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CHARACTERIZATION OF BEST APPROXIMANTS FROM
CONVEX SUBSETS AND LEVEL SETS IN NORMED LINEAR

SPACES

S. S. DRAGOMIR

Abstract. Some new characterization of best approximants from convex sub-
sets and level sets of convex mappings in normed linear spaces in terms of norm
derivatives and sub-orthogonality in Birkhoff’s sense are given.

1. Introduction.

Let (X, ‖ · ‖) be a real normed space and consider the norm derivatives

(x, y)i(s) = lim
t→−(+)0

(
‖y + tx‖2 − ‖y‖2)

2t
.

Note that these mappings are well defined on X×X and the following properties
are valid (see also [1], [3]):

(i) (x, y)i = −(−x, y)s if x, y are in X;
(ii) (x, x)p = ‖x‖2 for all x in X;
(iii) (αx, βy)p = αβ (x, y)p for all x, y in X and αβ ≥ 0;
(iv) (αx+ y, x)p = α ‖x‖2 + (y, x)p for all x, y in X and α a real number;
(v) (x+ y, z)p ≤ ‖x‖ · ‖z‖+ (y, z)p for all x, y, z in X;

(vi) The element x inX is Birkhoff orthogonal over y inX (we denote x⊥y(B)),i.e.,
‖x+ ty‖ ≥ ‖x‖ for all t a real number iff (y, x)i ≤ 0 ≤ (y, x)s;

(vii) The space X is smooth iff (y, x)i = (y, x)s for all x, y in X iff (·, ·)p is linear
in the first variable;

(viii) We have the representation:

(y, x)i = inf{f (y) : f ∈ J (x)} and (y, x)s = sup{f (y) : f ∈ J (x)}
where J is the normalized duality mapping, i.e.,

J (x) = {f ∈ X∗ : f (x) = ‖f‖ · ‖x‖ , ‖f‖ = ‖x‖},
where p = s or p = i.

Now, let (X, ‖·‖) be a normed linear space and G a nondense subset in X.
Suppose x0 ∈ X \ Cl(G) and g0 ∈ G.

Definition 1. The element g0 will be called the best approximation element of x0
in G if

‖x0 − g0‖ = inf
g∈G
‖x0 − g‖(1.1)
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and we shall denote by PG (x0) the set of all elements which satisfy (1.1).

The main aim of this paper is to prove some characterization of best approxi-
mants from convex subsets in normed linear spaces.

For the classical results in domain, see the monograph [4] due to Ivan Singer.

2. The Results

We shall consider the concept of sub-orthogonality in the sense of Birkhoff in-
troduced by the author in the paper [2]:

Definition 2. Let (X, ‖·‖) be a normed linear space and x, y ∈ X. The element x
will be called sub-orthogonal in the sense of Birkhoff over y if (y, x)i ≤ 0. We shall
denote this by x⊥Sy(B).

The following elementary properties of sub-orthogonality hold:
(i) 0⊥Sy(B) and x⊥S0(B) for all x, y ∈ X,

(ii) x⊥Sy(B) implies (αx)⊥S(βy)(B) for αβ ≥ 0,
(iii) x⊥Sx(B) implies x = 0.

The following characterization of best approximants from convex sets in normed
linear spaces which completes the classical results from the book [4] holds.

Theorem 1. Let C be a nondense convex set in the normed linear spaces X. If
x0 ∈ X\Cl(C) and g0 ∈ C, then the following statements are equivalent:

(i) g0 ∈ PG (x0);
(ii) We have the relation:

x0 − g0⊥S(C − g0)(B);(2.1)

(iii) The following inclusion holds

C − g0 ⊂ ∪f∈J(x0−g0)K−(f);(2.2)

where J is the normalized duality mapping and K−(f) is the half space {x ∈
X : f (x) ≤ 0};

(vi) We have the bound

inf
g∈C

(g − x0, g0 − x0)s = ‖g0 − x0‖2.(2.3)

Proof. “(i) ⇒ (ii)”. If g0 ∈ PG (x0) , then ‖x0 − g0‖ = infg∈G ‖x0 − g‖ ,which
implies that

‖x0 − g0‖2 ≤ ‖x0 − ((1− t)g0 + tg)‖2

for each g ∈ C and t ∈ [0, 1].
Denoting w0 := x0 − g0 and u0 := g0 − g we get ‖w0‖2 ≤ ‖w0 + tu0‖2 for all
t ∈ [0, 1] , which implies(

‖w0 + tu0‖2 − ‖w0‖2
)

2t
≥ 0 for all t ∈ (0, 1] .

