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JENSEN-TYPE INEQUALITIES FOR INVEX FUNCTIONS

B.D. CRAVEN AND S.S. DRAGOMIR

Abstract. Jensen’s inequality for a real convex function f on a convex do-
main is generalised in several ways to vector functions with a cone inequality,
and to invex functions generalizing convex functions.

1. Introduction

Jensen’s inequality for a real convex function f on a convex domain C states
that, whenever x1, x2, ... ∈ C and α1, α2, ... ≥ 0 with

∑
αi = 1,

f
(∑

αixi

)
≤
∑

αif (xi) .

This paper presents several generalisations of this inequality, to vector functions F
with a cone inequality, and to invex functions generalizing convex functions. This
introduces additional gradient terms into various inequalities.

2. Basic Concepts and Definitions

Definition 1. Let X and Z be normed spaces, Q ⊂ Z a closed convex cone, and
E ⊂ X a convex open set. A function F : E → Z is Q−convex on E if

(∀x, y ∈ E) (∀α ∈ (0, 1)) αF (x) + (1− α)F (y)− F (αx+ (1− α) y) ∈ Q.
A (Fréchet or linear Gateaux) differentiable function F : E → Z is Q−invex (see
[1], [2], [3]) if, for some scale function ω : E × E → X,

(∀x, y ∈ E) F (x)− F (y)− F ′ (y)ω (x− y, y) ∈ Q.

Remark 1. F ′ (y) denotes the derivative. Invex properties have been extensively
used with optimization problems. It is well-known that Q−invex implies Q−convex
if (∀x, y ∈ E) ω (x− y, y) = x− y. If F is real-valued and Q = R+, then the usual
convexity follows. From Q−convex there follows readily

(∀xi ∈ E)
(
∀αi ≥ 0,

∑
αi = 1

) ∑
αiF (xi)− F

(∑
αixi

)
∈ Q.

In this paper, invex shall require the function to be differentiable. (Extensions
to nondifferentiable functions will be considered elsewhere.)

Denote by ≥Q the ordering defined by Q thus b ≥Q a⇔ b− a ∈ Q.
If ω (·, y) is linear, then (∀z = x− y)F (y + z)− F (z) ≥Q F ′ (y)Cz, where C is

a linear mapping (that may depend on y), hence (∀z) F ′ (y) z ≥Q F ′ (y)Cz;
if Q is pointed (thus if Q ∩ (−Q) = {0}) then F is convex, since

(∀x) F (x)− F (y) ≥Q F ′ (y) (x− y) + F ′ (y) (C − I) (x− y) = F ′ (y) (x− y) .

Thus functions where ω (·, y) is linear for each y are equivalent to convex functions.
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Notation 1. Various results require a suitable notation, in order that the concept
is not obscured by algebraic details. Let x = (x1, x2, ..., xn) , where each xi is a
vector in E. Let α = (α1, α2, ..., αn) where each αi ≥ 0 and

∑
αi = 1. Denote by

α ·x the inner product
∑
αixi, and similarly for other inner products. Denote by S

a sequence of indices (i1, i2, ..., ir) taken from {1, 2, ..., n} with repetitions allowed;
similarly denote by S′ a sequence of indices {i1, i2, ..., ir+1} . Denote by xS the vector
of xi when i runs through S; and similarly define αS . Similarly F ′ (xS) denotes the
sequence of F ′ (xi) as i runs through S. Denote by MxS the mean of the sequence
xS , and by ΠαS the product of the items in αS . If Φ (S) denotes a function of S,
denote by AΦ (S) the sum of the items in Φ (S) , when S runs over all sequences of
length r, and denote by AΦ (S′) the sum of the items in Φ (S′) , where S′ runs over
the sequences of length r + 1. Thus A (ΠαS ) Φ (S) represents the sum of all terms

αi1αi2 ...αirΦ (i1, i2, ..., ir)

as i1, i2, ..., ir run through 1, 2, ..., n.

