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SOME ELEMENTARY INEQUALITIES FOR THE EXPECTATION
AND VARIANCE OF A RANDOM VARIABLE WHOSE PDF IS

DEFINED ON A FINITE INTERVAL

N.S. BARNETT AND S.S. DRAGOMIR

Abstract. Some elementary inequalities for the expectation and variance of
a continuous random variable whose pdf is defined on a finite interval are
obtained using some standard and recent results from the theory of inequalities.

1. Introduction

Let X be a continuous random variable having the probability density function
f defined on a finite interval [a, b].

By definition

E (X) :=
∫ b

a

tf (t) dt

the expectation of X, and

σ2 (X) : =
∫ b

a

(t− E (X))2
f (t) dt

=
∫ b

a

t2f (t) dt− [E (X)]2

the variance of X.
Using some tools from the theory of inequalities, namely Hölder’s inequality,

pre-Grüss inequality, pre-Chebychev inequality, Taylor’s formula with the integral
remainder, we point out some elementary inequalities for the expectation and vari-
ance.

2. The Results

Theorem 1. Let X be a continuous random variable defined on [a, b] having p.d.f.,
f . Then

(i) we have the inequality

0 ≤ σ (X) ≤ [b− E (X)]
1
2 [E (X)− a]

1
2 ≤ 1

2
(b− a)(2.1)
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2 N.S. BARNETT AND S.S. DRAGOMIR

and

0 ≤ [b− E (X)] [E (X)− a]− σ2 (X)(2.2)

≤


(b−a)3

6 ‖f‖∞

[B (q + 1, q + 1)]
1
q (b− a)2+ 1

q ‖f‖p
if f ∈ Lp [a, b] , p > 1, 1

p + 1
q = 1

where B (·, ·) is Euler’s Beta function.
(ii) If m ≤ f ≤M a.e. on [a, b], then

m (b− a)3

6
≤ [b− E (X)] [E (X)− a]− σ2 (X) ≤ M (b− a)3

6
(2.3)

and∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣ ≤
√

5 (b− a)3 (M −m)
60

.(2.4)

Proof. Note that:-∫ b

a

(b− t) (t− a) f (t) dt(2.5)

=
∫ b

a

[(b− E (X)) + (E (X)− t)] [(E (X)− a) + (t− E (X))] f (t) dt

= (b− E (X)) (E (X)− a)
∫ b

a

f (t) dt+ (E (X)− a)
∫ b

a

(E (X)− t) f (t) dt

+ (b− E (X))
∫ b

a

(t− E (X)) f (t) dt−
∫ b

a

(t− E (X))2
f (t) dt

= [b− E (X)] [E (X)− a]− σ2 (X)

since ∫ b

a

f (t) dt = 1 and
∫ b

a

(t− E (X)) f (t) dt = 0.

(i) Using the fact that ∫ b

a

(t− a) (b− t) f (t) dt ≥ 0,

it follows that

σ2 (X) ≤ [b− E (X)] [E (X)− a]

and so the first inequality in (2.1) is established.
The second inequality in (2.1) follows from the elementary result that

αβ ≤ 1
4

(α+ β)2
, α, β ∈ R
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where α = b− E (X) , β = E (X)− a.
The first inequality in (2.2) follows, since∫ b

a

(t− a) (b− t) f (t) dt ≤ ‖f‖∞
∫ b

a

(t− a) (b− t) dt

=
(b− a)3

6
‖f‖∞ .

The second inequality is obvious by Hölder’s integral inequality,

∫ b

a

(t− a) (b− t) f (t) dt ≤

(∫ b

a

fp (t) dt

) 1
p
(∫ b

a

(t− a)q (b− t)q dt

) 1
q

= ‖f‖p (b− a)2+ 1
q [B (q + 1, q + 1)]

1
q .

(ii) The inequality (2.3) is obvious, taking into account that if m ≤ f ≤ M a.e.
on [a, b] , then m (t− a) (b− t) ≤ (t− a) (b− t) f (t) ≤ M (t− a) (b− t) a.e.
on [a, b], and by integrating over [a, b].
To prove (2.4), we use the following “pre-Grüss” inequality established in [1]∣∣∣∣∣ 1

b− a

∫ b

a

h (t) g (t) dt− 1
b− a

∫ b

a

h (t) dt · 1
b− a

∫ b

a

g (t) dt

∣∣∣∣∣(2.6)

≤ 1
2

(φ− γ)

 1
b− a

∫ b

a

g2 (t) dt−

(
1

b− a

∫ b

a

g (t) dt

)2
 1

2

,

provided that the mappings h, g : [a, b]→ R are measurable, all the integrals
involved in (2.6) exist and are finite and γ ≤ h ≤ φ a.e. on [a, b].
Choose in (2.6), h (t) = f (t) and g (t) = (t− a) (b− t), which then gives∣∣∣∣∣ 1

b− a

∫ b

a

(t− a) (b− t) f (t) dt(2.7)

− 1
b− a

∫ b

a

(t− a) (b− t) dt · 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ 1

2
(M −m)

[
1

b− a

∫ b

a

(t− a)2 (b− t)2
dt

−

(
1

b− a

∫ b

a

(t− a) (b− t) dt

)2
 1

2

.