Letting t→ 0+ we deduce (u0, w0)s ≥ 0 which is equivalent to (g − g0, x0 − x0)i ≤ 0
for all g ∈ C and then the relation (2.1) holds.
“(ii)⇔ (iii)”. If w0⊥S(C − g0), then (g− g0, w0)i ≤ 0 for all g ∈ C and then there
exists (see the property (viii) from introduction) a continuous linear functional
f so that f ∈ J(w0) and f(g − g0) = (g − g0, w0)i and then f(g − g0) ≤ 0,
i.e., g − g0 ∈ K (f) . Consequently the inclusion (2.2) holds.
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Conversely, if the inclusion (2.2) holds, then for each g ∈ C there exists a functional
f0 ∈ J(x0 − g0) so that g − g0 ∈ K (f0) . But by property (viii) stated above, we
have

(g − g0, x0 − g0)i = inf{f0(g − g0) : f ∈ J(x0 − g0)}

and as f0 ∈ J(x0 − g0) and f0(g − g0) ≤ 0 it follows that (g − g0, x0 − g0)i ≤ 0.
Consequently the relation (2.1) holds and the implication is proved.
“(ii)⇒ (iv)”. Relation (2.1) is equivalent to

(g0 − g, x0 − g0)s ≥ 0 for all g ∈ C.

A simple calculation shows that

(g0 − g, x0 − g0)s = (x0 − g − (x0 − g0), x0 − g0)s
= (x0 − g, x0 − g0)s − ‖x0 − g0‖2

= (g − x0, g0 − x0)s − ‖x0 − g0‖2

and then by the above inequality we deduce

(g − x0, g0 − x0)s ≥ ‖g0 − x0‖2 for all g ∈ C

which is equivalent to (2.3).
“(iv)⇒ (i)”. Using the properties of semi-inner product (·, ·)s we have

(g − x0, g0 − x0)s ≤ ‖g − x0‖ · ‖g0 − x0‖ for each g ∈ C.

From (2.3) we get

‖g0 − x0‖2 ≤ (g − x0, g0 − x0)s for each g ∈ C,

consequently, by the previous two inequalities we deduce that ‖g0−x0‖ ≤ ‖g−x0‖
for all g ∈ C, i.e., g0 ∈ PG (x0) .

Remark 1. The relation (2.3) is equivalent to the fact that the element g0 ∈ C
minimizes the (nonlinear) functional Fx0,g0 : C → R, Fx0,g0(u) := (u−x0, g0−x0)s.

The following corollary holds.

Corollary 1. Let G be a nondense linear subspace in X. If x0 ∈ X\Cl(G) and
g0 ∈ G, then the following statement are equivalent:

(i) g0 ∈ PG (x0) ,
(ii) x0 − g0⊥G(B),
(iii) G ⊂ ∪f∈J(x0−g0)K−(f).

The equivalence “(i) ⇔ (ii)” is a well known result due to Singer and follows
from the fact that a vector is sub-orthogonal on a linear subspace iff it is orthogonal
on that subspace.

