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INEQUALITIES AND MONOTONICITY OF SEQUENCES

INVOLVING /(n + k)!/k!
FENG QI

ABSTRACT. Using Stirling’s formula, for all nonnegative integers k and natural
numbers n and m, we prove that

n+k 1/n n+m-+tk 1/(n+m)
i—k41 i—k41 n+m+k

From this, some monotonicity results of sequences involving ’\’/(n + k)!/k! are
deduced, and the related inequalities are refined.

1. INTRODUCTION
In [4], H. Minc and L. Sathre proved that, if r is a positive integer and ¢(r) =
()7 then
(1) 1<o(r+1)/p(r) < (r+1)/r

In [1, 3], H. Alzer and J. S. Martins refined the right inequality in (1) and showed
that, if n is a positive integer, then we have for all positive real numbers r,

n 1 & 1 v vn!
2 < (=X i< ———
@) n+1 <n§ /n+1; ) R VUCES]

Both bounds in (2) are the best possible.
Let n and m be natural numbers, k a nonnegative integer. The author generalized
in [8] the left inequality in (2) and obtained

n+k n+m-+k 1/r
k 1 1
8 Lk<(_zf - ) |
n-+m -+ n Pyl n—+m Syl

where r is a given positive real number. The lower bound in (3) is the best possible.
By mathematical induction, N. Elezovi¢ and J. Pecarié¢ [2] and the author [6, 7]
further generalized the left side of inequalities in (2) and the inequality (3) to a
large class of positive, increasing and convex sequences and of positive, increasing
and logarithmically concave sequences in different directions, respectively.
Recently, the inequalities in (1) were generalized by the author and Q.-M. Luo
in [10] and the following inequalities were obtained:

@ n+k U

< <1,
n+m+k - ovtn/(n+m+ k) k!
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where n and m are natural numbers, k is a nonnegative integer. Meanwhile, some
monotonicity results of the sequences involving {/(n + k)!/k! were presented.

In this article, using inequalities deduced from Stirling’s formula, we give a re-
finement of the left inequality in (1) and the right inequality in (4), that is

Theorem 1. Let k be a nonnegative integer, n and m be natural numbers, then
n+k 1/n n+m-+k 1/(n+m)
| n+k
i=k+1 i=k-+1 ntm+tk
When n = m = 1, the equality in (5) is valid.
Theorem 2. The sequences
n+k 1/n
© (H ) /\rﬂf
i=k—+1

are strictly increasing with n and k, respectively. The sequences

n+k 1/n n+m-+k 1/(n+m)
i=k+1 i=k+1
are strictly increasing in k for all given natural numbers n and m.

2. LEMMAS
In order to verify our theorems, we need some lemmas.

Lemma 1. For all natural numbers n, we have

1
(8) nlnn —n <Inn! < (n+§) Inn—n-+1,
(9) 27m<2)nex ! <n'<\/27m<ﬁ)nex L
) TPy =" e) “P1on

For details about inequalities (8) and (9), please refer to [5, p. 184 and p. 194].

Lemma 2. For all natural numbers k and n > 1, we have

(10) n(n—l)ln(1Jr 1 >+2k+1ln<l+%><n+12( 12n —1

2 n+k 2 n+k)(12k+ 1)’
Proof. Let
_z{z—1) 1 2y +1 LAY 12z — 1 B
P@y) == ln<1+w+y)+ 2 ln<1+y) REt+yizy+n v vzl

Differentiating and simplifying produces

Op(z,y) _ 2z — 1 n(1+ 1 + 6y> 4+ 5y — 1 + (5 + 6y — 12¢%)x — 30yx? — 1823
oz 2 T4y 12(z+y)2(z +y+1) ’

y for t >0 in [9], we have

(241

Using the inequality In(1 +t) < STt

Op(z,y) < 2y — 1 + 2z — 6yx? — 623 <

or — 12@@+y)2(z+y+1) —
therefore p(z,y) is decreasing with = > 2.
2
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It is easy to see that

1 % + 1 2 23
2,y) =In(1+ + In(1+=)— —2,
#(2,9) n( y+2> 2 n( y) 12(y 1 2)(12y + 1)

1 23
P(2,1) =22+ S I3~ —2 —2<0,
Denote
(1) b(y) = $(2.) + s
12(y +2)(12y + 1)
then

, 2 2% +8y+3
=1 -y .-~ @ —-J @~
V) n<1+ y) yly+2)(y +3)’

Wly) = el
(v +2)y+3)*
Thus 9/ (y) is decreasing with y > 2. Since lim ¢’(y) = 0, then ¥'(y) > 0 for

y—)OO

y > 2 and ¢(y) increases for y > 2.
Also since lir+n P(y) = 0, we get ¥(y) < 0 for y > 2 and p(2,y) < 0 for
y——+o0

y > 2. Hence the sequence {90(2,16)}22 is negative, and so is the sequence

{o(n, k)}:z ;- Lemma 2 follows. I

3. PROOFS OF THEOREMS

Proposition 1. Let n be a natural number, then

(12)

,ﬁm n+1’

When n =1, the equality in (12) holds.
Proof. Let
fx)=2(z—DIn(1+2)— (2> —2—DInz -2z +2, z=>1.

