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INEQUALITIES OF HADAMARD’S TYPE FOR
LIPSCHITZIAN MAPPINGS AND THEIR APPLICATIONS

S. S. DRAGOMIR, Y. J. CHO AND S. S. KiMm

ABSTRACT. In this paper, we give some inequalities of Hadamard’s type for M-
Lipschitzian functions. Some applications which are connected with arithmetic
mean, geometric mean, harmonic mean, logarithmical mean, identric mean, etc.,
for two positive numbers are also given.

I. Introduction

The inequality

b
(1.1) f(a;b) < bia/ f(2)dx < M

where f : I C R — R is a convex function defined on the interval I of R, the set
of real numbers, and a,b € I with a < b, is well known as Hadamard’s inequality.
For some recent results which generalize, improve and extend this classic in-
equality, see the papers ([1]-[16]) where further references are given. Here we will
list only some results we need for our further considerations.
If f: I CR — Ris a function, then we can define

H[0,1] — R, H(t) = lea/ f(t:c+(1—t)aT+b)da:

and
1 b b
F:[0,1] >R, F(t):m/a / Ftz + (1 — t)y)dedy,
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respectively ([4], [5], [8])-
For these mappings and if f is convex on [a, b], then we have the following main
properties ([5], [8]):
(1) H and F are convex on [0, 1].
(2) H is monotonically nondecreasing on [0, 1] and F' is monotonically nonin-
creasing on [0, 3] and nondecreasing on [3, 1].
(3) We have the bounds:

and

sup F(t)=F(0)=F(1) = f(z)d.

t€[0,1] b—a /g
(4) We have the inequality
F(t) > max{H(t),H(1 —t)}

for all ¢ € [0, 1].

II. Hadamard’s Type Inequality

We will start with the following theorem containing two inequalities of Hada-
mard’s type.

Theorem 2.1. Let f: I C R — R be an M-Lipschitzian mapping on I and
a,be I with a <b. Then we have the inequalities:

(2.1 105D - 52 [ fwe] < Yoo
and

b
(2.2) ‘f(a);ﬂb) _ bia/ fl@)dz S%(b—a).
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Proof. Let t € [0,1]. Then we have, for all a,b € I

tf(a) + (1 —1¢)f(b) — f(ta+ (1—1t)b)|
= [t(f(a) = f(ta+ (1 = t)b) + (L = )(f(b) — f(ta+ (1 —t)b)|
(2.3) <t[f(a) = flta+ (1 =0)b)[+ (1 = 0)[f(b) = f(ta+ (1 —1)b)]
< tM|a— (ta+ (1 —t)b)| + (1 — O)M|b— (ta+ (1 — t)b)|
= 2t(1 — t)M|b — al.

If we choose t = %, we have also

M

(2.4) >' <Ml

'f(a) +/(0) f(a+b
2

If we put ta+ (1—1t)b instead of a and (1 —t)a+1tb instead of b in (2.4), respectively,
then we have

flta+(L—0)b) + f(L—Ba+th)  a+b

M2t —
2 i 2 )'S#

1
-

(2.5) ‘

for all t € [0,1]. If we integrate the inequality (2.5) on [0, 1], we have

a+b

‘% Uol Fta+ (1 — 8)b)dt + /01 F((1 = t)a+ tb)dt} K

M|b — !
SM/ 20 — 1]dt.
2 0

1
/f(ta+(1—t )dt = /f (1 —t)a+tb)dt
0

“ 5t [ s

1
/ 26— 1)dt = =
0
we obtain the inequality (2.1).
Note that, by the inequality (2.3), we have

tf(a) + (1 =) f(0) — f(ta+ (1 —£)b)| < 2¢(1 — )M (b — a)

>\

Thus, from

and
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for all t € [0,1] and a,b € I with a < b. Integrating on [0, 1], we have

‘f(a)/oltdtJrf(b) /01(1—t)dt—/olf(taJr(l—t)b)dt

< 2M(b—a) /1 K1 — t)dt.

1 1 1 1 1
/tdt:/(l—t)dt:—,/t(l—t)dt:—,
0 0 2 0 6

‘f(a);ﬂb) N bia/abf(x)dx

Hence, from

we have

M
< g(b—a)

and so we have the inequality (2.2). This completes the proof.

