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AN INEQUALITY OF OSTROWSKI TYPE FOR TWICE
DIFFERENTIABLE MAPPINGS IN TERMS OF THE Lp NORM

AND APPLICATIONS

A. SOFO AND S. S. DRAGOMIR

Abstract. An inequality of the Ostrowski type for twice differentiable map-
pings whose derivatives belong to Lp (a, b) , 1 < p < ∞, and applications to

special means and numerical integration are investigated.

1. Introduction

The following inequality is well known in the literature as Ostrowski’s integral
inequality (see for example [1, p. 468]).

Theorem 1. Let f : I ⊆ R → R be a differentiable mapping on I̊ (̊I is the interior
of I) and let a, b ∈̊I with a < b. If f ′ : (a, b) → R is bounded, i.e., ‖f ′‖∞ :=
supt∈(a,b) |f ′ (t)| < ∞, then we have the inequality:∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞

for all x ∈ (a, b) .
The constant 1

4 is the best possible.
For a simple proof and some applications of Ostrowski’s inequality to some spe-

cial means and some numerical quadrature rules, we refer the reader to the recent
paper [2] by S. S. Dragomir and S. Wang.

In [3], the same authors considered another inequality of Ostrowski type for the
‖·‖p−norm (p > 1) as follows:

Theorem 2. Let f : I ⊆ R → R be a differentiable mapping on I̊ and a, b ∈̊I with
a < b. If f ′ ∈ Lp (a, b)

(
p > 1, 1

p + 1
q = 1

)
then we have the inequality:

(1.1)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1
b− a

[
(x− a)q+1 + (b− x)q+1

q + 1

]
‖f ′‖p

for all x ∈ [a, b] , where

‖f ′‖p :=

(∫ b

a

|f ′ (t)|p dt

) 1
p

,

is the Lp (a, b)−norm.
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2 A. SOFO AND S. S. DRAGOMIR

They also pointed out some applications of (1.1) in Numerical Integration as well
as for special means.

In 1976, G. V. Milovanović and J. E. Pečarić proved a generalization of the
Ostrowski inequality for n−times differentiable mappings (see for example [1, p.
468]). The case of twice differentiable mappings [1, p. 470] is as follows:
Theorem 3. Let f : [a, b] → R be a twice differentiable mapping such that f ′′ :
(a, b) → R is bounded on (a, b) , i.e., ‖f ′′‖∞ := sup

t∈(a,b)

|f ′′ (t)| < ∞. Then we have

the inequality: ∣∣∣∣∣∣12
[
f (x) +

(x− a) f (a) + (b− x) f (b)
b− a

]
− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣
≤

‖f ′′‖∞
4

(b− a)2
[

1
12

+

(
x− a+b

2

)2
(b− a)2

]
for all x ∈ [a, b] .

In 1998, Cerone, Dragomir and Roumeliotis [4] proved the following inequality
of Ostrowski type for mappings which are twice differentiable.
Theorem 4. Let f : [a, b] → R be a twice differentiable mapping on (a, b) and
f ′′ ∈ Lp (a, b) (p > 1) . Then we have the inequality:∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (t) dt−
(

x− a + b

2

)
f ′ (x)

∣∣∣∣∣∣
≤ 1

2 (b− a) (2q + 1)
1
q

[
(x− a)2q+1 + (b− x)2q+1

] 1
q ‖f ′′‖p

≤
(b− a)1+

1
q ‖f ′′‖p

2 (2q + 1)
1
q

for all x ∈ [a, b] , where 1
p + 1

q = 1.

Dragomir and Sofo [5] proved the following inequality in the case where the
second derivative belongs to the L∞ (·, ·) norm.
Theorem 5. Let g : [a, b] → R be a mapping whose first derivative is absolutely
continuous on [a, b] and assume that the second derivative g′′ ∈ L∞ [a, b] . Then we
have the inequality∣∣∣∣∣

∫ b

a

g (t) dt− 1
2

[
g (x) +

g (a) + g (b)
2

]
(b− a) +

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣(1.2)

≤ ‖g′‖∞

(
1
3

∣∣∣∣x− a + b

2

∣∣∣∣3 +
(b− a)3

48

)
for all x ∈ [a, b] .

