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A NEW GENERALIZATION OF THE TRAPEZOID FORMULA
FOR n-TIME DIFFERENTIABLE MAPPINGS AND
APPLICATIONS

P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS, AND J. SUNDE

ABSTRACT. A new generalization of the trapezoid formula for n-time differen-
tiable mappings and applications in Numerical Analysis are given.

1. INTRODUCTION

In the recent paper [1], P. Cerone, S.S. Dragomir and J. Roumeliotis proved the
following generalization of the trapezoid rule.

Theorem 1. Let f : [a,b] — R be a mapping such that F=1) s absolutely contin-
uous on [a,b]. Then we have the equality

n—-1 _ )t (®) (¢ N
(1.1) /f(t)dt _ y g lf’” (a) + (1) £ (b)]
k=0

k1) 2
+ [T
where
(1.2) T, (1) ;_%[(b“ H;l) (t=a) ] telab.

In the same paper, the authors pointed out the following inequality which pro-
b

vides an approximation formula for the integral [ f (¢)dt whose error can be esti-
a

mated in terms of the sup-norm of f{™) (t).

Corollary 1. Under the above assumptions, we have the inequality

b n—1 k41 k ok
(b—a) f (a) + (=1)" f™ (b)
(1.3) /f(t)dtkz_o T l 5
(n+1)! 0 2 i p=2r 41
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If, in the above corollary, we consider n = 1, then we get the known inequality

2]

(14 /f par - LOLID oy < 2o ap )
For n = 2, we obtain
(1.5) /f b dt - >;f<b>(bfa),<b;a) ,f’(a);f’(b)

(b—a ’

For other recent results concerning the trapezoid formula, see the book [11] and the
recent papers [1]-[10] and [12]-[13], where further references are given.

The main aim of this paper is to point out a generalization of the trapezoid rule
and inequality in a different way. Applications in Numerical Analysis for quadrature
formulae will also be provided. A perturbed trapezoidal type rule is presented in
Section 4 in which a number of premature results are given that provide tighter
bounds than the traditional Griiss, Chebychev and Lupas inequalities.

2. INTEGRAL IDENTITIES
We start with the following result.

Theorem 2. Let f : [a,b] — R be a mapping such that the derivative f=1)
(n > 1) is absolutely continuous on [a,b]. Then

b
(2.1) /f@ﬁ

= (= )" £ (@) + (~1)" (b =) 1) 1)

—/x—t ™) () dt,

for all x € [a,b].

Proof. The proosf is by mathematical induction.
For n = 1, we have to prove that
b
(22) /f —@-af @+ 02O+ [ @050 O

which is straightforward as may be seen by the integration by parts formula
applied for the integral

b
/@—ﬂﬂ”@ﬁ.
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Assume that (2.1) holds for “n” and let us prove it for “n 4 17. That is, we wish
to show that:

(2.3) /f (t) dt
> (k:+1 o7 [ =@ W @)+ (D" -0 O )
k=0
b
+ﬁ / (= &) FD (1) .

For this purpose, we apply formula (2.2) for the mapping g (t) := (z — )" f(™ (¢),
which is absolutely continuous on [a,b], and then, we can write:

b
(2.4) / (. —t)" fO) () dt

= (@—a)(@—a)" f"(a)+ (b-2)(x-b)" f™ ()
b
—l—/(m—t)% [ —0)" 1) 1)) a

a

= [@-t[-n@- T OO @0 £ )] a

+ (2 —a)" ) (@) + (1) (b —a)" T ()
b

- —n/(:rft dt+/b )" O (1) at

+ (@ —a)" O (@) + (<) (b — )™ D (1) dt.
From this identity we can get
b
[ wa

a
b

- / 0" (1) e

+

— [ =@ @+ (1 =) )]

Now, using the induction hypothesis, we have

[ - S G A R e VGO A Ol
k=0
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+% nt1 /(9”—t)n+1 Ot (1) dt
feg @ " (@) (o) (b)”

= k:O (k i 1)! [(:L“ — a)k+1 f(k) (a) + (71)k (b I)k+1 f(k) (b)]
bt [t e

a

and the identity (2.3) is proved. This completes the proof. I

The following corollary is useful in practice.