By standard arguments, we get
2

f’(x)—(2x1)1n<1+é>+x(xl) I Y

1+ =z T
_ _ 2 _ .
<2x 1 x(z 1)7:13 T 172
- 1+ =z T
1—=z
= <
lJr:Z:_O7
) =o.

Therefore, f(z) is decreasing and f(z) <0 for > 1. And for n > 1, we obtain
n(n—1)In(14+n)+2 < (n? —n —1)Inn + 2n,

this is equivalent to

1
<n+§>lnn—n+1§

n(n+1) lan n(n—1)
2
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Thus, from the right-hand side of inequality (8), we obtain

Inn! < Wmn - @m(l +n),

that is,

nn(n+1)/2
< -
- (TL + 1)n(n—1)/2 !
n! nn(n+1)/2

<
(TL+1)” — (TL+ 1)n(n+1)/27

\/nTH - ([(rzni)nf)!l]")l/n(nﬂ)'

The proof is complete. |

Proposition 2. Let k and n be natural numbers, then

ntk \ /7 ntkt1 \ 1/ (n+1) p——
. . <. ]tk
wo (I /() s

1=k+1 1=k+1
If n =1, the equality in (13) is valid for all k > 1.

Proof. For n > 1, the inequality (10) may be rewritten as

n(n—l)lnn+k+1 2k+1lnn+k<n+ 12n -1
2 n+k 2 ko~ 12(n + k)(12k + 1)’
-1 —n?4+2k+1
ﬁ@?—hmn+k+n+ﬁ—ﬁﬁ;—i—mm+k)
12n -1
k Ink
( + )n T Rm Rk r )
1 1
<n+k+ )hln—i-k ( )lnk 2(n+k)_12k+1
1 -1
< ;'H(n+m4f@%—lmm+k+1y
Then, substituting inequalities in (9) into the final inequality above yields
1 -1
In(n + k)! — lnk! < %m(nm - %m(njum 1),

this inequality can be rearranged as

(n+k)! _ _(n+ E)n(nt1)/2

K = (nt+k+ )@=
ntk n(n+1)/2
n+k
I ¢ (n+k+1)”<<—> ,
i1 n+k+1
nt k +1 [(i—kﬂﬂ ) <i—k+1 i=k+1

From this, the inequality (13) follows. I
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Proofs of Theorem 1 and Theorem 2. The inequality (5) can be rewritten as

n+k 1/n ntm+k 1/(n+m)
(i) ()
i=k+1 < i=k+1

vVn+k - Vn+rm+k
which is equivalent to
ntk O\ L/7 ntk+1 \ 1/(n+1)
(i) (L)
i=k+1 < Nizk+1
vntk T Vntk+l
that is,
n+k 1/n n 1/(n+1
+k . / +k+1 ‘ /(n+1) oy
II Il =i
i=k+1 i=k+1 ntkt
This follows from the combination of Proposition 1 and Proposition 2. Thus, Theo-
n+k 1/n
rem 1 and the monotonicity of the sequences ( I z) / vn + k being increas-
i=k+1

ing with n are proved.
It is easy to see that

ntk+1 \ M/ ntk O\ /n
(3 1
(i_l;[JrQ) | n+k <n+k+1>1/n<ig+1>

n+k+1 n+k+1\ k+1 Vntk

Let
@=(2 - m@trr+)- Lm0 +imerr, 2>1
g(z) = (= -5 ) (= —ln 5 n(@ , x>1
Using 22—_; <In(1+¢) for ¢ > 0 in [5, pp. 273-274] and [9] and differentiating yields
’(m)—i x(3z + 2k) 0 E+1
I =0 2+ k)(z+Ek+1) r+k+1
1 x(3z + 2k) B 2x
“ 222+ k) (z+k+1) xz+2(k+1)
2—x

2@ +k)(z+k+1)xz+20k+1)]
Thus, g(z) is decreasing with # > 2. Since mglfoog(x) =0andg(l)=3In ﬁ% >0,

then the sequence {g(n)}:z is positive. Hence

[n+k (n+k+1 1/”>1
n+k+1 k+1 ’
ntk+1 \ 1/ ntk O\ /7

() (i)
i=k+2 S Ni=kt1
Vntk+1 Vntk

n+k

1/n
The sequences < II z) / vn + k being increasing with k& are verified.
i=k+1
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It is clear that

Y+ k+ D/ (k+ 1)
“i/(n+m+k+ Dk +1)!
(n+ k + 1)ntm } R (RO

(k+1)m(n+m+k+1)n w4+ m+ k) k!

Let
hz)=(x+m)ln(z+k+1)—2zln(z+m+k+1) —mln(k+1), z>0.

Direct calculation leads to
m2z+m+k+1)

W (z) = 14— —
@) = ekt D tmthtD) n<+x+k+1>
m2z+m+k+1) B m
T (e+Ek+1)(e+m+khk+1l) az+Ek+1
mx
g >07

(x+k+1)(z+m+E+1) —
1(0) = 0.

So, the function h(z) > 0 for > 0, and we have
(n+k+1)"*tm

>1,
(E+1D)m(n+m+Ek+1)"
ntk+1\ /7 ntm+tk+1\ 1/(n+m) ntk O\ L/n ntm+k \ 1/(ntm)
11 11 >( I II :
i=k+2 i=k-+2 i=kt1 i=k+1

The proof of Theorem 2 is complete.
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