

Jensen-Type Inequalities for Invex Functions

This is the Published version of the following publication

Craven, Bruce Desmond and Dragomir, Sever S (1999) Jensen-Type Inequalities for Invex Functions. RGMIA research report collection, 2 (5).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17236/

JENSEN-TYPE INEQUALITIES FOR INVEX FUNCTIONS

B.D. CRAVEN AND S.S. DRAGOMIR

ABSTRACT. Jensen's inequality for a real convex function f on a convex domain is generalised in several ways to vector functions with a cone inequality, and to invex functions generalizing convex functions.

1. Introduction

Jensen's inequality for a real convex function f on a convex domain C states that, whenever $x_1, x_2, \ldots \in C$ and $\alpha_1, \alpha_2, \ldots \geq 0$ with $\sum \alpha_i = 1$,

$$f\left(\sum \alpha_i x_i\right) \leq \sum \alpha_i f\left(x_i\right).$$

This paper presents several generalisations of this inequality, to vector functions F with a cone inequality, and to invex functions generalizing convex functions. This introduces additional gradient terms into various inequalities.

2. Basic Concepts and Definitions

Definition 1. Let X and Z be normed spaces, $Q \subset Z$ a closed convex cone, and $E \subset X$ a convex open set. A function $F: E \to Z$ is Q-convex on E if

$$(\forall x, y \in E) (\forall \alpha \in (0,1)) \quad \alpha F(x) + (1-\alpha) F(y) - F(\alpha x + (1-\alpha) y) \in Q.$$

A (Fréchet or linear Gateaux) differentiable function $F: E \to Z$ is Q-invex (see [1], [2], [3]) if, for some scale function $\omega: E \times E \to X$,

$$(\forall x, y \in E)$$
 $F(x) - F(y) - F'(y) \omega(x - y, y) \in Q$.

Remark 1. F'(y) denotes the derivative. Invex properties have been extensively used with optimization problems. It is well-known that Q-invex implies Q-convex if $(\forall x, y \in E)$ $\omega(x - y, y) = x - y$. If F is real-valued and $Q = \mathbb{R}_+$, then the usual convexity follows. From Q-convex there follows readily

$$(\forall x_i \in E) \left(\forall \alpha_i \ge 0, \sum \alpha_i = 1 \right) \sum \alpha_i F(x_i) - F\left(\sum \alpha_i x_i\right) \in Q.$$

In this paper, invex shall require the function to be differentiable. (Extensions to nondifferentiable functions will be considered elsewhere.)

Denote by \geq_Q the ordering defined by Q thus $b \geq_Q a \Leftrightarrow b - a \in Q$.

If $\omega(\cdot,y)$ is linear, then $(\forall z = x - y) F(y + z) - F(z) \ge_Q F'(y) Cz$, where C is a linear mapping (that may depend on y), hence $(\forall z) F'(y) z \ge_Q F'(y) Cz$;

if Q is pointed (thus if $Q \cap (-Q) = \{0\}$) then F is convex, since

$$(\forall x) \ F(x) - F(y) \ge_O \ F'(y)(x-y) + F'(y)(C-I)(x-y) = F'(y)(x-y).$$

Thus functions where $\omega(\cdot, y)$ is linear for each y are equivalent to convex functions.

Date: 2nd August, 1999.

Notation 1. Various results require a suitable notation, in order that the concept is not obscured by algebraic details. Let $x=(x_1,x_2,...,x_n)$, where each x_i is a vector in E. Let $\alpha=(\alpha_1,\alpha_2,...,\alpha_n)$ where each $\alpha_i\geq 0$ and $\sum \alpha_i=1$. Denote by $\alpha \cdot x$ the inner product $\sum \alpha_i x_i$, and similarly for other inner products. Denote by S a sequence of indices $(i_1,i_2,...,i_r)$ taken from $\{1,2,...,n\}$ with repetitions allowed; similarly denote by S' a sequence of indices $\{i_1,i_2,...,i_{r+1}\}$. Denote by x_S the vector of x_i when i runs through S; and similarly define α_S . Similarly $F'(x_S)$ denotes the sequence of $F'(x_i)$ as i runs through S. Denote by M_{x_S} the mean of the sequence x_S , and by Π_{α_S} the product of the items in α_S . If $\Phi(S)$ denotes a function of S, denote by $A\Phi(S)$ the sum of the items in $\Phi(S)$, when S runs over all sequences of length r, and denote by $A\Phi(S')$ the sum of the items in $\Phi(S')$, where S' runs over the sequences of length r+1. Thus $A(\Pi_{\alpha_S})\Phi(S)$ represents the sum of all terms

$$\alpha_{i_1}\alpha_{i_2}...\alpha_{i_r}\Phi(i_1,i_2,...,i_r)$$

as $i_1, i_2, ..., i_r$ run through 1, 2, ..., n.