Corollary 2. With the above assumptions for f and R, we have the particular
identities (which can also be obtained by using Taylor’s formula with the integral
remainder)

n—1 k
(25 RO B I ORFIC
o k=0
b
+(*n1!) / (t—a)™ f™) (t) dt,
(26) [ra = ¥ tse-a 0@

a

and the identity (see also [13])

b n—1

g\ Ft!
(2.7) /f(t) dt = Z ﬁ (bT) [f(lc) (@) + (—1)* £ (v)

k=0

+(_Ti)n/b<ta;b>nf(") () dt.

a

a

Remark 1. a) Forn =1, we get the identity (2.2) which is a generalization of
the trapezoid rule.
i) For x =a in (2.2), we capture the “right rectangle rule”

b

b
/f(t)dt:(b—a)f(b)—/(t—a)f’(t)dt-

a



il) For x =b in (2.2), we obtain the “left rectangle rule”

b

(2.8) / f(tydt=(b—a)f(a) - / (b—1) ' (¢) dt.

a

iii) Finally, for x = 0—'2&, we get (2]

(2.9) jf(t)dt—M(b—a)—](t—a;b> () dt

which is the “trapezoid rule”.
b) Forn =2, we get the identity:

(2.10) / it

- x—a)f(a)—i—(b—m)f(b)

b

’ 1 "
3 le-a?r @+ -2 O]+ [ @0t O
i) If in (2.10) we choose x = b, then we obtain the “perturbed left rectangle
rule”
b
1 2 ’ 1 2 1
(2.11) f b—a)f(a)+§(b—a) f(a)+§ (t—a)” f (t)dt,
which can also be obtained by using Taylor’s formula with the integral
remainder.
il) If in (2.10) we choose x = a, we can write the “perturbed right rectangle
rule”
1 1 /
(2.12) /f b—a)f(b)—i(bfa +§/tfb (t) dt.
iii) Finally, for x = 0—'2&, we capture the “perturbed trapezoid rule” [13]
/ f(a) + 1 (0) (b a)*
a) + —a ' '
e [roe - HT8 00 E (7 @ -1 o)

a

b
1 a+b 2 7
+§/ (t 3 ) f (t) dt.

3. INTEGRAL INEQUALITIES

Using the integral representation by Theorem 1, we can prove the following
inequality
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Theorem 3. Let f : [a,b] — R be a mapping so that the derivative f=1 (n > 1)
is absolutely continuous on [a,b]. Then

b n—1

(3.1) /f (t)dt — Z ﬁ [(;g — )" 8 (@) + (=1)F (b — 2)" T F ) (b)
k=0

a

f(n) n n ) "
Pl [ -y 0 — o™ o 0 € Lulab];
< Hf(’l) , (z_a)qu+l+(b_m)llq+l % . 1 1
= — [ ) } if p>1,;+521
and f"™ e L,a,b];
f(n) @ n
U720 (3 - a) ] — 2]

for all x € [a,b)].

Proof. Using the representation (2.1) and the properties of the modulus, we have

b

/ (k+1 )] [(x — a)k-f-l f(lc) (a) + (_1)k (b— m)k-f-l f(k) )

-—/u—ﬂ

Observe that

)‘ = R.

=
IN

b
1
—/\xft\ndt Hf(")
b b

— % /x—t dt—i—/t—x

a

!U“wmlw—wﬁl+w—xﬁﬂl
n!

n+1

and the first inequality in (3.1) is proved.
Using Holder’s integral inequality, we also have

1 1
P b q

b
1 " P n
R o< o /]f“(t)) dt /|x—t|th

a

1
(I _ a)nq—i-l + (b - x)nq-f—l q
p ng+1 ’

IN
I

-l

which proves the second inequality in (3.1).



Finally, let us observe that

Roe h o /;f

n! t€la,b]
1
n: _te[a,b]
1 n || )
= —‘[max(:v—a,b—x)] )
n!
1701 b
= lzl-a+ x—a+ H Hf(")

and the theorem is completely proved. i

The following corollary is useful in practice.

Corollary 3. With the above assumptions for f and n, we have the particular
inequalities

b n—1 k
(-1 k41 (k)
(32) [rwa=3 s -0 0
J k=0
f(n) n ) "
I o oyt i ) € Loola,b);
< =1 I, o)t 1.1
< M AT (et D7 if  p>lo+,=1
N and  f" Ly [a,b];
Hf;!’Hl (b—a)n,
and
b n—1 1
t)dt — b—a)" T f () < M
JEC > G 090
and (see also [13])
b L b_ )\ k! X
_ - — (k) _ (k)
69 |[roa-S oy () U@
Pl ot i ) e L e
2”(’!1—{-1)' ( a) /Lf f 6 oo [a7 ]7
< 1,

n+i .
(b—a)"ta if p>1,%+%:1

2nnl(ng+1)1/4
and  f0 € L, [a,b];

],

2mn!

