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SOME INEQUALITIES FOR RANDOM VARIABLES WHOSE
PROBABILITY DENSITY FUNCTIONS ARE BOUNDED USING
A PRE-GRUSS INEQUALITY

N. S. BARNETT AND S. S. DRAGOMIR

ABSTRACT. Using the pre-Griiss inequality considered by Matié-Pecarié¢-Ujevié
in a recent paper [1] and some related results, we point out some inequalities for
random variables whose p.d.f.’s are bounded above and below by the assumed
known constants v and ¢.

1. INTRODUCTION

In a recent paper [1], Matié, Pecari¢ and Ujevié¢ proved the following inequality,
which has been called, in [2], the pre-Griiss inequality

b_a/ f(t t)dt-bia/abg(t)dt

, X 27 2
< ;wwljalg%wajaLgamQ ,

provided that v < f (¢) < ¢ a.e. on [a,b] and the integrals exist and are finite.

In [1], the authors used (1.1) to obtain some bounds for the remainder in certain
Taylor like formulae whilst in [2], the authors applied (1.1) to estimation of the
remainder in three point quadrature formulae.

Basically, (1.1) is a pre-Griiss inequality since, if we assume that « < g (t) < 8
a.e. in [a,b], then, by the well known fact that (see for example [8])

b b 2
(1.2) . fmﬁ—ﬁja/gwﬁ>si<—m%

and, by (1.1) and (1.2), we can deduce the original Griss inequality:

T Sy o

< 10-NE-a).

(1.1)

(1.3)
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In [1], Matié, Pecari¢ and Ujevié¢ observed that if a factor is known, for example
g(t), t € [a,b], then instead of using (1.3) in estimating the difference

_m/f tﬁ———i/f (tydr - / g () dt,

it is better to use (1.1), as they have shown in their paper that it improves some
recent results by the second author [4].

In this paper, by using the same approach, we obtain some inequalities for the
expectation F (X) and cumulative distribution function F' (-) of a random variable
having the probability distribution function f : [a,b] — R. It is assumed that we
know the lower and the upper bound for f, i.e., the real numbers ~y, ¢ such that
0<y<f(t)<¢<1ae. ton [a,b]. Some related results are also established.

2. SOME INEQUALITIES FOR EXPECTATION AND DISPERSION
We start with the following result for expectation.

Theorem 1. Let X be a random variable having the probability density function
f :la,b] — R. Assume that there exists the constants 7, ¢ such that 0 < v < f (t) <
¢ <1 ae tonlab]. Then we have the inequality

a+b ]. 2
s -0,

where E (X) is the expectation of the random variable X .

(2.1) ‘E (X) -

Proof. If we put g (t) =t in (1.1), we obtain

1 b 1 b 1 b
213
1 1 b 1 b
< (- = 2dt — | ——
< 50-7) b_a/atdt (b_a/ltdt>
and as
b
[wa = B,
b 1 b a+b
= 1 =
[roa =1 [
and

b b 2 N2
L /thtf 1 /tdt _(—a) ,
b—a/, b—aJ, 12

then by (2.2) we deduce (2.1). I

To point out a result for the p—moments of the random variable X, p €
R\ {—1,0}, we need the following p— Logarithmic mean

1
pptl _ gptl } P
9

%@”:b+mw@

where 0 < a < b.
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Theorem 2. Let X and f be as in Theorem 1 and E, (X) be the p-moment of X,
i.e.,

B, (X) = /btpf (t)dt

which is assumed to be finite.
Then we have the inequality

Nl=

(23) |By(X) ~ M2 (a,0)] < 3 (6~ ) [ME (a.b) ~ M2 (a,D)

The proof is obvious by the inequality (1.1) in which we choose g (t) = t*, p €
R\ {—1,0} and use the definition of p—logarithmic means.
If we consider the Logarithmic mean

bf
M_1 (a,b) := L (a,b) = Mia O<a<b

and define the (—1) —moment of the random variable X by

a0
= [ R

then we can also state the following theorem.