Proposition 1. Let $F: E \to Z$ be Q-invex; let $x_1, x_2, ... \in E$ (allowing possible repetitions), and let $\alpha_1, \alpha_2, ...$ be nonnegative with sum 1; let $w = \sum \alpha_i x_i$. Then

$$\sum \alpha_{i} F(x_{i}) - F(w) \geq_{Q} F'(w) \sum \omega(x_{i} - w, w).$$

Proof. Q-invex requires, for each i, that

$$F(x_i) - F(w) \ge_Q F'(w) \omega (x_i - w, w)$$
.

Multiplication by α_i and summing gives the result.

Proposition 2. Let $F: E \to Z$ be differentiable Q-invex. Let $x_1, x_2, ... \in E$ (allowing possible repetitions), and let $\alpha_1, \alpha_2, ...$ be nonnegative with sum 1. Then

$$-\sum_{j} \alpha_{j} F'(x_{j}) \omega (\alpha \cdot (x - x_{j}), x_{j})$$

$$\geq_{Q} \alpha \cdot F(x_{S}) - F(\alpha \cdot x)$$

$$\geq_{Q} F'(\alpha \cdot x) \sum_{j} \alpha_{j} \omega (\alpha \cdot (x_{j} - x), \alpha \cdot x).$$

Proof. Let $w = \alpha \cdot x$. From invex,

$$F'(x_i) \omega(x - x_i, x_i) \ge_O F(x_i) - F(w) \ge_O F'(w) \omega(x_i - w, w)$$
.

Multiplication by α_i and summing gives the result.

Corollary 1. Assume also that E is a linear subspace, and $\omega(\cdot, w)$ is linear. Then $\alpha \cdot F(x_S) - F(\alpha \cdot x) \geq_Q 0$.

Proof.
$$\sum_{j} \alpha_{j} \omega \left(\alpha \cdot (x - x_{j}), \alpha \cdot x \right) = \omega \left(\sum_{j,i} \alpha_{j} \alpha_{i} \left(x_{i} - x_{j} \right), \alpha \cdot x \right) = 0.$$

Corollary 2. Under hypothesis of Corollary 1,

$$\sum_{j} \alpha_{j} F'\left(x_{j}\right) \omega\left(x_{j}, x_{j}\right) - \sum_{i, j} \alpha_{i} \alpha_{j} F'\left(x_{j}\right) \omega\left(x_{j}, x_{j}\right)$$

$$\geq_{Q} \sum_{j} \alpha_{j} F\left(x_{j}\right) - F\left(\sum_{j} \alpha_{j} x_{j}\right) \geq_{Q} 0.$$

Proof. Since $\omega(\cdot, w)$ is linear,

$$-\sum_{j} \alpha_{j} F'(x_{j}) \omega (\alpha \cdot (x - x_{j}), x_{j})$$

$$= -\sum_{j} F'(x_{j}) \omega \left(\sum_{i} \alpha_{j} \alpha_{i} \cdot (x_{i} - x_{j}), x_{j} \right)$$

$$= \sum_{j} \alpha_{j} F'(x_{j}) \omega (x_{j}, x_{j}) - \sum_{i,j} \alpha_{i} \alpha_{j} F'(x_{j}) \omega (x_{j}, x_{j}).$$

Then the result follows from Corollary 1. \blacksquare

Corollary 3. If F is Q-convex, then

$$\sum_{j} \alpha_{j} F'(x_{j}) \left(\sum_{i} \alpha_{i} x_{i} \right) - \sum_{j} \alpha_{j} F'(x_{j}) \left(\sum_{i} \alpha_{i} x_{i} \right)$$

$$\geq_{Q} \sum_{j} \alpha_{j} F(x_{j}) - F\left(\sum_{j} \alpha_{j} x_{j} \right) \geq_{Q} 0.$$

Proof. By substituting $\omega\left(\alpha\cdot(x-x_j),x_j\right)=\sum_j\alpha_j\left(x_i-x_j\right)$ into the left inequality of Proposition 2, then rearranging the terms.

