∆̃
ln b

√
|X | ‖p‖1/2 . (3.4)

The equality holds iff p = u.

The following estimation in terms of p− norm also holds.

Corollary 3.4. Let p and u be as above. Then

0 ≤ logb |X | −Hb (X) (3.5)

≤
√
|X |

ln b
‖p− u‖s ‖p‖

1/2
l/2

where s > 1 and 1
s + 1

l = 1, and, particularly,

0 ≤ logb |X | −Hb (X) (3.6)

≤
√
|X |

ln b
‖p− u‖2 ‖p‖

1/2
1 .

The equality holds in both inequalities iff p = u.

The following corollary is useful in practice by its consequence which provides a
sufficient condition for p so that Hb (X) should be close enough to logb |X | .
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Corollary 3.5. Let p be as above. Then

0 ≤ logb |X | −Hb (X) (3.7)

≤
√
|X |

ln b

[∑
x∈X

(|X | p(x)− 1)2

]1/2

.

The equality holds iff p = u.

The following practical criterion holds.
Criterion. Let ε > 0. If∣∣∣∣p(x)− 1

|X |

∣∣∣∣ ≤ ε ln b
|X |

for all x ∈ X

then we have the inequality

0 ≤ logb |X | −Hb (X) ≤ ε. (3.8)

4. Applications for Mutual Information

Consider the random variables X and Y with the joint probability mass func-
tion p(x, y) and marginal probability mass functions p(x) and p(y). The mutual
information is the relative entropy between the joint distribution and the product
distributions, i.e.,

Ib(X;Y ) : = Db(p(x, y)‖p(x)p(y))

=
∑
x∈X

∑
y∈Y

p(x, y) logb

[
p(x, y)
p(x)p(y)

]
.

The following upper bound for the mutual information holds.

Theorem 4.1. Under the above assumptions for X and Y , we have

0 ≤ Ib(X;Y ) (4.1)

≤ 1
ln b

∑
x∈X

∑
y∈Y

√
p(x, y)
p(x)p(y)

|p(x, y)− p(x)p(y)|

with equality iff X and Y are independent.

The proof follows by Theorem 2.1 applied for the probability mass functions
p(x, y) and p(x)p(y), (x, y) ∈ X × Y .

Corollary 4.2. Assume that X and Y are as above and, in addition,

1 ≤ ξ = max
(x,y)

p(x, y)
p(x)p(y)

.

Then we have the inequality

0 ≤ Ib(X;Y ) (4.2)

≤
√
ξ

ln b

∑
x∈X

∑
y∈Y
|p(x, y)− p(x)p(y)| .

The equality holds in both inequalities simultaneously iff X and Y are independent.

We also have
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Corollary 4.3. Let X and Y be as above. If

Γ := max
(x,y)
|p(x, y)− p(x)p(y)| ,

then we have the inequality

0 ≤ Ib(X;Y ) ≤ Γ
ln b

∑
x∈X

∑
y∈Y

√
p(x, y)
p(x)p(y)

.

Another bound for the mutual information in terms of the s − norm, s > 1, is
the following one.

Corollary 4.4. Let X and Y be as above.Then

0 ≤ Ib(X;Y ) ≤ 1
ln b

∑
x∈X

∑
y∈Y
|p(x, y)− p(x)p(y)|s

1/s

(4.3)

×

∑
x∈X

∑
y∈Y

(√
p(x, y)
p(x)p(y)

)l1/2

and, particularly, for p = q = 2

0 ≤ Ib(X;Y ) ≤ 1
ln b

∑
x∈X

∑
y∈Y

|p(x, y)− p(x)p(y)|2
1/2

(4.4)

×

∑
x∈X

∑
y∈Y

p(x, y)
p(x)p(y)

1/2

.

Finally, the following corollary holds

Corollary 4.5. Under the above assumptions, we have

0 ≤ Ib(X;Y ) ≤ 1
ln b

∑
x∈X

∑
y∈Y

p(x)p(y)
(
p(x, y)
p(x)p(y)

− 1
)2
1/2

The equality holds iff X and Y are independent.

The following consequence is useful in practice
Consequence. Let ε > 0. If∣∣∣∣ p(x, y)

p(x)p(y)
− 1
∣∣∣∣ ≤ ε ln b for all (x, y) ∈ X × Y

then

0 ≤ Ib(X;Y ) ≤ ε.
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