Theorem 3. Let X and f be as in Theorem 1. Then we have the inequality:

1 1
(2.4) |E_1 (X) = MZ{ (a,b)| < 5 (@=7) [MZ3 (a,b) = MZ{ (a,0)] %,
provided the (—1) —moment of X is finite.

The proof is obvious by the inequality (1.1) and we omit the details.
The following theorem also holds.

Theorem 4. Let X and f be as above. If

b :
U#(X) = [/ (t_ﬂ)2f(t)dt1 ,,uG[(Lb},

then we have the inequality

(2.5)

1

<

3
E =N 0—a)".

Proof. If we put ¢ (t) = (t — p)* in (1.1) we get

b_a/f dt——/f t—/t— 2 at

2 5

b b
< %(aﬁ—v) la—lcz/(l(t_“)4dt_<z)_1¢l/(l(t_“)2dt> ,

(2.6)
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and as
b
[ rwa = 1
1 2, (b=p’+(u—a)’
b—a/a(t_m dt = 3(b—a)
_ - —(—p)(p—a)+ (n—a)’
3
a+b\> (b—a)’
- (’“‘_ 2 ) T

bia/b(t_“yldt_ (bia/b(t_”fdo

_ w—uf+w—af_lw—uf+w—afr

5(b—a) 3(b—a)
_ - - p—a)+ 00— ) (p—a)’ = (b= p) (n—a)’ + (p —a)*
5
_[@—m2—®—uﬂu—®+%u—@12
3

= % {g(biuf*(b*ll)g(ufa)+(b7u)2(u—a)2

- (p—a)’+(p—a)=50b—p" -50b-w?(n-a)’
~5(n—0a)* +10(b— )’ (p—a) + 10 (b— p) (up — @)’ = 10 (b — p)* (1 — a)”
1

= E [ @)t 8- (a0 20— ) (0 @)

+(p=a) =) [0 =+ (n—a)]]

gp[w—m2—m—aﬂ2

= A
However,
b—p)’—(n-a)® = (b—a)(b+a—2u)=2(b-a) (b;“_u)
p-ml-a) = 00 (k-"5")

Il
| =
—
o>
\
S
S~—
(V)
+
[N}
N
=
\
S
+
o>
N———
[\v]

(b—1)* + (n— a)®



Denote § :==b—a and x = p — “T'H’. Then we get

2
45A = 4(20x)° +2 (iéQ — xz) + (3152 - xz) (;5 + 2x2>

= 168%2% + <i52 — x2) [2 <i52 — x2) + %52 + 23:2]

= §2 (15x2 + i52> .

—a2 a 2
A = (b45) [15@—?) +i(b—a)2]

- (ba)Ql;<Ma;rb>2+1éO(ba)2].

Using the inequality (2.6), we deduce the desired inequality (2.5). B

Then

The best inequality we can obtain from (2.5) is that one for which u = “T“'b and
therefore, we can state the following corollary.

Corollary 1. With the above assumptions and denoting oo (X) 1= 0ats (X), we

have the inequality: ’

(b - a)®

2.7) =

o (X) = (=7 (b—a)’.

1
<
~12v5

The following theorem also holds.

Theorem 5. Let X and f be as above. If

b
A )= [l f Ot e o),

then we have the inequality

A“(X)_bia [(b;a)2+<ﬂ_a;b>2

—a)? _atb\? a 2
6= -o LY +< b_;) l;(b—a)er(u— =)

for all p € [a,b].

(2.8)

=

<

N =

Proof. If we put g (t) = |t — p] in (1.1), we have

1 b 1 b 1 b
7 [l f@a - [ @ [l

27 2
1 1 b 5 1 b
< = — - — - — —
< 5(0-9) b_a/a |t — p|”dt (b_a/a |t uldt>

(2.9)
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/abf(t)dt=1,

1 b 1 # b
e t— dt —t)dt t— dt
b_a/a\ y b_a/am >+/M< )

and as

b—a | .

