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INEQUALITIES FOR A WEIGHTED MULTIPLE INTEGRAL

FENG QI

ABSTRACT. In the article, using Taylor’s formula for functions of several vari-
ables, the author establishes some inequalities for the weighted multiple inte-
gral of a function defined on an m-dimensional rectangle, if its partial deriva-
tives of (n 4 1)-th order remain between bounds. From which Iyengar’s in-
equality is generalized and related results in references could be deduced.

1. MAIN RESULTS

For given points a = (a1, -+ ,am), b = (b1, - ,by) € R™ and a; < b, i =
1,2,--- ,m, denote the m-rectangles by
(1) Qm = H[ai,bi]a Qm(t) = H[aiaci(t)],
i=1 i=1
where ¢;(t) = (1 — t)a; + tb;, i = 1,2,--- ,m, t € [0,1].
Let v = (v1,- -+ ,Vm) be a multi-index, that is, v; = integer > 0, with |v| =

> v;. Let f be a function of several variables defined on Q,,, and its partial
i=1

derivatives of (n+1)-th order remain between the upper and lower bounds M, 1 (v)
and N, 11(v) as follows

(2) Nn+1(’/) gDVf(x) <Mn+1(l/), T € Qum,

where we define
3) D" f(0) =" f(z) | [[ 07"
i=1

Let w(z) > 0 be an integrable function of several variables defined on the m-
rectangle @Q,,, which is not identically zero for x € @Q,,. Define

m

(4) hoo(t) = / w(z) [J(z: — s:)"" da,
Qun () =t
where s = (81,82, ,8m) € R™, t € [0, 1].

In this article, using Taylor’s formula for functions with several variables, we
obtain some inequalities for a weighted multiple integral fQ, w(z) f(z) de with
weight w(z) > 0 on the m-rectangle @Q,, in terms of the values of the partial
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derivatives of the function f at points a and b and the bounds M,,+1(v) and N,,11(v)
of D¥ f(x), that is

Main Theorem. Let f € C""1(Q,,) and N,i1(v) < DY f(x) < M,11(v) hold
for any x € Qpn and |v| = n+ 1, where Mp41(v) and Npi1(v) are constants
depending on n and v. Let w(x) be an integrable function of several variables over
Qm, which is not identically zero. Then, for any t € (0,1),

(i) if n is an even, we have

(5)
Z Mn+1(”)hb,u(71n) — Npt1(v) hb u( + Z n+1 h u(t)
lv|=n+1 I:[l(l/z') |v|=n+1 41:[1(1/1 )
< [w@s@ar-Y" 3 2O w0 - mo01- 3 T B 0,0
oo k=0 |v|=k 1;[1 (vih) k=0 |v|=k _];[l(ui!)
< Z Nn+1(V)hb,u(1nz—Mn+1(’/)hb,u(t) n Z Aﬁl“(y)hmu(t);
lv|=n+1 H (Vi!) lv|=n+1 H (Vi!)

=1 1=1
(ii) if n is an odd,

(6)
5 Ny () = Mur@honll) | g~ Naa®)y

lv|=n+1 ‘l’:nll(lli!) lv|=n+1 l;Il(Vl )

< [wwr@ar -3 3 2T 1) - hn] -3 3 20
G k=0 |v|=k _1:[1 (vi!) k=0 |v|=k 4]:[1(%-!)

g Z Mn—&-l(’/)hb,u(}n) - Nn—i—l(l’ hb u + Z "7:,—}-1 ,u(t)-
lv|=n+1 IT@:hH wl=n+1 ] (wi!)

=1 =1

2. PROOF OF MAIN THEOREM

Let t € (0,1) be a parameter, and write

(7) / w(z) f(z)dx = / w(x)f(x)dx + / w(z) f(z)de.
Qm Qm (1) Qm\Qm ()

The well-known Taylor’s formula for a multivariable function states that

n m k
(8) flz) = Z% (Z(% - az‘)ai) f(a) + Ry (),
k=0 i=1 ¢
n m k
) f) = (Z ) £(0) + (o),
k=0 =1
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where

m n+1
(10)  Ry(z) = (nil)! <Z(xl —ai)aii> fla+6(x—a)), 6€(0,1),
1 & o\
1) ) = ooy ( <xi—bi>axi> Fo+u(e b)), we©,1).
Since

