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THE UNIFIED TREATMENT OF TRAPEZOID, SIMPSON AND
OSTROWSKI TYPE INEQUALITY FOR MONOTONIC

MAPPINGS AND APPLICATIONS

S.S. DRAGOMIR, J. PEČARIĆ, AND S. WANG

Abstract. We give new trapezoid inequality as well as Simpson and Os-
trowski type inequalities for monotonic functions. We provide their applica-
tions in Probability Theory, Numerical Analysis and for Special Means.

1. Introduction

In [1], S.S. Dragomir established the following Ostrowski’s type inequality for
monotonic mappings.

Theorem 1. Let f : [a, b] → R be a monotonic nondecreasing mapping on [a, b].
Then for all x ∈ [a, b], we have the inequality:∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣(1.1)

≤ 1
b− a

[2x− (a+ b)] f(x) +

b∫
a

sgn(t− x)f(t)dt


≤ 1

b− a
[(x− a) (f(x)− f(a)) + (b− x) (f(b)− f(x))]

≤

[
1
2

+

∣∣x− a+b
2

∣∣
b− a

]
(f(b)− f(a)) .

All the inequalities in (1.1) are sharp and the constant 1
2 is the best possible one.

In the present paper we shall obtain a generalization of this result which also
contains trapezoid and Simpson type inequalities. For recent results in these topics
see the papers [4]-[13].

2. Main Result

We shall start with the following result:
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Theorem 2. Let f : [a, b] → R be a monotonic nondecreasing mapping on [a, b]
and t1, t2, t3 ∈ (a, b) be such that t1 < t2 < t3. Then∣∣∣∣∣∣

b∫
a

f(x)dx− [(t1 − a) f(a) + (b− t3) f(b) + (t3 − t1) f(t)]

∣∣∣∣∣∣(2.1)

≤ (b− t3) f(b) + (2t2 − t1 − t3) f(t2)− (t1 − a) f(a) +

b∫
a

T (x)f(x)dx

≤ (b− t3) (f(b)− f(t3)) + (t3 − t2) (f(t3)− f(t2))

+ (t2 − t1) (f(t2)− f(t1)) + (t1 − a) (f(t1)− f(t2))

≤ max {t1 − a, t2 − t1, t3 − t2, b− t3} (f(b)− f(a))

where

T (x) =

 sgn(t1 − x), for x ∈ [a, t2]

sgn(t3 − x), for x ∈ [t2, b]
.

Proof. Using integration by parts formula for Riemann-Stieltjes integral, we have

b∫
a

s(x)df(x) = (t1 − a) f(a) + (b− t3) f(b) + (t3 − t1) f(t2)−
b∫
a

f(x)d(x)

where

s(x) =

 x− t1, x ∈ [a, t2]

x− t3, x ∈ [t2, b]
.

Indeed,

b∫
a

s(x)df(x) =

t2∫
a

(x− t1)df(x) +

b∫
t2

(x− t3)df(x)

= (x− t1) f(x)|t2a + (x− t3) f(t)|bt2 −
b∫
a

f(x)d(x)

= (t1 − a) f(a) + (b− t3) f(b) + (t3 − t1) f(t2)−
b∫
a

f(x)dx.

Assume that An : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a sequence of

divisions with ν(An)→ 0 as n→∞, where ν(An) := max
i=0,...,n−1

(
x

(n)
i+1 − x

(n)
i

)
and

ξ
(n)
i ∈

[
x

(n)
i , x

(n)
i+1

]
. If p : [a, b] → R is a continuous mapping on [a, b] and v is
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monotonic nondecreasing on [a, b], then∣∣∣∣∣∣
b∫
a

p(x)dv(x)

∣∣∣∣∣∣(2.2)

=

∣∣∣∣∣ lim
ν(An)→∞

n−1∑
i=0

p(ξ(n)
i )

[
v(x(n)

i+1)− v(x(n)
i )
]∣∣∣∣∣

≤ lim
ν(An)→∞

n−1∑
i=0

∣∣∣p(ξ(n)
i )
∣∣∣ ∣∣∣v(x(n)

i+1)− v(x(n)
i )
∣∣∣

= lim
ν(An)→∞

n−1∑
i=0

∣∣∣p(ξ(n)
i )
∣∣∣ (v(x(n)

i+1)− v(x(n)
i )
)

=

b∫
a

|p(x)| dv(x).