In this paper we point out an inequality of Ostrowski type, different to that of
Cerone, Dragomir and Roumeliotis [4], for twice differentiable mappings which is
in terms of the Lp (·, ·) norm of the second derivative, g′′, and apply it to special
means.
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2. The Main Theorem

The following theorem is now proved and later applied to special means.
Theorem 6. Let g : [a, b] → R be a mapping whose first derivative is absolutely
continuous on [a, b] . If we assume that the second derivative g′′ ∈ Lp (a, b) , 1 <
p < ∞, then we have the inequality∣∣∣∣∣

∫ b

a

g (t) dt− 1
2

[
g (x) +

g (a) + g (b)
2

]
(b− a) +

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣(2.1)

≤ 1
2

(
b− a

2

)2+ 1
q

‖g′′‖p

×



[B (q + 1, q + 1) + Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1)]
1
q

for x ∈
[
a, a+b

2

]
,

[B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)]
1
q

for x ∈
(

a+b
2 , b

]
,

where 1
p + 1

q = 1, p > 1, q > 1, and B (·, ·) is the Beta function of Euler given by

B (l, s) =
∫ 1

0

tl−1 (1− t)s−1
dt, l, s > 0,

Br (l, s) =
∫ r

0

tl−1 (1− t)s−1
dt

is the incomplete Beta function,

Ψr (l, s) =
∫ r

0

tl−1 (1 + t)s−1
dt

is a real positive valued integral,

x1 =
2 (x− a)

b− a
, x2 = 1− x1,

x3 = x1 − 1, x4 = 2− x1

and

‖g′′‖p :=

(∫ b

a

|g′′ (t)|p dt

) 1
p

.

If we assume that g′′ ∈ L1 (a, b) , then we have∣∣∣∣∣∣
b∫

a

g (t) dt− 1
2

[
g (x) +

g (a) + g (b)
2

]
(b− a) +

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣∣(2.2)

≤
‖g′′‖1

8
(b− a)2 ,

where

‖g′′‖1 :=

b∫
a

|g′′ (t)| dt.
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Proof. We begin with the proof of the following integral equality

(2.3) f (x) =
1

b− a

 b∫
a

f (t) dt +

b∫
a

p (x, t) f ′ (t) dt


∀x ∈ [a, b] , provided that f is absolutely continuous on [a, b] , and the kernel

p : [a, b]2 → R is given by

p (x, t) :=
{

t− a if t ∈ [a, x] ,
t− b if t ∈ (x, b];

where t ∈ [a, b] .
A proof of (2.3) may be found in the paper by Dragomir and Wang [2].
Now, if we choose f (x) =

(
x− a+b

2

)
g′ (x) and apply it in (2.3) , we obtain, after

a moderate amount of manipulation, details of which may be seen in a paper by
Dragomir and Sofo [5], the integral equality∫ b

a

g (t) dt =
(b− a)

2

[
g (x) +

g (a) + g (b)
2

]
(2.4)

− (b− a)
2

(
x− a + b

2

)
g′ (x)

+
1
2

b∫
a

p (x, t)
(

t− a + b

2

)
g′′ (t) dt,

for all x ∈ [a, b] .
From (2.4), we have the inequality∣∣∣∣∣

∫ b

a

g (t) dt− (b− a)
2

[
g (x) +

g (a) + g (b)
2

]
+

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣(2.5)

≤ 1
2

∣∣∣∣∣∣
b∫

a

p (x, t)
(

t− a + b

2

)
g′′ (t) dt

∣∣∣∣∣∣ ,
whose left hand side is equivalent to that of (1.2) .

From the right hand side of (2.5) we have, by Hölder’s inequality∣∣∣∣∣∣
b∫

a

p (x, t)
(

t− a + b

2

)
g′′ (t) dt

∣∣∣∣∣∣
≤

 b∫
a

|g′′ (t)|p dt


1
p
 b∫

a

|p (x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt


1
q

= ‖g′′‖p

 b∫
a

|p (x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt


1
q

,
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and from (2.5) we obtain the inequality∣∣∣∣∣
∫ b

a

g (t) dt− (b− a)
2

[
g (x) +

g (a) + g (b)
2

]
+

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣(2.6)

≤ 1
2
‖g′′‖p

 b∫
a

|p (x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt


1
q

.

