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JENSEN-TYPE INEQUALITIES FOR INVEX FUNCTIONS

B.D. CRAVEN AND S.S. DRAGOMIR

ABSTRACT. Jensen’s inequality for a real convex function f on a convex do-
main is generalised in several ways to vector functions with a cone inequality,
and to invex functions generalizing convex functions.

1. INTRODUCTION

Jensen’s inequality for a real convex function f on a convex domain C' states
that, whenever x1, s, ... € C' and ay,as,... > 0 with > «a; =1,

f (Z aixi) < Zozif(xi).

This paper presents several generalisations of this inequality, to vector functions F’
with a cone inequality, and to invex functions generalizing convex functions. This
introduces additional gradient terms into various inequalities.

2. Basic CONCEPTS AND DEFINITIONS

Definition 1. Let X and Z be normed spaces, Q C Z a closed convex cone, and
E C X a convex open set. A function F : E — Z is Q—convex on E if
(Vz,y € E) YVa € (0,1)) aF(z)+(1—a)F(y)—Flaz+(1—a)y) € Q.

A (Fréchet or linear Gateauz) differentiable function F : E — Z is Q—invex (see
1], [2], [3]) if, for some scale function w : E x E — X,

(Vz,y € E) F(x)—F(y) - F (y)w(z—y,y) € Q.

Remark 1. F'(y) denotes the derivative. Invex properties have been extensively
used with optimization problems. It is well-known that Q—invex implies (Q— convex
if Ve,y € E) w(x—y,y) =z —y. If F is real-valued and Q = R, then the usual
convezity follows. From Q— convez there follows readily

(Vz; € E) (Vai >0, Zai = 1) Z%‘F (z;) — F (Z aimi) € Q.

In this paper, invex shall require the function to be differentiable. (Extensions
to nondifferentiable functions will be considered elsewhere.)

Denote by >¢ the ordering defined by @ thus b >g a & b—a € Q.

If w(-,y) is linear, then (Vz =z —y) F (y + 2) — F (2) > F' (y) Cz, where C is
a linear mapping (that may depend on y), hence (Vz) F' (y)z >¢ F'(y)Cz;

if @ is pointed (thus if @ N (—Q) = {0}) then F is convex, since

(Vo) F(z) = F(y) 2q F'(y)(z—y) + F (y) (C—1I)(z—y)=F'(y) (z —y).

Thus functions where w (-, y) is linear for each y are equivalent to convex functions.
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Notation 1. Various results require a suitable notation, in order that the concept
is not obscured by algebraic details. Let © = (x1,22,...,2p), where each x; is a
vector in E. Let & = (aq, g, ..., o) where each o; > 0 and > o; = 1. Denote by
a -z the inner product Y a;x;, and similarly for other inner products. Denote by S
a sequence of indices (i1,1a,...,1,) taken from {1,2,...,n} with repetitions allowed;
similarly denote by S’ a sequence of indices {i1, 12, ..., i1} . Denote by xg the vector
of x; when i runs through S; and similarly define ag. Similarly F' (xg) denotes the
sequence of F' (z;) as i runs through S. Denote by M, the mean of the sequence
xg, and by Uy the product of the items in ag. If ® (S) denotes a function of S,
denote by A® (S) the sum of the items in ® (S), when S runs over all sequences of
length r, and denote by A® (S’) the sum of the items in ® (S’), where S" runs over
the sequences of length v + 1. Thus A (Il,g) ® (S) represents the sum of all terms

@iy Oy ety P (17,49, .0, 0p)
as 11,19, ..., 1 Tun through 1,2,....n

Proposition 1. Let F : E — Z be Q—invez; let x1,xa,... € E (allowing possible
repetitions), and let ay, as, ... be nonnegative with sum 1; let w = Eaixi. Then

ZaiF(xi)f (w) >q F' (w Zw
Proof. Q—invex requires, for each 4, that
F(z;) = F(w) >¢ F' (w)w (z; — w,w).
Multiplication by «; and summing gives the result. i

Proposition 2. Let F : E — Z be differentiable Q—invex. Letxq,xa,... € E (allowing
possible repetitions), and let oy, ag, ... be nonnegative with sum 1. Then

LN CHPICRCEEHIEN
>0 oz~JF(xs)—F(oz-x)
>0 F’(oz~a:)Zozjw(a~(mj —z),a-x).
Proof. Let w = - x. From invex,
Fi(zj)w (@ —xj,25) 2q F(x;) = F(w) 2q F' (w)w (z; — w,w).
Multiplication by a; and summing gives the result. I

Corollary 1. Assume also that E is a linear subspace, and w (-, w) is linear. Then
a-F(zg)—F(a-z) >g0.