Applying the inequality (2.2) for p(x) = s(x) and v(x) = f(x), x ∈ [a, b] we can
state:∣∣∣∣∣∣

b∫
a

s(x)df(x)

∣∣∣∣∣∣
≤

b∫
a

|s(x)| df(x)

=

t1∫
a

(t1 − x)df(x) +

t2∫
t1

(x− t1) df(x) +

t3∫
t2

(t3 − x)df(x) +

b∫
t3

(x− t3) df(x)

= (t1 − x)f(x)|
t1

a +

t1∫
a

f(x)dx+ (x− t1)f(x)|
t2

t1
−

t2∫
t1

f(x)dx+

+ (t3 − x)f(x)|
t3

t2
+

t3∫
t2

f(x)dx+ (x− t3)f(x)|
b

t3
+

b∫
t3

f(x)dx

= − (t1 − a) f(a) + (t2 − t1) f(t2)− (t3 − t2) f(t2)

+ (b− t3) f(b) +

b∫
a

T (x)f(x)dx.

what is the first inequality in (2.1).
If f : [a, b]→ R is monotonic nondecreasing in [a, b], we can also state that

t1∫
a

f(x)dx ≤ f(t1)(t1 − a),

t2∫
t1

f(x)dx ≥ f(t2)(t2 − t1),

t3∫
t2

f(x)dx ≤ f(t3)(t3 − t2),

b∫
t3

f(x)dx ≥ f(t3)(b− t3).
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So,

b∫
a

T (x)f(x)dx

=

t1∫
a

f(x)dx−
t2∫
t1

f(x)dx+

t3∫
t2

f(x)dx−
b∫

t3

f(x)dx

≤ f(t1) (t1 − a)− f(t2)(t2 − t1) + f(t3) (t3 − t2)− f(t3) (b− t3) .

We have

− (t1 − a) f(a) + (t2 − t1) f(t2)− (t3 − t2) f(t2)

− (b− t3) f(b) +

b∫
a

T (x)f(x)dx

≤ − (t1 − a) f(a) + (t2 − t1) f(t2)− (t3 − t2) f(t2) + (b− t3) f(b)
+ (t1 − a) f(t1)− (t2 − t1) f(t1) + (t3 − t2) f(t3)− (b− t3) f(t3)

= (t1 − a) (f(t1)− f(a)) + (t2 − t1) (f(t2)− f(t1))
+ (t3 − t2) (f(t3)− f(t2)) + (b− t3) (f(b)− f(t3))

≤ max {t1 − a, t2 − t1, t3 − t2, b− t3} (f(b)− f(a)) ,

and the theorem is thus proved.

Remark 1. For t1 = 0, t2 = x, t3 = b we get Theorem 1 from the above Theorem.

For t1 = t2 = t3 = x, Theorem 2 becomes:

Corollary 1. Let f be defined as in Theorem 2. Then∣∣∣∣∣∣
b∫
a

f(t)dt− [(x− a)f(a) + (b− x)f(b)]

∣∣∣∣∣∣(2.3)

≤ (b− x)f(b)− (x− a)f(a) +

b∫
a

sgn(x− t)f(t)dt

≤ (b− x) (f(b)− f(x)) + (x− a) (f(x)− f(a))

≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] (f(b)− f(a)) .

All the inequalities in (2.3) are sharp and the constant 1
2 is the best possible one.

Proof. We only need to prove that the constant 1
2 is the best possible one. Choose

the mapping f0 : [a, b]→ R given by

f0(x) =

 0, if x ∈ [a, t];

1, if x = b.
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Then, f0 is monotonic nondecreasing on [a, b], and for x = a we have∣∣∣∣∣∣
b∫
a

f(t)dt− [(x− a)f(a) + (b− x)f(b)]

∣∣∣∣∣∣
= (b− x)f(b)− (x− a)f(a) +

b∫
a

sgn(t− x)f(t)dt

= (b− x) (f(b)− f(x)) + (x− a) (f(x)− f(a))
= (b− a)

≤
[
C(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] (f(b)− f(a))

=
(
C +

1
2

)
(b− a)

which prove the sharpness of the first two inequalities and the fact that C shouldn’t
be less than 1

2 .

For x = a+b
2 we get trapezoid inequality.

Corollary 2. Let f : [a, b]→ R be a monotonic nondecreasing mapping on [a, b].
Then ∣∣∣∣∣∣

b∫
a

f(t)dt− f(a) + f(b)
2

(b− a)

∣∣∣∣∣∣(2.4)

≤ 1
2

(b− a)(f(b)− f(a))−
b∫
a

sgn
(
t− a+ b

2

)
f(t)dt

≤ 1
2

(b− a)(f(b)− f(a)).

The constant factor 1
2 is the best in both inequalities.