3. Generalized Jensen Inequalities for Invex Functions

The following generalizations of Jensen's inequalities, involving multiple summations, hold for Q-invex functions.

Proposition 3. Let $F: E \to Z$ be differentiable Q-invex; let $r \ge 1$. Then

$$-A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)\omega\left(\left(\alpha\cdot\left(x-M_{x_{S}}\right),M_{x_{S}}\right)\right)$$

$$\geq_{Q}A\left(\Pi\alpha_{S}\right)F\left(M_{x_{S}}\right)-F\left(\alpha\cdot x\right)$$

$$\geq_{Q}F'\left(\alpha\cdot x\right)A\left(\Pi\alpha_{S}\right)\omega\left(\alpha\cdot\left(M_{x_{S}}-x\right),M_{x_{S}}\right).$$

Proof. By the Q-invex property,

$$-F'(M_{x_S}) \omega(\alpha \cdot (x - M_{x_S}), M_{x_S})$$

$$\geq_Q F(M_{x_S}) - F(\alpha \cdot x)$$

$$\geq_Q F'(\alpha \cdot x) \omega((M_{x_S} - \alpha \cdot x), \alpha \cdot x).$$

The result follows by applying $J \equiv A^r \Pi \alpha_S$ on the left, noting that cone inequalities are thus unchanged, and $J\xi = \xi$ for any argument ξ independent of S.

Corollary 4. Assume the hypothesis of Proposition 3. If E is a linear subspace and $\omega(\cdot, M_{x_S})$ is linear, then

$$A(\Pi \alpha_S 0) F(M_{x_S}) - F(\alpha \cdot x) \geq_Q 0.$$

Proof. From the linear assumption,

$$A(\Pi \alpha_S) \omega (\alpha \cdot (M_{x_S} - x), M_{x_S}) = \omega (u, M_{x_S}),$$

where, after simplification,

$$u = (A(\Pi \alpha_S)) \alpha \cdot (M_{x_S} - x) = \alpha \cdot (M_{x_S} - x) = 0.$$

In the following Corollary, which generalizes Corollary 2, note that $\xi = x_{i_1}$ in the first summation, and S has r terms; in the second summation, M_{x_S} is unchanged, but S' has r+1 terms, and $\eta = x_{i_{r+1}}$.

Corollary 5. Under the hypothesis of Corollary 4,

$$-A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)\omega\left(\xi,M_{x_{S}}\right)-A\left(\Pi\alpha_{S'}\right)F'\left(M_{x_{S}}\right)\omega\left(\eta,M_{x_{S}}\right)$$

$$\geq_{Q}A\left(\Pi\alpha_{S}\right)F\left(M_{x_{S}}\right)-F\left(\alpha\cdot x\right).$$

Proof. Since $\omega(\cdot, M_{x_S})$ is linear,

$$\begin{split} &-A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)\omega\left(\alpha\cdot\left(\xi-M_{x_{S}}\right),M_{x_{S}}\right)\\ &=&A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)\omega\left(M_{x_{S}},M_{x_{S}}\right)-A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)\alpha\cdot\omega\left(\xi,M_{x_{S}}\right)\\ &=&A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)\omega\left(\xi,M_{x_{S}}\right)-A\left(\Pi\alpha_{S'}\right)F'\left(M_{x_{S}}\right)\omega\left(\eta,M_{x_{S}}\right). \end{split}$$

The conclusion follows by applying Proposition 3.

Corollary 6. If F is convex, then (denoting $\xi = x_{i_1}$)

$$-A(\Pi \alpha_S) F'(M_{x_S}) \xi - A(\Pi \alpha_S) F'(M_{x_S}) (M_{x_S})$$

$$\geq_Q A(\Pi \alpha_S) F(M_{x_S}) - F(\alpha \cdot x)$$

$$\geq_Q 0.$$

Proof. Substitute $\omega\left(\alpha\cdot\left(x-M_{x_S}\right),M_{x_S}\right)=\alpha\left(x-M_{x_S}\right)$. The details are omitted. \blacksquare

4. Further Refinements

The notation of Corollary 5 is used to state Proposition 4, namely $\xi = x_i$, $\eta = x_{i_{r+1}}$. Note that S has r terms, S' has r+1 terms.