(b—a)";

respectively.
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Remark 2. If we put n =1 in (3.1), we capture the inequality

b
(3.4) /f(t) dt — (x —a) f (a) + (b— ) £ (b)

[Fo-a+ (@)’ IOl # € Luolabi;

1
< z—a)?t p(b—z)1t | a . 1 1
=) I, | if p>1i4lo1
and f' € L,la,b];

[3(b—a)+ ’x— GTHH L1l 5

for all x € [a,b], and, in particular,

a) the “left rectangle” inequality

Weo—ap i reLalan;
b
—(b— ! S
/f(t) dt — (b—a) f(a)| < (qH+1)f’/q (b—a)'T if f' € Lyla,b];
1111 (b—a).
b) the “right rectangle” inequality
17 - a2 if '€ Lo a,b];
b
—(b— f! 1 .
Jrova—e-mso|<d Wl ity .
111 (b —a).
c) the “trapezoid” inequality
/ b
(3.5) /f(t) dt M (b—a)
P - 0)> i 1 € Loo[ar8];
< Hf/ » (b* )1+5 if e L bl -
— 2(q+1)l/q fo S p[aa }1
11 ¢,



Remark 3. If we put n =2 in (3.1), we get the inequality

(3.6)

/f(t)dt—<x—a>f<a>—<b—x>f<b>
1

-5 [(m —a)’ f (a)— (b—x)* f <b)} ’

Ee [0-a + -0 o f" € Lolabl;

12

IN

1
[ o)t T L1
[ pres] ¥ p>lgt+g=1

and f' € Ly[a,b];

2

77

f

L[E0-a) + o - gt

2

for all x € [a,b], and, in particular:

a) the “perturbed left rectangle” inequality

b
(37) [rod=0-ai@-50-0"f @
Wl i € Loofat):
i | .
< Mai=Q g (0-0)”T i [ e Lot
f//
2 . (bfa)Qv

b) the “perturbed right rectangle” inequality

[rwa-e-arm+306-0°r0)

a

(3.8) < M,

c) the “perturbed trapezoid” inequality

b

(3.9)

= (b—a)’ if I € Loo [a,0];

IN
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4. A PERTURBED VERSION

A premature Griiss inequality is embodied in the following lemma which was
proven by Cerone and Dragomir in the papers [14] and [16].

Lemma 1. Let f,g be integrable functions defined on |a,b] and let d < g (t) < D.
Then

D—d
2

wl=

(4.1) IT (f,9)| <

[T (f. N]*,

where

7)== [ FWowa— = [ rwa- = [ gwa.

Using the above lemma, the following result may be stated.

Theorem 4. Let f : [a,b] — R so that the derivative {1, n > 1 is absolutely
continuous on [a,b]. Assume that there exist constants v,I' € R such that v <
f™ (t) <T a.e on [a,b]. Then, the following inequality holds

/abf(t)dt—zz_l<mx

(o=@ 10 @)+ (1 -0 1 )] )
e A o 10D @)= e ) ‘

(4.2) |Pr (z)] :=

(n+1)! b—a
r-~ 1
< -~ n (bfa)n'H
- 2 n+1 2n+1"
where
1 20 _\2n41 N2t
(4.3) I(z,n) T m{n (b— a) [(x a)>" 4 (b— ) }

I~

2

+@n+1) (@ —a) b -2) (@ —a)" — @ —)"T} "
Proof. Applying the premature Griiss result (4.1) on (z — )" and f( (¢), we have

b b b
bia/a (m—t)"f(")(t)dt—bia/a (x—t)"dt~bfla/a £ (¢ dit

- Y 1 b 2 1 b ?
< 1! _ n _ _ A"
3 b /a (x —t)™"dt lb /a (z—1t) dt]

1
2
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Therefore,

A [ e @

(z—a)" ™+ (=1)" (b—2)" F () — £ (a)
(n+1)(b—a) b—a

o Ioa <x@”wl+@xﬁ”1_[uaWH+<n”wxW“]QE,

2 (2n+1)(b—a) (b—a)(n+1)

Further simplification of the above result by multiplying throughout by 2=¢ gives

n!