Corollary 3. Let f be as in Theorem 2 and p, q ∈ R+ with p > q. Then∣∣∣∣∣∣
b∫
a

f(x)dx− q

p+ q
(b− a)

[
f(a) + f(b) +

p− q
q

f

(
a+ b

2

)]∣∣∣∣∣∣
≤ q

p+ q
(b− a)(f(b)− f(a)) +

b∫
a

T1(x)f(x)dx

≤ q

p+ q
(b− a)(f(b)− f(a))

+
p− 3q

2(p+ q)
(b− a)

[
f

(
pb+ qa

p+ q

)
− f

(
pa+ qb

p+ q

)]
≤ max

{
q,
p− q

2

}
b− a
p+ q

(f(b)− f(a))



6 S.S. DRAGOMIR, J. PEČARIĆ, AND S. WANG

where

T1(x) =


sgn

(
pa+qb
p+q − x

)
,
x ∈

[
a, a+b

2

]
sgn

(
pb+qa
p+q − x

)
, if x ∈

(
a+b

2 , b
] .

Proof. Set in Theorem 2: t1 = pa+qb
p+q , t2 = a+b

2 , t3 = qa+pb
p+q .

Remark 2. Of special interest is the case p = 5 and q = 1 where we get from
Corollary 3 the following result of Simpson type;∣∣∣∣∣∣

b∫
a

f(x)dx− 1
3

(b− a)
[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣∣
≤ b− a

6
(f(b)− f(a)) +

b∫
a

T2(x)f(x)dx

≤ b− a
6

[
f(b)− f(a) + f

(
5b+ a

6

)
− f

(
5a+ b

6

)]
≤ 1

3
(b− a)(f(b)− f(a)),

where

T2(x) =


sgn

( 5a+b
3 − x

)
,
x ∈

[
a, a+b

2

]
sgn

(
a+5b

3 − x
)
, x ∈

(
a+b

2 , b
]
.

Remark 3. For p→ q we get Corollary 2 from Corollary 3.

Remark 4. For some related results see [3].

3. An Inequality for Cumulative Distribution Function

Let X be a random variable taking values in the finite interval [a, b], with cumu-
lative distributions function F (X) = Pr(X ≤ x).

The following result from [2] can be obtained from Theorem 1 and from Theorem
2.

Theorem 3. Let X and F be as above. Then we have the inequalities∣∣∣∣Pr(X ≤ x)− b− E(x)
b− a

∣∣∣∣(3.1)

≤ 1
b− a

[2x− (a+ b)] Pr(X ≤ x) +

b∫
a

sgn (t− x)F (t)dt


≤ 1

b− a
[(b− x) Pr(X ≥ x) + (x− a) Pr(X ≤ x)]

≤ 1
2

+

∣∣x− a+b
2

∣∣
b− a

,

for all x ∈ [a, b].
All the inequalities in (3.1) are sharp and the constant 1

2 is the best possible.
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Now we shall prove the following result.

Theorem 4. Let X and F be as above. Then we have the inequalities

|E(X)− x| ≤ b− x+

b∫
a

sgn (x− t)F (t)dt(3.2)

≤ (b− x) Pr(X ≥ x) + (x− a) Pr(X ≤ x)

≤ b− a
2

+
∣∣∣∣x− a+ b

2

∣∣∣∣
for all x ∈ [a, b].

All the inequalities in (3.2) are sharp and the constant 1
2 is the best possible.

Proof. Apply Corollary 1 for the monotonic nondecreasing mapping f(t) := F (t), t ∈
[a, b] to get

∣∣∣∣∣∣
b∫
a

F (t)dt− [(x− a)F (a) + (b− x)F (b)]

∣∣∣∣∣∣(3.3)

≤ (b− x)F (b) + (x− a)F (a) +

b∫
a

sgn (x− t)F (t)dt

≤ (b− x)(F (b)− F (x)) + (x− a) (F (x)− F (a))

≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] (F (b)− F (a))

and as

F (a) = 0, F (b) = 1

by integration by parts formula for Riemann-Stieltjes integral, we have

E(X) =

b∫
a

tdF (t) = tF (t)|ba −
b∫
a

F (t)dt

= bF (b)− aF (a)−
b∫
a

F (t)dt

= b−
b∫
a

F (t)dt

i.e.,

b∫
a

F (t)dt = b− E(X).

The inequalities (3.3) give the desired estimation (3.2).
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Corollary 4. Let X be a random variable taking values in the finite interval [a, b],
with cumulative distribution function F (x) = Pr(X ≤ x) and the expectation E(X).
Then we have the inequality∣∣∣∣E(X)− a+ b

2

∣∣∣∣ ≤ 1
2

(b− a)−
b∫
a

sgn(t− a+ b

2
)F (t)dt ≤ 1

2
(b− a).