From the right hand side of (2.6) we may define

I : =

b∫
a

|p (x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt(2.7)

=

x∫
a

(t− a)q

∣∣∣∣t− a + b

2

∣∣∣∣q dt +

b∫
x

|t− b|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt,

such that we can identify two distinct cases.

(a) For x ∈
[
a, a+b

2

]

IA =

x∫
a

(t− a)q

(
a + b

2
− t

)q

dt +

a+b
2∫

x

(b− t)q

(
a + b

2
− t

)q

dt

+

b∫
a+b
2

(b− t)q

(
t− a + b

2

)q

dt.

Investigating the three separate integrals, we may evaluate as follows:

I1 =

x∫
a

(t− a)q

(
a + b

2
− t

)q

dt,

making the change of variable t = a +
(

b−a
2

)
w, we arrive at

I1 =
(

b− a

2

)2q+1 ∫ x1

0

wq (1− w)q
dw

=
(

b− a

2

)2q+1

Bx1 (q + 1, q + 1) ,

where Bx1 (·, ·) is the incomplete Beta function and x1 = 2(x−a)
b−a .

I2 =

a+b
2∫

x

(b− t)q

(
a + b

2
− t

)q

dt,
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making the change of variable t = a+b
2 −

(
b−a
2

)
w, we obtain

I2 =
(

b− a

2

)2q+1 ∫ x2

0

wq (1 + w)q
dw

=
(

b− a

2

)2q+1

Ψx2 (q + 1, q + 1) ,

where

Ψx2 :=
∫ x2

0

wq (1 + w)q
dw

and x2 = a+b−2x
b−a = 1− x1.

I3 =

b∫
a+b
2

(b− t)q

(
t− a + b

2

)q

dt,

making the change of variable t = a+b
2 +

(
b−a
2

)
w, we get

I3 =
(

b− a

2

)2q+1 ∫ 1

0

wq (1− w)q
dw

=
(

b− a

2

)2q+1

B (q + 1, q + 1) ,

where B (·, ·) is the Beta function.
We may now write

IA = I1 + I2 + I3

=
(

b− a

2

)2q+1

[Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1) + B (q + 1, q + 1)]

for x ∈
[
a, a+b

2

]
.

(b) For x ∈
(

a+b
2 , b

]
IB =

a+b
2∫

a

(t− a)q

(
a + b

2
− t

)q

dt +

x∫
a+b
2

(t− a)q

(
t− a + b

2

)q

dt

+

b∫
x

(b− t)q

(
t− a + b

2

)q

dt.

In a similar fashion to the previous case, we have

I4 =

a+b
2∫

a

(t− a)q

(
a + b

2
− t

)q

dt.

Letting t = a +
(

b−a
2

)
w, we obtain

I4 =
(

b− a

2

)2q+1 ∫ 1

0

wq (1− w)q
dw

=
(

b− a

2

)2q+1

B (q + 1, q + 1) ,



INEQUALITY OF OSTROWSKI TYPE 7

where B (·, ·) is the Beta function.

I5 =

x∫
a+b
2

(t− a)q

(
t− a + b

2

)q

dt,

making the change of variable t = a+b
2 +

(
b−a
2

)
w, we arrive at

I5 =
(

b− a

2

)2q+1 ∫ x3

0

wq (1− w)q
dw

=
(

b− a

2

)2q+1

Bx3 (q + 1, q + 1) ,

where Bx3 (·, ·) is the incomplete Beta function and x3 = x1 − 1.

I6 =

b∫
x

(b− t)q

(
t− a + b

2

)q

dt,

making the change of variable t = b−
(

b−a
2

)
w, we get

I6 =
(

b− a

2

)2q+1 ∫ x4

0

wq (1− w)q
dw

=
(

b− a

2

)2q+1

Bx4 (q + 1, q + 1) ,

where Bx4 (·, ·) is the incomplete Beta function and x4 = 2− x1.
Now

IB = I4 + I5 + I6

=
(

b− a

2

)2q+1

[B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)]

for x ∈
(

a+b
2 , b

]
,

and from (2.7)

I = IA + IB

=
(

b− a

2

)2q+1



Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1) + B (q + 1, q + 1)

for x ∈
[
a, a+b

2

]
,

B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)

for x ∈
(

a+b
2 , b

]
.