= _( p )2+<u—a;b>2 :
b—a/ab(tﬂ)2dt — (b_l;)ibt((/j)—a)s

- Sl

1 b , 1 b 2
—b_a/\t—,u| dt — —b_a/\t—Mdt
2
_ (b—a)2+ _a+b 2_ (b—a)+ 1 _a+b 2
- 12 = 4 b—a\!'T 2
B (bfa)2+1 _a+b 27 1 _a+b
T 2 \M7 b—a? \'" 2

_ (b—a)’ p— gt i 2
T +< b—;> lz(b_“) _(“_ 2

Finally, using (2.9) we deduce the desired inequality. §

IS
+
o>
N—
[\v)

The best inequality we can get from (2.8) is embodied in the following corollary.

Corollary 2. The best inequality we can get from (2.8) is for u = p, = %,

obtaining

b—a 1 2
2.1 A, (X)—— | < — (¢ — — .
(2.10) 4,30 -2 < Lw-m-a
Proof. Consider the mapping g (u) := (bzg)g + % (u - GTH’)2 - ﬁ (,u — ‘%H’)LL.
We have
dg (1) ( a+b) 4 < +b)3
- = B 7 | M
B ( _a+b) R ( _a+b)2
. 2 (b—a)? K 2




We observe that dfi(lﬁ‘):Oifu:aoru:%rboru:bandas

d b d b
7g(u)<0foru€ a,a+ andig(u)>0f0r,u€ ato TN
dp 2 du 2

we deduce that p = “T'H’ is the point realizing the global minimum on (a,b) and as

g (o) = (b2§)2, the inequality (2.10) is indeed the best inequality we can get from

(2.8). 1

Another inequality which can be useful for obtaining different inequalities for
dispersion is the following weighted Griiss type result (see for example [8] or [6]).

Lemma 1. Let g,p : [a,b] — R be measurable functions and such that « < g < f3

a.e., p>0 a.e. onla,b] and fabp(x) dx > 0.
Then

b 2 b 2
(2.11) 0< s pgx)g (w)dw _ <fa pb(z)g(x) dsc)
Jop(x)da [, p(x)de

provided that all the integrals in (2.11) exist and are finite.

Using the above lemma we shall be able to prove the following result for disper-
sion.

Theorem 6. Let X be a random variable whose probability density function f is
defined on the finite interval [a,b] and o (X) < co. Then we have the inequality

(2.12) 0< 0% (X) — (B(X) —p)* < 1 (b a)

for all p € [a,b], or, equivalently,

(2.13) 0<o(X)<=(b—a).

Proof. Let us choose in (2.11), g(z) = z — pu, p(x) = f(z). Then, obviously,

. b
SUPgea,0] 9 (x) =b—p, infoepep g(z) =a—p, fa f(z)dz =1, and then by (2.11),
we get

2

b b
0< [ -’ f(@)do- (/ (x—u)f(x)dx> <1 0-a)
and the inequality (2.12) is proved. I

The following inequality connecting o, (X) and A, (X) also holds.

Theorem 7. Let X be as in Theorem 6 and assume that 0, (X), A, (X) < oo for
all u € [a,b]. Then we have the inequality

(2.14) 0<os (X)— A2 (X) S;’u—

for all p € [a, b].
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Proof. Choose in Lemma 1, p(z) = f (z), g(z) = |z — p|, p € [a,b]. Then

b—a+|p—a—-b+
B = sup g(z)=max{p—a,b—pu}= ‘MQ ,u|’
z€la,b]
b—a—|p—a—2>
a = inf g(x)=min{p—a,b—p}= azln—a +M|,
z€la,b] 2

which gives us

—a=2
f—a ‘u 5

Applying (2.11), we deduce (2.14). 1

_a—f—b‘

3. SOME INEQUALITIES FOR THE CUMULATIVE DISTRIBUTION FUNCTION

The following theorem contains an inequality which connects the expectation
E (X)), the cumulative distributive function F (X) := [ f (¢) dt and the bounds
and ¢ of the probability density function f : [a, ] — R.