The factor constant 1
2 is the best in both inequalities.

4. Application for Quadrature Formulae

By using our Corollary 3 we can give a general result for Simpson’s type of
quadrature formula. Moreover, we shall give applications of Corollary 2, i.e., the
corresponding result for classical trapezoidal rule.

Let In : a = x0 < x1 < ... < xn−1 < xn = b be a partitioning of the interval
[a, b], put hi := xi+1 − xi (i = 0, .., n− 1) and ν(h) := max {hi|i = 0, ..., n− 1} the
norm of the division. Define the trapezoid formula associated with the division In
and with a mapping f : [a, b]→ R

Tn(f, In) :=
n−1∑
i=0

f(xi) + f(xi+1)
2

· hi.

The following theorem contains an evaluation of the remainder in Trapezoid rule.

Theorem 5. Let f : [a, b] → R be a monotonic nondecreasing mapping on [a, b].
Then

b∫
a

f(t)dt = Tn(f, In) +Rn(f, In)

where Tn(f, In) is the trapezoid formula and the remainder Rn(f, In) satisfies the
estimation

|Rn(f, In)| ≤ 1
2

n−1∑
i=0

(f(xi+1) + f(xi))hi −
b∫
a

Kn(f, In, t)f(t)dt(4.1)

≤ 1
2

n−1∑
i=0

(f(xi+1) + f(xi))hi

≤ ν(h)
2

(f(b)− f(a))

where

Kn(f, In, t) :=



sgn
(
t− a+x1

2

)
if t ∈ [a, x1)

sgn
(
t− x1+x2

2

)
if t ∈ [x1, x2)

..............

sgn
(
t− xn−2+xn−1

2

)
if t ∈ [xn−2, xn−1)

sgn
(
t− xn−1+b

2

)
if t ∈ [xn−1, b] .
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Proof. Write the inequality (2.4) on the intervals [xi, xi+1] to get

∣∣∣∣∣∣
xi+1∫
xi

f(t)dt− f(xi) + f(xi+1)
2

hi

∣∣∣∣∣∣(4.2)

≤ 1
2
hi (f(xi+1) + f(xi))−

xi+1∫
xi

sgn

(
t− xi + xi+1

2

)
f(t)dt

≤ 1
2
hi (f(xi+1) + f(xi)) ,

for all i ∈ {0, ..., n− 1}.
Summing over i from 0 to n − 1 and using the generalized triangle inequality, we
get the first two inequalities in (4.1).
The last inequality is obvious, observing that

n−1∑
i=0

(f(xi+1)− f(xi))hi = ν(h)
n−1∑
i=0

(f(xi+1)− f(xi))

= ν(h)(f(b)− f(a)).

Hence, the theorem is proved.

Corollary 5. Let f be as above and In are equidistant partitioning of [a, b], i.e.,
In : xi = a+ i · b−an , i = 0, ..., n. Then

b∫
a

f(t)dt = Tn(f) +Rn(f)

where

Tn(f) =
b− a
2n

n−1∑
i=0

[
f

(
a+ i · b− a

n

)
+ f

(
a+ (i− 1) · b− a

n

)]
.

The remainder satisfies the estimation.

|Rn(f)| ≤ b− a
2n

(f(b)− f(a))−
b∫
a

Kn(f, t)f(t)dt ≤ b− a
2n

(f(b)− f(a))

where

Kn(f, t) :=


sgn

(
t− (2n−1)a+b

2n

)
if t ∈

[
a, (n−1)a+b

n

]
..............

sgn
(
t− a+(2n−1)b

2n

)
if t ∈

(
a+(n−1)b

n , b
]

5. Application for Special Means

As in Section 4 we shall give application of Corollary 3. It is clear that similar
applies from of the other results from Section 2.

Let us recall the following means
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1. The arithmetic mean

A = A(a, b) :=
a+ b

2
, a, b ≥ 0;

2. The geometric mean

G = G(a, b) :=
√
ab, a, b ≥ 0;

3. The harmonic mean

H = H(a, b) :=
2

1
a + 1

b

, a, b ≥ 0;

4. The logarithmic mean

L = L(a, b) :=
{

a if a = b
b−a

ln b−ln a if a 6= b
, a, b ≥ 0;

5. The identric mean

I = I(a, b) :=

 a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b
, a, b ≥ 0;

6. The p-logarithmic mean

Lp = Lp(a, b) :=

 a if a = b[
bp−1−ap−1

(p−1)(b−a)

] 1
p

if a 6= b,

where p ∈ R\{−1, 0} and a, b > 0.
The following simple relationships are known in the literature

H ≤ G ≤ L ≤ I ≤ A.
It is also known that Lp is monotonically increasing over p ∈ R with L0 := I
and L−1 := L.