Utilizing (2.6) , we obtain the result (2.1) .
Using the inequality (2.5) , we can also state that∣∣∣∣∣∣

b∫
a

g (t) dt− b− a

2

[
g (x) +

g (a) + g (b)
2

]
(b− a) +

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣∣
≤ 1

2
‖g′′‖1 ‖K (x, t)‖∞ ,
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where

K (x, t) := p (x, t)
(

t− a + b

2

)
.

As it is easy to see that

‖K (x, t)‖∞ =
(b− a)2

4
, x ∈ [a, b] ,

we deduce (2.2) .

Remark 1. The inequality (2.1) may be rewritten as follows∣∣∣∣∣g (x) +
g (a) + g (b)

2
−
(

x− a + b

2

)
g′ (x)− 2

b− a

∫ b

a

g (t) dt

∣∣∣∣∣(2.8)

≤ 1
2

(
b− a

2

)1+ 1
q

‖g′′‖p

×



[B (q + 1, q + 1) + Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1)]
1
q

for x ∈
[
a, a+b

2

]
,

[B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)]
1
q

for x ∈
(

a+b
2 , b

]
.

Choosing x = a, we obtain, from (2.8) , x1 = 0 and x2 = 1 so that∣∣∣∣∣3g (a) + g (b)
2

+
(b− a)

2
g′ (a)− 2

b− a

∫ b

a

g (t) dt

∣∣∣∣∣(2.9)

≤ 1
2

(
b− a

2

)1+ 1
q

‖g′′‖p [B (q + 1, q + 1) + Ψ1 (q + 1, q + 1)]
1
q .

Choosing x = b, we obtain from (2.8) x3 = 1, and x4 = 0 so that∣∣∣∣∣g (a) + 3g (b)
2

− (b− a)
2

g′ (b)− 2
b− a

∫ b

a

g (t) dt

∣∣∣∣∣(2.10)

≤ 1
4

(b− a)1+
1
q ‖g′′‖p B

1
q (q + 1, q + 1) .

At the midpoint x = a+b
2 , we obtain the best estimator so that x1 = 1, x2 = 0,

x3 = 0, x4 = 1 and ∣∣∣∣∣g
(

a + b

2

)
+

g (a) + g (b)
2

− 2
b− a

∫ b

a

g (t) dt

∣∣∣∣∣
≤ 1

4
(b− a)1+

1
q ‖g′′‖p B

1
q (q + 1, q + 1) .
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Assuming the inequalities (2.9) and (2.10) , using the triangle inequality and dividing
by 4, we obtain a perturbed trapezoid formula:-∣∣∣∣∣g (a) + g (b)

2
− (b− a)

8
(g′ (b)− g′ (a))− 1

b− a

∫ b

a

g (t) dt

∣∣∣∣∣
≤ 1

8

(
b− a

2

)1+ 1
q

‖g′′‖p

[(
1 + 2

1
q

)
B

1
q (q + 1, q + 1) + Ψ

1
q

1 (q + 1, q + 1)
]

.

The following particular case for Euclidean norms p = q = 2 is of particular
importance.
Corollary 1. Let g : [a, b] → R be as in Theorem 6 and g′′ ∈ L2 (a, b) . Using the
result (2.1) , we have the inequality∣∣∣∣∣

∫ b

a

g (t) dt− (b− a)
2

[
g (x) +

g (a) + g (b)
2

]
+

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣(2.11)

≤ (b− a)
1
2

2
‖g′′‖2

[
1
2

(
x− a + b

2

)4

+
1

480
(b− a)4

] 1
2

for all x ∈ [a, b] .