The following corollary is important in applications:

Corollary 2.2. Let f : I C R — R be a differentiable convexr mapping on I,
a,b € I with a < b and M := supyc(, 4 |f'(t)] < oo. Then we have the following
complements of Hadamard’s inequalities:

b a
26) o<t [ s@ar- s H < H oo
and
(27) o< IO L [ pyar < X o - a)

Proof. 'The proof is obvious by Lagrange’s theorem, i.e., we recall that for any
x,y € (a,b) there exists a ¢ between them so that

1f (@)= fWl=lz—yllf ()] <Mz —yl,
and Theorem 2.1. We shall omit the details.

The following corollaries for elementary inequalities holds:
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Corollary 2.3. (1) Letp > 1 and a,b € R with 0 < a < b. Then we have the
mequalities:

+1 _ ,p+1 -1
0< bP a _ a+b)p§pb” (b a)
(p+1)(b—a) 2 4
and Py pp pp+1 p+1 pp—1
0< Tt < (b-a)
2 (p+1)(b—a) 3
(2) Let a,b € R with 0 < a < b. Then we have the inequalities:
Inb—Ina 2 1
< _ <~ (b—
0= b—a a+b_4a2( @)
and +b Inb-1 1
a nb—Ina
0< — < —(b—a).
~ 2ab b—a 3a2( 2

(3) Let a,b € R with a <b. Then we have the inequalities

0< eXp(b) — eXp(a) . exp(a + b) < GXp(b) (b . CL)

b—a 2 4
and
0< exp(a) + exp(b) B exp(b) — exp(a) < exp(b) (b—a).
2 b—a 3
(4) Let a,b € R with 0 < a < b. Then we have the inequalities
a 1
1< e(Z—b)m a _2|_ b < exp(4—1a(b —a))
and

Proof. (1) The proof follows by Corollary 2.2 applied for the convex mapping
f(x) = 2P on [a, b].

(2) The proof follows by Corollary 2.2 applied for the convex mapping f(z) = %
on [a,b].

(3) The proof is obvious by Corollary 2.2 applied for the convex mapping f(z) =
exp(z) on R.

(4) The proof follows by Corollary 2.2 applied for the convex mapping f(z) =
—Inz on [a,b]. This completes the proof.

Now, we shall point out some other inequalities of the types in Corollary 2.3,
but these hold for the mappings which are not convex on [a, b].
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Corollary 2.4. (1) Let a,b € R with a < b and k € N. Then we have the
mequalities:

p2h+2 _ o 2k+2

(2k +2)(b — a)

(2k +1) mzx{a%, b2F} (b—a)

a4+ by 2k+1
(“1h

and

a2k+1 + b2k+1 b2k+2 _ a2k+2 (2]6 + 1) max{agk, b?k}

3

2 2k + 2)(b — a) (b—a)

(2) Let a,b € R with a < b. Then we have the inequalities:

a+b sinb — sina b—a
— <
cos(—5) b—a | = 4
and
cosa+cosb_sinb—sina <b—a
2 b—a - 3

Proof. (1) The proof follows by Theorem 2.1 applied for the mapping f(z) = 22+ +!
on [a,b].

(2) The proof is obvious by Theorem 2.1 applied for the mapping f(z) = cosz
on [a,b]. This completes the proof.

III. The Mapping H

For an M-Lipschitzian function f : I C R — R, we can define a mapping
H :[0,1] — R by

b
— —bia ) f(tx+(1—t)—a+b)dx

{0 ;

for all ¢ € [0,1] and we shall give some properties of the mapping H:
Theorem 3.1. Let a mapping f : I C R — R be M-Lipschitzian on I and
a,be I with a <b. Then

(1) The mapping H is 2L (b — a)-Lipschitzian on [0,1].

(2) We have the inequalities:
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b —
(3.1) 'H(t) _ bia/ F2)dz| < w(b_a),
(32) 15 - | < 20 o)

b
(3.3) ‘H(t)—tbia/f(a;)d:z:—(l—t)f( ! )'gt - a)
for allt € [0,1].

Proof. (1) Let t1,ts € [0,1]. Then we have

1 b a+b
Hit) - Ht)| = = | [ Fltat (1= 1))
b—all, 2
b
+b
1 b
< (tga:+(1—t2)a+b)—f(tlcc—l—(l—tla+b )| do
b—a 2
Mo
~ (1—t2)a+b—t1$—(1—t1 a+b‘d$
b—a
B Mytg—tl a+b
 b—a
M(b—a)
= T\tz—tl\,
i.e., for all ty,ts € [0, 1],
M(b—a
(3.4 1)~ H() < 0Dy, )
which yields that the mapping H is W—Lipschitzian on [0,1].