We are going to use inequality (2.4) in the following equivalent version:∣∣∣∣∣∣ 1
b− a

b∫
a

f(t)dt− f(a) + f(b)
2

∣∣∣∣∣∣(5.1)

≤ 1
2

(f(b)− f(a))− 1
b− a

b∫
a

sgn
(
t− a+ b

2

)
f(t)dt

≤ 1
2

(f(b)− f(a)),

where f : [a, b]→ R is monotonic nondecreasing on [a, b].

5.1. Mapping f(x) = xp. Consider the mapping f : [a, b] ⊂ (0,∞) → R, f(x) =
xp, p > 0. Then

1
b− a

b∫
a

f(t)dt = Lpp(a, b);

f(a) + f(b)
2

= A(ap, bp);

f(b)− f(a) = p(b− a)Lp−1
p−1(a, b);
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− 1
b− a

b∫
a

sgn

(
t− a+ b

2

)
f(t)dt

=
1

b− a


a+b

2∫
a

f(t)dt−
b∫

a+b
2

f(t)dt



=
1

b− a


a+b

2∫
a

tpdt−
b∫

a+b
2

tpdt


=

2
(b− a)(p+ 1)

[
Ap+1(a, b)−A(ap+1, bp+1)

]
and then, by (5.1), we get∣∣Lpp(a, b)−A(ap, bp)

∣∣(5.2)

≤ 1
2
p(b− a)Lp−1

p−1(a, b) +
2

(b− a)(p+ 1)
[
Ap+1(a, b)−A(ap+1, bp+1)

]
≤ 1

2
p(b− a)Lp−1

p−1(a, b).

5.2. Mapping f(x) = − 1
x . Consider the mapping f : [a, b] ⊂ (0,∞) → R,

f(x) = − 1
x . Then

1
b− a

b∫
a

f(t)dt = −L−1(a, b);

f(a) + f(b)
2

= − A(a, b)
G2(a, b)

;

f(b)− f(a) =
b− a
G2(a, b)

;

− 1
b− a

b∫
a

sgn

(
t− a+ b

2

)
f(t)dt

=
1

b− a

−
a+b

2∫
a

dt

t
+

b∫
a+b

2

dt

t


=

2
b− a

[lnG(a, b)− lnA(a, b)] ;

and then, by (5.1), we get∣∣∣∣ A(a, b)
G2(a, b)

− 1
L(a, b)

∣∣∣∣ ≤ 1
2

b− a
G2(a, b)

− 2
b− a

[lnA(a, b)− lnG(a, b)]

≤ 1
2

b− a
G2(a, b)

.



12 S.S. DRAGOMIR, J. PEČARIĆ, AND S. WANG

If we multiply this inequality with L(a, b)G2(a, b), we get

0 ≤ AL−G2 ≤ 1
2

(b− a)L− 2G2L · lnA− lnG
A−G

· A−G
b− a

≤ 1
2

(b− a)L.

But
lnA− lnG
A−G

= L−1(G,A)

and then we get

0 ≤ AL−G2 ≤ 1
2

(b− a)L− 2G2L · A−G
b− a

· 1
L(G,A)

≤ 1
2

(b− a)L.(5.3)

5.3. Mapping f(x) = lnx. Consider the mapping f : [a, b] ⊂ (0,∞)→ R, f(x) =
lnx. Then

1
b− a

b∫
a

f(t)dt = ln I(a, b);

f(a) + f(b)
2

= lnG(a, b);

f(b)− f(a) =
b− a
L(a, b)

;

− 1
b− a

b∫
a

sgn

(
t+

a+ b

2

)
f(t)dt

=
1

b− a


a+b

2∫
a

ln tdt− 1
b− a

b∫
a+b

2

ln tdt


=

1
2

[
ln I(a,

a+ b

2
)− ln I(

a+ b

2
, b)
]

= ln
(
I(a,A)
I(A, b)

) 1
2

;

and then, by (5.1), we get

|ln I(a, b)− lnG(a, b)| ≤ 1
2
b− a
L(a, b)

+ ln
(
I(a,A)
I(A, b)

) 1
2

≤ 1
2
b− a
L(a, b)

from where we deduce

1 ≤ I

G
≤
[
I(a,A)
I(A, b)

] 1
2

exp
(

1
2
b− a
L(a, b)

)
≤ exp

[
1
2
b− a
L(a, b)

]
.(5.4)
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