Proof. Applying inequality (2.1) for p = q = 2, we obtain, after a moderate amount
of manipulation (or simply by directly integrating the expression (2.7)),∣∣∣∣∣

∫ b

a

g (t) dt− (b− a)
2

[
g (x) +

g (a) + g (b)
2

]
+

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣(2.12)

≤
‖g′′‖2

2

{
(b− a)

60

[
30x4 − 60x3 (a + b) + 45x2 (a + b)2

−15x (a + b)3 + 2a4 + 7a3b + 12a2b2 + 7ab3 + 2b4
]} 1

2
.

for x ∈ [a, b] .
Let x := τ + a+b

2 and A := a+b
2 so that

30x4 − 120x3A + 180x2A2 − 120xA3 = 30τ4 − 30A4

= 30
(

x− a + b

2

)4

− 15
8

(a + b)4 .

Now, from the inner bracket of (2.12) , we have

30x4 − 120x3A + 180x2A2 − 120xA3 + 2a4 + 7a3b + 12a2b2 + 7ab3 + 2b4

= 30
(

x− a + b

2

)4

+
1
8

(b− a)4 .

and the inequality (2.11) follows.

3. Applications For Some Special Means.

Let us recall the following means:
(a) The Arithmetic mean:

A = A (a, b) :=
a + b

2
, a, b ≥ 0.
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(b) The Geometric mean:

G = G (a, b) :=
√

ab, a, b ≥ 0.

(c) The Harmonic mean:

H = H (a, b) :=
2

1
a + 1

b

, a, b > 0.

(d) The Logarithmic mean:

L = L (a, b) :=


a if a = b

b−a
ln b−ln a if a 6= b

, a, b > 0.

(e) The Identric mean:

I = I (a, b) :=


a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b

, a, b > 0.

(f) The p−logarithmic mean:

Lp = Lp (a, b) :=


a if a = b

[
bp+1−ap+1

(p+1)(b−a)

] 1
p

if a 6= b

, a, b > 0

where p ∈ R\ {−1, 0} . The following is well known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also well known that Lp is monotonically increasing over p ∈ R (as-
suming that L0 := I and L−1 := L).

The inequality (2.8) may be rewritten as:∣∣∣∣∣g (x) +
g (a) + g (b)

2
− (x−A (a, b)) g′ (x)− 2

b− a

∫ b

a

g (t) dt

∣∣∣∣∣(3.1)

≤ 1
2

(
b− a

2

)1+ 1
q

‖g′′‖p

×



[B (q + 1, q + 1) + Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1)]
1
q

for x ∈
[
a, a+b

2

]
,

[B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)]
1
q

for x ∈
(

a+b
2 , b

]
.

We may now apply (3.1) to deduce some inequalities for special means given above,
by the use of some particular mappings as follows.
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(i). Consider g (x) = lnx, x ∈ [a, b] ⊂ (0,∞) . Then

1
b− a

∫ b

a

g (t) dt = ln I (a, b) ,

g (a) + g (b)
2

= lnG (a, b)

and

‖g′′‖p =

 b∫
a

|g′′ (t)|p dt


1
p

= (b− a)
1
p L−2

−2p (a, b) .

From (3.1) ,∣∣∣∣lnx + lnG (a, b)−
(

1− A (a, b)
x

)
− 2 ln I (a, b)

∣∣∣∣
≤ 2

1
p−1

(
b− a

2

)2

L−2
−2p (a, b)

×



[B (q + 1, q + 1) + Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1)]
1
q

for x ∈
[
a, a+b

2

]
,

[B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)]
1
q

for x ∈
(

a+b
2 , b

]
.

(ii). Consider g (x) = 1
x , x ∈ (a, b) ⊂ (0,∞)

1
b− a

∫ b

a

g (t) dt = L−1 (a, b) ,

g (a) + g (b)
2

=
A (a, b)
G2 (a, b)

and
‖g′′‖p = 2 (b− a)

1
p L−1

−3p (a, b) .