® (Sa) -0 S ITE

lv|=ki=1 "

integrating on both sides of (8) over @, (t) gives us

Qm (1)
n m k
— Z ]:' w(z) (Z(ml - al)a ) fla)dz + w(x) Ry (z) dx
=0 o) = l Q1)
n 1 m 9 Vi
- . w) [T (@i -0y ) fla)ds
k=0 |v|=k il;[1(yi!)Q""(t) i=1 i
(13) + Z m; / w(zx) H ((x, - ai)aax_) 1’ fla+0(x —a))dz
|lv|=n+1 ,l;ll(yi!)Qm(t) i=1 i
= Y — ! ikf(a) w(z) ITI(QCz a;)’ dx
k=0 |v|=k ]:[l(z/i!) ‘]:[1 oz Qm(t) i=1
+ — ! w(zx) ﬁ(xz —a;)"" - 8”+1f(i+ 0(z —a)) dx
lv]=n+1 _1;11<Vi!>62m(t) i=1 1;[1 oz’
_ n lznuf(a) ha?u(t)
k=0 lv|=k [T (vi!)
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Using inequality (2) and computing directly yields

Nn+1(y) ha u(t)

lv|=n+1 ﬁ(VZ')

i=1

1y = Y o [ w@]]@ -0 D st o - a)ds

The combination of (13) and (14) leads to

lv|=n+1 I:[l(Vz')
(15) < [ wwswar-Y 3 20,0
Qum (1) k=0 |v|=k l;Il(Vz')
< M’ﬂ+1(V) hy, V(t)
lv|=n+1 H (VL')
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Integrating (9) on the domain @y, \ Qm (t), we arrive at

Qm\Qm (t)
n m k
=y A / w(z) (Z(xl - bi);m) f(b) dz + / r(2) da
0 eman = l Qu\Qm ()
- 1 m 9\
- Z Z m w(z) H (i —bi))5— | f(b)dx
k=0 |v|=k 1:[1 (yi!)Q‘Z e < 8mz>

n

(16 + . o] (m b»(;:) bt e — b)) do
lv|=n+1 1;[1 (VL')Qm i=1 i
1 w(t) [ ((zz bi)£> b+ plx b)) da
lv|=n+1 1;[1 (Vi )Q'n ) =1 i
Z"f(b) (Ao, (1) — B ()]
k=0 |v|=k 4]:[1 (v
1 i o \”
+ ™ w(t) H (x; — b;) Fo+p(z—0b)dz
lv|=n+1 1:[1 (v %4 i < 8@)
B Z m ! ’LU(t) ((171 bz)(,;2:> f(b + /L(SC — b)) dzx
lv|=n+1 1:[ (Vi!)Qm(t) i=1 i

Similar to the deduction of (14), if n is an odd, we have

Nn+l(u) hb u(t)

lv|=n+1 H (Vi!)

i=1

an < Y /w(t)ﬁ((xibnfxi)wﬂbw(mb))dm

= Z ™ ! / w(x) H(l‘i — b)) DY f(b+ p(x — b)) dx
it [T gnw =
M7L+1(V)

S ™
lv|=n+1 H (l/z')
i=1

hb,u(t);

if n is even, the reversed inequalities in (17) hold. Note that Qp, (1) = Q.-
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Substituting (17) into (16) we have that, if n is an odd number, then
Z N1 (@) how (1) — M1 (V) b (2)

lv|=n+1 l:ll(Vl')
s [ w3 S 2 ) -
Qu\Qm (1) k=0 |v|=k 1;[1 (vil)
<y Mn+1('/)hb,u(1)—Nn+1('/)hb,u(t);
lv|=n+1 I:II(VZ')

if n is an even number, then the inequalities in (18) are reversed.

By addition of inequalities (15) and (18), the Main Theorem was proved. I

Remark 1. It is noted that we also can consider the similar estimates for the
weighted multiple integral fQ w(z) f(z)dr on the m-dimensional ball centered

at

a with radius |b — al, that is, Q. = B (|b — al), a,b € R™.

Remark 2. In the Main Theorem, if we take m = 1, we can obtain the results
n [14]; if we set m = 1 and w(z) = 1, then we get the results in [12]; if we let
w(z) = 1, we have the results in [13]. In particular, if we take w(z) =1, m =1 and
n = 0, the Iyengar inequality [6] is deduced, which has been generalized by many
mathematicians in [1, 2, 3, 4, 5, 8, 11, 15] (also see [7, 9, 10]).
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