(2) The inequalities (3.1) and (3.2) follow from (3.4) by choosing t; =0, to =t
and t; = 1, t5 = t, respectively.

Inequality (3.3) follows by adding ¢ times (3.1) and (1 — ¢) times (3.2). This
completes the proof.

Another result which is connected in a sense with the inequality (2.2) is also
given in the following:
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Theorem 3.2. With the above assumptions, we have the inequality:

Ftb+ (1 -t)4) + f(ta+ (1 —1)*F*)

(3.5) .

Mt
- 1| < F -0
for allt € [0,1].
Proof. If we denote u = tb+ (1 — )%t and v = ta + (1 — t)“E2, then we have

:u—v/ /(z

Now, using the inequality (2.2) applied for u and v, we have

fw) + f(v)
2 u—v/ f(z)d=

M
< ?(u—v)

from which we have the inequality (3.5). This completes the proof.
Theorems 3.1 and 3.2 imply the following theorem which is important in appli-
cations for convex functions:

Theorem 3.3. Let f: I C R — R be a differentiable convex mapping on I,
a,b € I witha <b and M = sup,¢, 4 |f'(x)] < 0o. Then we have the inequalities:

(3,6) 0< o [ e - a0 < U0 a)
(3.7) 0< 1)~ f(U50) < B )
_ a _ pyatb
", 0§f(tb+(1 £y et );f(t +(1—t)% )_H(t)g%(b_a)

for allt € [0,1].
IV. The Mapping F

For an M-Lipschitzian function f : I € R — R we can define a mapping
F:]0,1] = R by

1 b b
F) = = / / Ftz + (1 — t)y)dedy

and give some properties of the mapping F' as follows:
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Theorem 4.1. Let a mapping f : I C R — R be M-Lipschitzian on I and
a,be I witha <b. Then

(1) The mapping F is symmetrical, i.e., F(t) = F(1 —t) for all t € [0, 1].
(2) The mapping F is (
(3) We have the znequalztzes

o [

) _Lipschitzian on [0, 1].

M2t -1
o) < o -a),

b
(4.2) ‘F(t) - ﬁ/ F)dz| < %(b—a)
and
(1.3 ) - a1 < L0060

for allt € [0,1].

Proof. (1) It is obvious by the definition of the mapping F.
(2) Let t1,t5 € [0,1]. Then we have

’17(t2)

(b—a)? ftox + (1= t2)y) — f(taz + (1 — t1)y)]dedy
4.4
. < (5—2/ / |f(tox + (1 —t2)y) — f(tiz + (1 — t1)y|dzdy

Mt t
< 2 1|//|w— |dzdy.
(b—a)?

Now, note that

(4.5) /ab/ab|a:—y|d:cdy: (b_Sa)g.

Therefore, from (4.4) and (4.5), it follows that

M|ty — tq]

(4.6) [F(t2) = F(ta)l < ——5

(b—a)
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for all t1,t2 € [0,1] and so the mapping F' is ( %)_Lipschitzian on [0, 1].

(3) The inequalities (4.1) and (4.2) follow from (4.6) if we choose t1 = 3, to =t
and t; = 0, t5 = t, respectively.

Now, we prove the inequality (4.3). Since f is M-Lipschitzian, we can write

’f(tx+(1—t)y)—f(tx+(1—t)a;b)‘

a+b}
2

(4.7) <Mtz + (1—t)y —te— (1—1t)

b
=(1-1) M‘y—a+ )

for all ¢t € [0,1] and x,y € [a,b]. Integrating the inequality (4.7) on [a,b] X [a, D],
we have

'ﬁ/ab/abf(tx+(l—t)y)dxdy—ﬁ/abf(m+(1_t)a;—b)dx

1 b a+b
S(]_—t)Mm/Q‘y— 5 }dy

M(1—t)(b—a)
4

for all ¢ € [0, 1] and so the inequality (4.3) is proved. This completes the proof.
Theorem 4.1 implies the following converses of the known results holding for
convex functions (see the results listed in section I).

Corollary 4.2. Let f : I C R — R be a differentiable convexr mapping and
M = sup,eiq ) |f'(@)] for a,b € I with a <b. Then we have the inequalities:

0< Ft // y< M2 =1,
o< | f<x>dx—F<t>s%<b—a>,
and
0< F(t)— H(t) < M(14_ D a)

for allt € [0,1].
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