From (3.1)∣∣∣∣ 1x
(

2− A (a, b)
x

)
+

A (a, b)
G2 (a, b)

− 2L−1 (a, b)
∣∣∣∣

≤ 2
1
p

(
b− a

2

)2

L−1
−3p (a, b)

×



[B (q + 1, q + 1) + Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1)]
1
q

for x ∈
[
a, a+b

2

]
,

[B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)]
1
q

for x ∈
(

a+b
2 , b

]
.
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(iii). Consider g (x) = xr, g : (0,∞) → R where r ∈ R\ {−1, 0} . Then, for a < b

1
b− a

∫ b

a

g (t) dt = Lr
r (a, b, ) ,

g (a) + g (b)
2

= A (ar, br)

and

‖g′′‖p = |r (r − 1)| (b− a)
1
p Lr−2

p(r−2) (a, b) .

From (3.1) ,∣∣xr−1 {rA (a, b) + (1− r) x}+ A (ar, br)− 2Lr
r (a, b)

∣∣
≤ |r (r − 1)| 2

1
p−1

(
b− a

2

)2

Lr−2
p(r−2) (a, b)

×



[B (q + 1, q + 1) + Bx1 (q + 1, q + 1) + Ψx2 (q + 1, q + 1)]
1
q

for x ∈
[
a, a+b

2

]
,

[B (q + 1, q + 1) + Bx3 (q + 1, q + 1) + Bx4 (q + 1, q + 1)]
1
q

for x ∈
(

a+b
2 , b

]
.

4. Applications in Numerical Integration for the L2 (a, b) Norm

Let In : a = x0 < x1 < ... < xn−1 < xn = b be a subdivision of the interval
ξi ∈ [xi, xi+1] , i = 0, 1, ..., n− 1. We have the following quadrature formula.

Theorem 7. Let g : [a, b] → R be a mapping whose first derivative is absolutely
continuous on [a, b] and assume that the second derivative, g′′ ∈ L2 (a, b) . Then the
following perturbed Riemann type quadrature formula holds.

(4.1)
∫ b

a

g (x) dx = A (g, g′, ξ, In) + R (g, g′, ξ, In) ,

where A (g, g′, ξ, In) is given by

A (g, g′, ξ, In)

= −1
2

n−1∑
i=0

hi

(
ξi −

xi + xi+1

2

)
g′ (ξi) +

1
2

n−1∑
i=0

hi

[
g (ξi) +

g (xi) + g (xi+1)
2

]
and the remainder R (g, g′, ξ, In) satisfies the estimation

|R (g, g′, ξ, In)| ≤
‖g′′‖2

2

[
n−1∑
i=0

hi

2

(
ξi −

xi + xi+1

2

)4

+
n−1∑
i=0

h5
i

480

] 1
2

for all ξi ∈ [xi, xi+1] .
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Proof. Applying inequality (2.11) on the interval [xi, xi+1] , we obtain∣∣∣∣∫ xi+1

xi

g (t) dt− hi

2

[
g (ξi) +

g (xi) + g (xi+1)
2

]
+

hi

2

(
ξi −

xi + xi+1

2

)
g′ (ξi)

∣∣∣∣
≤

‖g′′‖2
2

{
hi

60

[
30
(

ξi −
xi + xi+1

2

)4

+
1
8
h4

i

]} 1
2

for all i = 0, 1, ..., n− 1.
Summing over i from 0 to n − 1, using the triangle inequality and Cauchy-

Schwartz’s discrete inequality, we obtain

|R (g, g′, ξ, In)|

≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

g (t) dt− hi

2

[
g (ξi) +

g (xi) + g (xi+1)
2

]
+

hi

2

(
ξi −

xi + xi+1

2

)
g′ (ξi)

∣∣∣∣
≤ 1

2

n−1∑
i=0

{
hi

60

[
30
(

ξi −
xi + xi+1

2

)4

+
h4

i

8

]} 1
2 (∫ xi+1

xi

|g′′ (t)|2 dt

) 1
2

≤ 1
2

n−1∑
i=0

{hi

60

[
30
(

ξi −
xi + xi+1

2

)4

+
h4

i

8

]} 1
2
2


1
2

×

n−1∑
i=0

((∫ xi+1

xi

|g′′ (t)|2 dt

) 1
2
)2
 1

2

=
‖g′′‖2

2

(
n−1∑
i=0

hi

2

(
ξi −

xi + xi+1

2

)4

+
n−1∑
i=0

h5
i

480

) 1
2

and the theorem is proved.
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