Now, let us denote by

F≤(r) := {x ∈ X : F (x) ≤ r}, r ∈ R

the r − level set of F and assume that r is so that F≤(r) is nonempty.
The following theorem characterizes best approximants by elements of the level

set F≤(r). This result can also be viewed as an estimation theorem for the contin-
uous convex mappings defined on a normed space in terms of semi-inner product
(·, ·)i.
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Theorem 2. Let (X, ‖·‖) be a normed linear space, F : X → R a continuous
convex mapping on X, r ∈ R such that F≤(r) 6= ∅, x0 ∈ X\F≤(r) and g0 ∈ F≤(r).
The following statements are equivalent:

(i) g0 ∈ PF≤(r) (x0) ,
(ii) We have the estimation:

F (x) ≥ r +
F (x0) − r

‖x0 − g0‖2
(x− g0, x0 − g0)i for all x ∈ F≤(r),(2.4)

or, equivalently, the estimation

F (x) ≥ F (x0) +
F (x0) − r

‖x0 − g0‖2
(x− x0, x0 − g0)i for all x ∈ F≤(r).(2.5)

Proof. “(i)⇒ (ii)”. Let us observe first as x0 ∈ X\F≤(r) we have that F (x0) > r.
Now, let x ∈ F≤(r). Then F (x) ≤ r and if we choose α := F (x0)−r, β := r−F (x) ,
then, obviously, α > 0, β ≥ 0 and 0 < α+ β = F (x0)− F (x) .
Let us consider the element

u :=
αx+ βx0

α+ β
.

Then, by the convexity of F we have:

F (u) ≤ αF (x) + βF (x0)
α+ β

=
(F (x0)− r)F (x) + (r − F (x))F (x0)

F (x0)− F (x)

which shows that u ∈ F≤(r).
As g0 ∈ PF≤(r) (x0) and as F≤(r) is a convex set, we get that (see Theorem 1,
“(i)⇒ (ii)”)

(g − g0, x0 − x0)i ≤ 0 for all g ∈ F≤(r).

Choose g = u, where u is defined as above. Then(
(F (x0)− r)x+ (r − F (x))x0

F (x0)− F (x)
− g0, x0 − g0

)
i

≤ 0(2.6)

for all x ∈ F≤(r). However,(
(F (x0)− r)x+ (r − F (x))x0

F (x0)− F (x)
− g0, x0 − g0

)
i

=
1

F (x0)− F (x)
((r − F (x))(x0 − g0) + (F (x0)− r)(x− g0), x0 − g0)i

=
1

F (x0)− F (x)
((r − F (x))‖x0 − g0‖2 + (F (x0)− r)(x− g0, x0 − g0)i)

and then by (2.6) we get

(r − F (x))‖x0 − g0‖2 + (F (x0)− r)(x− g0, x0 − g0)i ≥ 0
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which is equivalent with the desired estimation (2.4).
Now, let us observe that

r +
F (x0) − r

‖x0 − g0‖2
(x− g0, x0 − g0)i

= r +
F (x0) − r

‖x0 − g0‖2
(x− x0 + x0 − g0, x0 − g0)i

= r +
F (x0) − r

‖x0 − g0‖2
[(x− x0, x0 − g0)i + ‖x0 − g0‖2]

= r + F (x0)− r +
F (x0) − r

‖x0 − g0‖2
(x− x0, x0 − g0)i

= F (x0) +
F (x0) − r

‖x0 − g0‖2
(x− x0, x0 − g0)i

which shows that (2.4) and (2.5) are equivalent.
“(ii)⇒ (i)”. As x ∈ F≤(r), then 0 ≥ F (x)− r.
On the other hand, by (2.4) we have

F (x)− r ≥ +
F (x0)− r
‖x0 − g0‖2

(x− g0, x0 − g0)i

for all x ∈ F≤(r). Consequently,

0 ≥ F (x0)− r
‖x0 − g0‖2

(x− g0, x0 − g0)i for all x ∈ F≤(r).

As F (x0)− r > 0, we get

0 ≥ (x− g0, x0 − g0)i for all x ∈ F≤(r).

Now, using the implication “(ii) ⇒ (i)” of Theorem 1, we deduce that g0 ∈
PF≤(r) (x0) , and the theorem is proved.

Remark 2. If g0 ∈ PF≤(r) (x0) , then F (g0) = r. Indeed, as g0 ∈ F≤(r), then
F (g0) ≤ r. On the other hand, choosing x = g0 in (2.4) we get F (g0) ≥ r, and then
the required equality holds.
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