(1.4) '%l%wtfﬂm®ﬁ
—“’“Wﬂﬁﬁﬁfw x”“~V“””2_f””“ﬂ‘
< 2 i),
where
@5) I (3,n) — L {(n+1)? (4 + B (471 4 B2 )

2n+1)(n+1)
—@n+1) (A™ 4 (1" B"+1)2}

with A=xz—a, B=b—1.
Now, from (4.5),

2n+1) (n+1)* J? (z,n)
= n?(A+B) (AQ"“ + an+1)

+(2n+1) [(A+ B) (A2n+1 T B2n+1) _ (An+1 4 (=1 Bn+1)2}
= (A4 B) (42 4 g

+(2n+1) [AB (A*" + B**) — 24"t . (—=1)" B"]

= n?(A+ B)[A¥"* 4 B 4 (204 1) AB[A" — (-B)")”

Now, substitution of A = x —a, B = b — = and the fact that A+ B = b — a gives

I(z,n)= WJDJ_ZL\/”_H as presented in (4.3). Substitution of identity (2.1) into (4.4)

gives (4.2) and the first part of the theorem is thus proved.
The upper bound is obtained by taking either I (a,n) or I (b,n) since I (x,n) is
convex. Hence the theorem is completely proved. R
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Corollary 4. Let the conditions of Theorem 4 hold. Then the following result holds

O R (ki]J (2§£)k+lﬂﬂ“<a>+<nkf@>w>
_<b2 ) [a+(f;}[fw 1(2—f“”0ﬂ}
n+1)! —a
P—y 1 (b-a +1‘ 1 ‘ nQ—_fl, n even
a 2 n'( 2 ) V2n+1 2, n odd .

Proof. Taking x = 2£2 in (4.2) gives (4.2), where

a-+b 1 b—a\" 9 2 3
(&2, = {4 +2+11+—1"}.
(57) - o= (55) {#f @i+

Examining the above expression for n even or n odd readily gives the result (4.6). I

Remark 4. Forn even, then the third term in the modulus sign vanishes and thus
there is no perturbation to the trapezoidal rule (4.6).

Theorem 5. Let the conditions of Theorem /4 be satisfied. Further, suppose that
") s differentiable and be such that

Hf("H) ’ = sup |f"+1( )’ < 0.
0 tela,b]
Then
(47) 1Pr (@) < 2 [ T ).

where Pr(x) is the perturbed trapezoidal type rule given by the left hand side of
(4.2) and I (z,n) is as given by (4.3).

Proof. Let f,g : [a,b] — R be absolutely continuous and f’, ¢’ be bounded. Then
Chebychev’s inequality holds (see [15, p. 207))

(b—a)*

T (f,9)] <
Mati¢, Pecari¢ and Ujevié [16] using a premature Griiss type argument proved that

(45) 70 < E22 s 1o (01T,
t€la,b]

Thus, associating £ (-) with g(-) and (z —¢)" with f in (4.8) readily produces
(4.7) where I (z,n) is as given by (4.3). 1

Theorem 6. Let the conditions of Theorem / be satisfied. Further, suppose that
™ s locally absolutely continuous on (a,b) and let f™*Y) € Ly (a,b). Then

1

(4.9) 1P (@)] < == |74 =1 (i),

where Pr(x) is the perturbed tmpezozdal type rule given by the left hand side of
(4.2) and I (z,n) is as given in (4.3).
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Proof. The following result was obtained by Lupas (see [15, p. 210]). For f, g
(a,b) — R locally absolutely continuous on (a,b) and f’, g’ € Lo (a,b), then

b— a)?
T (.0l < 11,10,

1P :
2
1Al = <m/ Ih (2)] ) for he Ly (ab).

Matié, Pecari¢ and Ujevié [16] further show that

where

(1.10) 7.0 < =Dy, VTG

Now, associating f(™) (-) with g (-) and (x — )" with f in (4.10) gives (4.9), where
I(z,n) is found in (4.3). I

Remark 5. Results (4.7) and (4.9) are not readily comparable to that obtained
in Theorem /J since the bound now involves the behaviour of f("+1) () rather than

o).

5. APPLICATION IN NUMERICAL INTEGRATION

Consider the partition I, : a = 29 < 21 < ... < Tym_1 < T,, = b of the
interval [a,b] and the intermediate points § = (&, ...,§,, 1), where {; € [2;,2;41]
(4=0,...,m—1). Put hj :=xj1; —x; and ¥(h) = max {h;|j =0,..,m—1}.

In [1], the authors considered the following generalization of the trapezoid for-
mula

m—1n—1 hk+1

8) () + (—1)F £ (2
R STTATSS o ptce i LRI L
Jj= Ic:O

and proved the following theorem:

Theorem 7. Let f : [a,b] — R be such that it’s derivative f"=1) is absolutely
continuous on [a,b]. Then we have

b
(52) [ Ot = Do (£.1) 4 Rov (1),
where the reminder Ry, » (f, Im) satisfies the estimate

m—1
n+1
> m
e} =0

(5.3) R (1) < ¢ ¢

and

o 1 ifn=2r
" 22?% ifn=2r+1.
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Now, let us define the even more generalized quadrature formula
m—1n—1

Tm,n (faf7l7n = Z Z ]C+ 1 |: xj)k+1 f(k) (IJ)

jOk:O

+ (1) (241 — é}-)kﬂ o ($j+1):| ,

where x;,&; (j =0,...,m — 1) are as above.
The following theorem holds.