Proof. 37, ajw(a- (x —zj) 00 2) =w (Zj,i ajoy (T, —xj), o x) =0.1
Corollary 2. Under hypothesis of Corollary 1,

Z o F' (zj) w (x5, 75) Z o B () w (25, ;)
> Y aiF (x) = F | Y ajz;
J J



Proof. Since w (-, w) is linear,

—Z@jF’(iEj)w(Oé'(x—Ij)v%)

—ZF' (zj)w (Z%‘ai (w; — x5) ’l“j)
= Z%‘F' (zj)w(zj,25) — Zaz‘%‘F’ (zj)w (x5, 25) -

Then the result follows from Corollary 1. I
Corollary 3. If F is Q-convez, then

ZajF’ (;Uj) (Z OéifL‘i> - ZajF’ (LCJ) (Z ai$i>

>Q ZO&jF ($]) —F Zajxj >0 0.
J J

Proof. By substitutingw (o - (v — x;) , ;) = >_, a;j (¥; — x;) into the left inequality

of Proposition 2, then rearranging the terms. i

3. GENERALIZED JENSEN INEQUALITIES FOR INVEX FUNCTIONS

The following generalizations of Jensen’s inequalities, involving multiple summa-
tions, hold for Q—invex functions.

Proposition 3. Let F : E — Z be differentiable Q—invex; let r > 1. Then
—A (HOés) F (st) w ((a ' (1‘ - st) 7st))
2@ A (Has) F (Ma:s) - F (Oé : x)
>0 F'(a-2) A(Mag)w (o (Mg — ), Myyg) .
Proof. By the @Q—invex property,
—F' (st)w (a ’ (CL’ - MZL’S) ) MIS)
2qQ F'(Mys) — F(a-x)
> F/ (0 2)w((Mas —a-2),0-2).
The result follows by applying J = A"Ilag on the left, noting that cone inequalities
are thus unchanged, and J¢ = ¢ for any argument ¢ independent of S. i
Corollary 4. Assume the hypothesis of Proposition 3. If E is a linear subspace
and w (-, M) is linear, then
A (Tlag0) F (M.

ve) = Fla-2) 20 0.
Proof. ;From the linear assumption,

A(Mag) w (o - (M,

zs

- 'r)7Mws) =w (U7Mws)’
where, after simplification,
u=(AMag))a- (Mys —z) =0 (Myy —x) =0.
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In the following Corollary, which generalizes Corollary 2, note that £ = z;, in the
first summation, and S has r terms; in the second summation, M is unchanged,
but S’ has r 4+ 1 terms, and n = ;.

Corollary 5. Under the hypothesis of Corollary 4,
—A(Mlag) F' (M) w (&, Myg) — A(Hag) F' (M) w (n, M)
>0 A(Mlag) F (Myy) — F(a-z).
Proof. Since w (-, My
_A(HaS)F/(M ) ( (5_ )7Mws>
= A(HQS)F/(M ) (MrsaM ) A(HQS)F,(MIS)CV'W(gaMwS)
= A (HO‘S) F (MJES) (fa M:cs) —A (Ho‘S’) F’ (st) w (777 Macs) .
The conclusion follows by applying Proposition 3. I

) is linear,

Corollary 6. If F' is convex, then (denoting & = x;,)
—A(Mag) F' (Myg) § — A(Mas) F' (My) (M)
>q A(Mlag) F (M) — F (o - )
>0 0.
Proof. Substitute w (a - (x — Mpq), My,) = a(x — M,,). The details are omit-
ted.

4. FURTHER REFINEMENTS

The notation of Corollary 5 is used to state Proposition 4, namely £ = x;,
n = ;.- Note that S has r terms, S’ has r + 1 terms.

Proposition 4. Let ' : E — Z be differentiable Q—invex. Then, with ¢ =
(r+1)7
—A(Mag) F' (Myg)w (e (n = Mag) , Mag)
>q A(llag) F' (M, ) — A(Tlas:) F (st,)
>0 A(Hag) F' (M, ) w (s (Mys —m) ,MIS,) .
Proof. jFrom @Q—invex,
F' (M, )W(E(ﬂ M), Myg)
2Q F (M, F(MTS’)
>q F' (st,) w (5 (Mys — 1), MZS,) .
The result follows on applying (Ilag:) and averaging with A. |

Corollary 7. If F is as in Proposition 4, and w (-, MIS,) is linear, then, for each
r=1,2 ..,

A(Has)F(MzS) ZQ A(Has/)F (st,) .

Proof. This follows from the second inequality of Proposition 4, noting that, when
w (-, Mzs/) is linear,

n
g
w(e(Mys — 1), My,,) = <;) Y w (@, May,) = ew (24,40, Mo, )
1



and application of A (Ilag/) gives an equal value for each summand, so the result
is0. 1

Corollary 8. Under the same hypotheses as Corollary 7,
Allag) F' (M,) € — A(las) F' (M, (M)
>Q A(Mlag) F (st) — A(llzg) F (Ml’s/)
>q 0.

Proof. jFrom the first inequality of Proposition 4, using the assumed linearity to
expand w (-, M) in its first argument. i

For other recent results connected with Jensen’s discrete inequality, see the pa-
pers [4]-[9], where further references are given
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