Proposition 4. Let $F: E \to Z$ be differentiable Q-invex. Then, with $\varepsilon = (r+1)^{-1}$,

$$-A\left(\Pi\alpha_{S'}\right)F'\left(M_{x_{S}}\right)\omega\left(\varepsilon\left(\eta-M_{x_{S}}\right),M_{x_{S}}\right)$$

$$\geq_{Q}A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)-A\left(\Pi\alpha_{S'}\right)F\left(M_{x_{S'}}\right)$$

$$\geq_{Q}A\left(\Pi\alpha_{S'}\right)F'\left(M_{x_{S'}}\right)\omega\left(\varepsilon\left(M_{x_{S}}-\eta\right),M_{x_{S'}}\right).$$

Proof. From Q-invex,

$$F'(M_{x_S}) \omega \left(\varepsilon \left(\eta - M_{x_S}\right), M_{x_S}\right)$$

$$\geq_Q F(M_{x_S}) - F(M_{x_{S'}})$$

$$\geq_Q F'(M_{x_{S'}}) \omega \left(\varepsilon \left(M_{x_S} - \eta\right), M_{x_{S'}}\right).$$

The result follows on applying $(\Pi \alpha_{S'})$ and averaging with A.

Corollary 7. If F is as in Proposition 4, and $\omega(\cdot, M_{x_{S'}})$ is linear, then, for each r = 1, 2, ...,

$$A(\Pi \alpha_S) F(M_{x_S}) \ge_Q A(\Pi \alpha_{S'}) F(M_{x_{S'}}).$$

Proof. This follows from the second inequality of Proposition 4, noting that, when $\omega\left(\cdot,M_{x_{S'}}\right)$ is linear,

$$\omega\left(\varepsilon\left(M_{x_{S}}-\eta\right),M_{x_{S'}}\right)=\left(\frac{\varepsilon}{r}\right)\sum_{1}^{n}\omega\left(x_{i_{j}},M_{x_{S'}}\right)=\varepsilon\omega\left(x_{i_{r+1}},M_{x_{S'}}\right),$$

and application of $A(\Pi \alpha_{S'})$ gives an equal value for each summand, so the result is 0.

Corollary 8. Under the same hypotheses as Corollary 7,

$$A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\right)\xi-A\left(\Pi\alpha_{S}\right)F'\left(M_{x_{S}}\left(M_{x_{S}}\right)\right)$$

$$\geq_{Q}A\left(\Pi\alpha_{S}\right)F\left(M_{x_{S}}\right)-A\left(\Pi x_{S'}\right)F\left(M_{x_{s'}}\right)$$

$$\geq_{Q}0.$$

Proof. From the first inequality of Proposition 4, using the assumed linearity to expand $\omega(\cdot, M_{x_S})$ in its first argument.

For other recent results connected with Jensen's discrete inequality, see the papers [4]-[9], where further references are given

References

- B.D. Craven, Duality for generalized convex fractional programs, pages 473-489 of "Generalized Concavity in Optimization and Economics", S. Schaible and W.T. Ziemba (eds.), Academic Press (1981).
- [2] B.D. Craven, Invex functions and constrained local minima, Bull. Austral. Math. Soc. 25 (9) (1981), 37-46.
- [3] B.D. Craven, Quasimin and quasisaddlepoint for vector optimization, Numer. Funct. Anal. Optim. 11 (1990), 45-54.
- [4] S.S. Dragomir, Some refinements of Jensen's inequality, J. Math. Anal. Appl. 168 (1992), 518-522.
- [5] S.S. Dragomir, On some refinements of Jensen's inequality and applications, *Utilitas Math.* 43 (1993), 235-243.
- [6] S.S. Dragomir, Two mappings associated with Jensen's inequality, Extracta Math. (Spain) 8 (1993), 102-105.
- [7] S.S. Dragomir, A further refinement of Jensen's inequality, *Tamkang J. Math.* (Taipei, Taiwan) 25(1) (1994), 29-36.
- [8] S.S. Dragomir and N.M. Ionescu, On some converse of Jensen's inequality for convex mappings, L'Anal. Num. et Théor. de l'Approx. 23(1994), 71-78.
- [9] J.E. Pečarić and S.S. Dragomir, A refinement of Jensen's inequality and applications, Studia Univ. "Babes-Bolyai" Math. 34 (1) (19889), 15-19.

Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052,, Australia

 $E ext{-}mail\ address: B.Craven@ms.unimelb.edu.au}$

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC 8001, Victoria, Australia

 $E ext{-}mail\ address: sever@matilda.vu.edu.au}$