Proposition 1. Let F : E → Z be Q−invex; let x1, x2, ... ∈ E (allowing possible
repetitions), and let α1, α2, ... be nonnegative with sum 1; let w =

∑
αixi. Then∑

αiF (xi)− F (w) ≥Q F ′ (w)
∑

ω (xi − w,w) .

Proof. Q−invex requires, for each i, that

F (xi)− F (w) ≥Q F ′ (w)ω (xi − w,w) .

Multiplication by αi and summing gives the result.

Proposition 2. Let F : E → Z be differentiable Q−invex. Let x1, x2, ... ∈ E (allowing
possible repetitions), and let α1, α2, ... be nonnegative with sum 1. Then

−
∑
j

αjF
′ (xj)ω (α · (x− xj) , xj)

≥Q α · F (xS)− F (α · x)

≥Q F ′ (α · x)
∑

αjω (α · (xj − x) , α · x) .

Proof. Let w = α · x. From invex,

F ′ (xj)ω (x− xj , xj) ≥Q F (xj)− F (w) ≥Q F ′ (w)ω (xi − w,w) .

Multiplication by αj and summing gives the result.

Corollary 1. Assume also that E is a linear subspace, and ω (·, w) is linear. Then
α · F (xS)− F (α · x) ≥Q 0.

Proof.
∑
j αjω (α · (x− xj) , α · x) = ω

(∑
j,i αjαi (xi − xj) , α · x

)
= 0.

Corollary 2. Under hypothesis of Corollary 1,∑
j

αjF
′ (xj)ω (xj , xj)−

∑
i,j

αiαjF
′ (xj)ω (xj , xj)

≥Q
∑
j

αjF (xj)− F

∑
j

αjxj

 ≥Q 0.



3

Proof. Since ω (·, w) is linear,

−
∑
j

αjF
′ (xj)ω (α · (x− xj) , xj)

= −
∑
j

F ′ (xj)ω

(∑
i

αjαi · (xi − xj) , xj

)
=

∑
j

αjF
′ (xj)ω (xj , xj)−

∑
i,j

αiαjF
′ (xj)ω (xj , xj) .

Then the result follows from Corollary 1.

Corollary 3. If F is Q-convex, then∑
j

αjF
′ (xj)

(∑
i

αixi

)
−
∑
j

αjF
′ (xj)

(∑
i

αixi

)

≥Q
∑
j

αjF (xj)− F

∑
j

αjxj

 ≥Q 0.

Proof. By substituting ω (α · (x− xj) , xj) =
∑
j αj (xi − xj) into the left inequality

of Proposition 2, then rearranging the terms.

3. Generalized Jensen Inequalities for Invex Functions

The following generalizations of Jensen’s inequalities, involving multiple summa-
tions, hold for Q−invex functions.

Proposition 3. Let F : E → Z be differentiable Q−invex; let r ≥ 1. Then

−A (ΠαS)F ′ (MxS )ω ((α · (x−MxS ) ,MxS ))
≥Q A (ΠαS)F (MxS )− F (α · x)
≥Q F ′ (α · x)A (ΠαS)ω (α · (MxS − x) ,MxS ) .

Proof. By the Q−invex property,

−F ′ (MxS )ω (α · (x−MxS ) ,MxS )
≥Q F (MxS )− F (α · x)
≥Q F ′ (α · x)ω ((MxS − α · x) , α · x) .

The result follows by applying J ≡ ArΠαS on the left, noting that cone inequalities
are thus unchanged, and Jξ = ξ for any argument ξ independent of S.

Corollary 4. Assume the hypothesis of Proposition 3. If E is a linear subspace
and ω (·,MxS ) is linear, then

A (ΠαS0)F (MxS )− F (α · x) ≥Q 0.

Proof. ¿From the linear assumption,

A (ΠαS)ω (α · (MxS − x) ,MxS ) = ω (u,MxS ) ,

where, after simplification,

u = (A (ΠαS))α · (MxS − x) = α · (MxS − x) = 0.
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In the following Corollary, which generalizes Corollary 2, note that ξ = xi1 in the
first summation, and S has r terms; in the second summation, MxS is unchanged,
but S′ has r + 1 terms, and η = xir+1 .