Theorem 8. Let f be as in Theorem 7. Then we have the formula

b

(54) /f(t) dt :Tm,n (fa€7lm) +Rm,n (fvfalm) 5

a

where the reminder satisfies the estimate

(5.5) )Rm,n (f,&fm)‘

m—1
A 10 2 (65 =)™ + (i =)™

YRR O )]

;

Proof. Apply the inequality (3.1) on the subinterval [z, z;41] to get

171,

1
nl(ng+1)1/4

g._w
J 2

A7, 300+ _goo

7=0,....,m—1

Tjt n_1

1
_Z(k+1)'

=0

=

zj

< (& =) @)+ () (i =) O )|

ﬁ t sup | ™) (1) [(fj - xj)n+1 + (%541 — fj)nﬂ} )

Elzj,@)41]

1

n 1
n 5732 nq+l+ o *6 nq+1717q
ni ( f ’f( ) )|pd8) [( i) nqg-lﬁl ) 7

!

IN

5 (T o) [+ - g
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Summing over j from 0 to m — 1 and using the generalized triangle inequality,
we have

(B (£:€: 1)

m—1 Fitt n—1 1

< f@)dt—

- |
P R

m—1
s [FO O] [(6 )"+ (@ - €)Y

J=0 t€z;,z;j41]

1 1
m—1 Tl P . nqg+1 . e ng+17174q
=< & (f | ) (s)pds> {(@ 1) n:(ﬂm ) :|q7

7}"

As  sup }f(") (t)} < Hf(”) HOO, the first inequality is obvious.
t€[xj,2541]
Using the discrete Holder inequality, we have

m—1 1
1 n p nq+1 ng+17] 74
(ng+ 1)1/ > / ’f( N ds [(fj —w) T (=) }
Jj=0 \ 5.
J
19P7 %
1 met1 | (@i v
_ @ (a4
bR WATRICI e
(anr 1) /i j=0 zj
m—1 1 1 119 q
1z T q
8 H(fjxj) T (g - &)™ ]
j=0
1
_ v £ = (¢ 7I')nq+1 +m71 (01— € )nq+1 !
- 1 J 7 J J
(nq + ]') /a p j=0 j=0
and the second inequality in (5.5) is proved.
Finally, let us observe that
1 m—1 ittt 1 + n
n I
= / \f< ><s>)ds [5hj+ &= ] <
7=0
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< —h. L J ‘ (n)
- ijI,I.l.?ﬁfzﬂ [th +1&; 5 } jgo 7 (s)|ds
z;
1 Ti+ i n
< —Nn; R B ol H (n)
< {th +j:015}§)7§1_1 §; 5 } f )

and the last part of (5.5) is proved. 1

Remark 6. As(z —a)*+(b—a)* < (b—a)® fora > 1, z € [a,b], then we remark
that the first branch of (5.5) can be bounded by

m—1
n+1
DL
=0

The second branch can be upper bounded by

(5.6) ﬁ H )

1

(5.7) nl(ng + 1)1/q

o

m—1
nqg+1
P
Jj=0

and finally, the last branch in (5.5) can be upper bounded by
1 )

Lo
Note that all the bounds provided by (5.6)-(5.8) are uniform bounds for R n (f, &, Im)
in terms of the intermediate points &.

(5.8)

L .

The last inequality we can get from (5.5) is that one for which we have §; =

Zit2rel - Consequently, we can state the following corollary (see also [13]):

Corollary 5. Let f be as in Theorem 8. Then we have the formula

(5.9) [ @t = T (114 Ruv (.11,

where
m—1n—1

(5.10) Tmn f, 2k+1 k " 1 [f(k)( ) ( 1)16 f(k) (;p +1) hn+1
7=0 k=0

and the remainder R satisfies the estimate

m—1
eersvil LASH NSO DRSS
7=0

1
q

Rm n 7Im S m—1
) (f ) }f(n)Hp l% h7+1‘| ’
j=

1
2nnl(ng+1)1/4

o D))" (| F]

Remark 7. Similar results can be stated by using the “perturbed” versions embod-
ied in Theorems 4, 5 and 6, but we omit the details.
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