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A VARIATIONAL CHARACTERIZATION OF REFLEXIVITY
AND STRICT CONVEXITY

S. S. DRAGOMIR

Abstract. In this paper we give a variational characterization of reflexivity
and strict convexity which is related to James and Krein theorems in Geometry
of Banach spaces.

1. Introduction

Let (X, ‖ · ‖) be a real normed space and consider the norm derivatives

(x, y)i(s) = lim
t→−(+)0

(‖y + tx‖2 − ‖y‖2)
2t

.

Note that these mappings are well defined on X×X and the following properties
are valid (see also [1]-[5]):

(i) (x, y)i = −(−x, y)s if x, y are in X;
(ii) (x, x)p = ‖x‖2 for all x in X;
(iii) (αx, βy)p = αβ (x, y)p for all x, y in X and αβ ≥ 0;
(iv) (αx+ y, x)p = α‖x‖2 + (y, x)p for all x, y in X and α a real number;
(v) (x+ y, z)p ≤ ‖x‖ · ‖z‖+ (y, z)p for all x, y, z in X;

(vi) The element x in X is Birkhoff orthogonal over y in X (we denote this by
x⊥y), i.e., ‖x+ ty‖ ≥ ‖x‖ for all t a real number iff (y, x)i ≤ 0 ≤ (y, x)s;

(vii) The space X is smooth iff (y, x)i = (y, x)s for all x, y in X iff (·, ·)p is linear
in the first variable;

where p = s or p = i.
The following characterization of reflexivity is well known (see [6]):

Theorem 1. (James). The Banach space X is reflexive iff for any continuous
linear functional f : X → R there exists an element uf in X such that f (uf ) =
‖f‖ · ‖uf‖, i.e., uf is a maximal element for f .

The following characterization of strict convexity in terms of maximal elements
is well known and is due to M. G. Krein ([7, p. 27]):

Theorem 2. (Krein). The real Banach space X is strictly convex iff any nonzero
continuous linear functional defined on it has at most one maximal element having
a norm equal to one.
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2. The Results

We give here a variational characterization of reflexivity and strict convexity as
follows.

Theorem 3. Let (X, ‖ · ‖) be a real Banach space. The following statements are
equivalent:

(i) X is reflexive [strictly convex (reflexive and strictly convex)];
(ii) For any nonzero continuous linear functional f : X → R there exists at least

one [at most one (a unique)] vector uf ∈ X, ‖uf‖ = 1 which minimizes the
quadratic functional Ff : X → R, Ff (x) = ‖x‖2 − 2f(x)

‖f‖ .

Proof. “(i) ⇒ (ii)” a). Assume that X is reflexive and let f ∈ X∗\{0}. Then by
James’ theorem there exists a vector uf ∈ X, ‖uf‖ = 1 such that f (uf ) = ‖f‖ .
However,

‖uf‖ = 1 =
f (uf )
‖f‖

=
f (uf + λu)
‖f‖

≤ ‖uf + λu‖

for all λ ∈ R and u ∈ Ker(f), which gives us that uf⊥Ker(f).
Let x ∈ X be arbitrary but fixed and define y := f (x)uf − f (uf )x. As f(y) = 0,
we get that y ∈ Ker(f) and then uf⊥y in Birkhoff’s sense. By the property (vi)
we get that

(y, x)i ≤ 0 ≤ (y, x)s(2.1)

which is equivalent with

(f (x)uf − f (uf )x, uf )i ≤ 0 ≤ (f (x)uf − f (uf )x, uf )s for all x ∈ X.
Using the properties of semi-inner products we get

(f (x)uf − f (uf )x, uf )i = f (x)− ‖f‖ (x, uf )s
and

(f (x)uf − f (uf )x, uf )s = f (x)− ‖f‖ (x, uf )i

for all x ∈ X, and then by (2.1) we get that

‖f‖ (x, uf )i ≤ f (x) ≤ ‖f‖ (x, uf )s for all x ∈ X.(2.2)

We shall prove now that uf minimizes the quadratic functional Ff .
Let u ∈ X. Then, as f (uf ) = ‖f‖ and ‖uf‖ = 1, we get that

Ff (u)− Ff (uf ) = ‖u‖2 − 2f (u)
‖f‖

− ‖uf‖2 +
2f (uf )
‖f‖

= ‖u‖2 − 2
f (u)
‖f‖

+ ‖uf‖2 .

By (2.2) we have that

−2f (u)
‖f‖

≥ −2(x, uf )s

and then

Ff (u)− Ff (uf ) ≥ ‖u‖2 − 2(x, uf )s + ‖uf‖2

≥ ‖u‖2 − 2 ‖u‖ · ‖uf‖+ ‖uf‖2

= (‖u‖ − ‖uf‖)2 ≥ 0
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which shows that uf minimizes Ff .
“(ii)⇒ (i)” a). Let f ∈ X∗\{0} and uf be an element minimizing Ff . Then, for all
λ ∈ R and u ∈ X, we have:

Ff (u+ λuf ) ≥ Ff (uf ) .(2.3)

However,

Ff (u+ λuf )− Ff (uf ) = ‖u+ λuf‖2 −
2f(u+ λuf )
‖f‖

− ‖uf‖2 +
2f (uf )
‖f‖

= ‖u+ λuf‖2 − ‖uf‖2 −
2λf (u)
‖f‖

and then (2.3) is equivalent to

2λf (u)
‖f‖

≤ ‖u+ λuf‖2 − ‖uf‖2 for all λ ∈ R and u ∈ X.

Assume that λ > 0. Then

f (u) ≤

[
(‖u+ λuf‖2 − ‖uf‖2)

2λ

]
· ‖f‖ .

Letting λ→ 0+, we get

f (u) ≤ ‖f‖ (u, uf )s

for all u ∈ X. Now, changing u with (−u), we get from the previous inequality that

f (u) ≥ −‖f‖ (−u, uf )s = ‖f‖ (u, uf )i

and then we get the estimation

‖f‖ (u, uf )i ≤ f (u) ≤ ‖f‖ (u, uf )s for all u ∈ X.

Choosing u = uf we get f (uf ) = ‖f‖ and by James’ theorem it follows that (X, ‖·‖)
is reflexive.
“(i)⇒(ii)” b). Assume that there exists a nonzero functional f0 ∈ X∗ for which we
can find at least two distinct vectors

uif0
(i = 1, 2), ‖uif0

‖ = 1

which minimize Ff0 . As above (see “(ii)⇒(i)” a).), we get that f0( uif0
) = ‖f0‖,

which, by Krein’s theorem contradicts the strict convexity of X.
“(ii)⇒(i)” b). Assume that X is not reflexive. Thus, by Krein’s theorem, there
exists a continuous linear functional f0 6= 0 and at least two distinct elements

uifo(i = 1, 2), ‖uifo‖ = 1

such that f0( uifo) = ‖f0‖. Now, by a similar argument as in “(i)⇒ (ii)” a)., we
deduce that uifo (i = 1, 2) will minimize the quadratic functional Ff0 , which is a
contradiction.
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