Corollary 5. Under the hypothesis of Corollary 4,

−A (ΠαS)F ′ (MxS )ω (ξ,MxS )−A (ΠαS′)F ′ (MxS )ω (η,MxS )
≥Q A (ΠαS)F (MxS )− F (α · x) .

Proof. Since ω (·,MxS ) is linear,

−A (ΠαS)F ′ (MxS )ω (α · (ξ −MxS ) ,MxS )
= A (ΠαS)F ′ (MxS )ω (MxS ,MxS )−A (ΠαS)F ′ (MxS )α · ω (ξ,MxS )
= A (ΠαS)F ′ (MxS )ω (ξ,MxS )−A (ΠαS′)F ′ (MxS )ω (η,MxS ) .

The conclusion follows by applying Proposition 3.

Corollary 6. If F is convex, then (denoting ξ = xi1)

−A (ΠαS)F ′ (MxS ) ξ −A (ΠαS)F ′ (MxS ) (MxS )
≥Q A (ΠαS)F (MxS )− F (α · x)
≥Q 0.

Proof. Substitute ω (α · (x−MxS ) ,MxS ) = α (x−MxS ) . The details are omit-
ted.

4. Further Refinements

The notation of Corollary 5 is used to state Proposition 4, namely ξ = xi,
η = xir+1 . Note that S has r terms, S′ has r + 1 terms.

Proposition 4. Let F : E → Z be differentiable Q−invex. Then, with ε =
(r + 1)−1

,

−A (ΠαS′)F ′ (MxS )ω (ε (η −MxS ) ,MxS )
≥Q A (ΠαS)F ′ (MxS )−A (ΠαS′)F

(
MxS′

)
≥Q A (ΠαS′)F ′

(
MxS′

)
ω
(
ε (MxS − η) ,MxS′

)
.

Proof. ¿From Q−invex,

F ′ (MxS )ω (ε (η −MxS ) ,MxS )
≥Q F (MxS )− F

(
MxS′

)
≥Q F ′

(
MxS′

)
ω
(
ε (MxS − η) ,MxS′

)
.

The result follows on applying (ΠαS′) and averaging with A.

Corollary 7. If F is as in Proposition 4, and ω
(
·,MxS′

)
is linear, then, for each

r = 1, 2, ...,

A (ΠαS)F (MxS ) ≥Q A (ΠαS′)F
(
MxS′

)
.

Proof. This follows from the second inequality of Proposition 4, noting that, when
ω
(
·,MxS′

)
is linear,

ω
(
ε (MxS − η) ,MxS′

)
=
(ε
r

) n∑
1

ω
(
xij ,MxS′

)
= εω

(
xir+1 ,MxS′

)
,
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and application of A (ΠαS′) gives an equal value for each summand, so the result
is 0.

Corollary 8. Under the same hypotheses as Corollary 7,

A (ΠαS)F ′ (MxS ) ξ −A (ΠαS)F ′ (MxS (MxS ))
≥Q A (ΠαS)F (MxS )−A (ΠxS′)F

(
Mxs′

)
≥Q 0.

Proof. ¿From the first inequality of Proposition 4, using the assumed linearity to
expand ω (·,MxS ) in its first argument.

For other recent results connected with Jensen’s discrete inequality, see the pa-
pers [4]-[9], where further references are given
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[9] J.E. Pečarić and S.S. Dragomir, A refinement of Jensen’s inequality and applications, Studia
Univ. “Babes-Bolyai” Math. 34 (1) (19889), 15-19.

Department of Mathematics and Statistics, University of Melbourne, Parkville, Vic-

toria 3052,, Australia

E-mail address: B.Craven@ms.unimelb.edu.au

School of Communications and Informatics, Victoria University of Technology, PO

Box 14428, Melbourne City MC 8001, Victoria, Australia

E-mail address: sever@matilda.vu.edu.au