Theorem 8. Let X, f, E(X), F(-) and v,¢ be as above. Then we have the
inequality:
b—a

(3.1) EX)+(b—a)F(x)—z— 5

1 2
gm(qb—v)(b—a) ;
for all x € [a,b].

Proof. We have the following equality established by Barnett and Dragomir in [3]

b
(3.2) (b—a)F(z)+ E(X)—b = /p(x,t)dF(t)

b
/ p(.t) f (£)dt,

where
t—a if a<t<zxz<b
p(x,t):=
t—b if a<z<t<b
Now, if we apply the inequality (1.1) for g (¢t) = p (z,t), we get

b b b
ﬁ/ap(x,t)f(t)dt—i p(z,t)dt-ﬁ/a £ () dt

b—a /,

b b
< 6= bia/ap%x,t)dt(b_lafapm,t)dt)

(3.3)

1
2] 2

Now, we observe that

I b
2 /p(x,t)dt = x—a+
—a ),

b
Fwd = 1,

a



and

1, 1t ’
D : = m ; p (.I‘,t)dt— m/a p(x,t) dt
_ 1 (b—2)*+ (z —a)® 3 x_a—&—b 2
 b-a 3 2

3 2

As a simple calculation shows that

(b—2) = (b—2) (2 —a) + (v — )’
_ 3(95“;%) +%(bfa)2,

= (b_x)z_(b—x)(x—a)—i—(x—a)z_ (x—a+b)2.

then we get

1 2

Using (3.3), we deduce (3.1). 1

Remark 1. If in (3.1) we choose either x = a or x = b, we get

e - b-a,

’E(X) -

1
43
which is the inequality (2.1).

Remark 2. If in (3.1) we choose x = “$2, then we get the inequality

)=t < 15 @-n 0=,

Theorem 9. Let X, f, v,¢ and F (-) be as above. Then we have the inequality:

a+b

(3.4) ‘E(X) +(b—a)Pr (X <

The following theorem also holds.

(3.5) E(X)+b;aF(x)—bJ;x
1 1 ) a+b\?
< mw—whw—w + (o)
1 )
< m@—ﬂ(b—a),

for all x € [a, b].

Proof. We use the following identity proved by Barnett and Dragomir in [3]

(36) (b—a)F(2)+E(X)—b = /x(t—a)dF(t)+/b(t—b)dF(t)

T b
/ (t—a)f(t)dt+/ (t—=0)f(t)dt

T

for all x € [a,b].
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Applying the pre-Griiss inequality (1.1), we get for x € [a, b]

L /j(ta)f(t)dtxia/j(ta)dt'wia/jf(t)dt‘

< %(qbfv) lxia/j(ta)th [xia/j(ta)dtr]é

1
= 5 E-a

(3.7)

and, similarly, we have

b b b
(3.8) bix/ (tfb)f(t)dtfbiw/ (pb)dt-ﬁ/ £ dt
< ;%w—w(b—x), z € (a,h).

From (3.7) and (3.8) we can write

z Tr—a 1
(3.9) / (=) f ()t~ T3P (@) < 2= (0= (e —0)
and

b b—=x 1 2
(3.10) /x(t—b)f(t)dwr <1—F<x)>‘sm<¢—v><b—m> ,

for all x € [a, b].
Summing (3.9) and (3.10) and using the triangle inequality, we deduce that

b— b—
aF(sc)Jr 2:10

T b
(3.11) /(tfa)f(t)dtJr/ (t—b) f(t)dt —

< 0= [@-a’+o-ay]

- <¢_v>[;<b—a>2+(x—a;b)2

1
2V3

Using the identity (3.6), we deduce the desired inequality (3.5). I

Remark 3. If we choose in (3.5), either x = a or x = b, we get the inequality

(6 =) (b—a)®

(3.12) ‘E(X)—a+b‘< !

2 |7 4V3
and thus recapture (2.1).

Remark 4. If we choose in (3.5), © = “TH’, then we get

(3.13) ‘E(X)+<l)_26L>Pr<X<a+b>—a+3b <1

92 4 ’8\/§(¢_7)(b_a)a

which is the best inequality that can be obtained.
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