However,∫ b

a

(t− a) (b− t) dt =
(b− a)3

6
,

∫ b

a

f (t) dt = 1,∫ b

a

(t− a)2 (b− t)2
dt = (b− a)5

∫ 1

0
t2 (1− t)2

dt =
(b− a)5

30
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and

1
b− a

∫ b

a

(t− a)2 (b− t)2
dt−

(
1

b− a

∫ b

a

(t− a) (b− t) dt

)2

=
(b− a)4

30
− (b− a)4

36
=

(b− a)4

180
.

Consequently, by (2.7), we deduce that∣∣∣∣∣
∫ b

a

(t− a) (b− t) f (t) dt− (b− a)2

6

∣∣∣∣∣ ≤ 1
2

(b− a) (M −m)

[
(b− a)4

180

] 1
2

=
(b− a)3 (M −m)

12
√

5
.

Using (2.5), we deduce (2.4).

Remark 1. For a different proof of the inequality (2.1) see [2].

With additional information about the derivative of f , we can state the following
result which complements (2.4).

Theorem 2. Assume that the p.d.f. of X is absolutely continuous on [a, b].
(i) If f ′ ∈ L∞ [a, b], then we have:∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣ ≤
√

30
720
‖f ′‖∞ (b− a)3

.(2.8)

(ii) If f ′ ∈ L2 [a, b], then we have:∣∣∣∣∣[b− E (X)] [E (X)− a]− σ2 (X)− (b− a)2

6

∣∣∣∣∣ ≤
√

5
60π
‖f ′‖2 (b− a)3

.(2.9)

Proof. (i) Use is made of the following “pre-Chebychev” inequality proved in [1],∣∣∣∣∣ 1
b− a

∫ b

a

h (t) g (t) dt− 1
b− a

∫ b

a

h (t) dt · 1
b− a

∫ b

a

g (t) dt

∣∣∣∣∣(2.10)

≤ 1
2
√

3
‖h′‖∞

 1
b− a

∫ b

a

g2 (t) dt−

(
1

b− a

∫ b

a

g (t) dt

)2
 1

2

.

Provided that h, g : [a, b]→ R are measurable on [a, b], the integrals involved
in (2.10) exist and are finite, h is absolutely continuous and h′ ∈ L∞ [a, b].
Now, if we choose h (t) = f (t), g (t) = (t− a) (b− t) in (2.10), we get∣∣∣∣∣
∫ b

a

(t− a) (b− t) f (t) dt− (b− a)2

6

∣∣∣∣∣ ≤ ‖h′‖∞ (b− a)
2
√

3
· (b− a)2

12
√

5

=
(b− a)3 ‖h′‖∞

24
√

30
.

Using (2.5), we deduce (2.8).
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(ii) For the second part of the theorem, we use the following “pre-Lupaş” inequal-
ity as stated in [1]∣∣∣∣∣ 1

b− a

∫ b

a

h (t) g (t) dt− 1
b− a

∫ b

a

h (t) dt · 1
b− a

∫ b

a

g (t) dt

∣∣∣∣∣(2.11)

≤ b− a
π
‖h′‖2

 1
b− a

∫ b

a

g2 (t) dt−

(
1

b− a

∫ b

a

g (t) dt

)2
 1

2

,

provided that g, h are as above and h′ ∈ L2 [a, b].
Now if we choose in (2.11) h (t) = f (t), g (t) = (t− a) (b− t), we obtain the
desired inequality (2.9). The details are omitted.

Theorem 3. Let X be a random variable and f : [a, b]→ R its p.d.f. If f is such
that f (n) (n ≥ 0) is absolutely continuous on [a, b], then we have the inequality∣∣∣∣∣[E (X)− a] [b− E (X)]− σ2 (X)−

n∑
k=0

(k + 1) (b− a)k+3
f (k) (a)

(k + 3)!

∣∣∣∣∣(2.12)

≤



‖f(n+1)‖∞
(n+1)!(n+3)(n+4) (b− a)n+4 if f (n+1) ∈ L∞ [a, b]

‖f(n+1)‖
p
(b−a)

n+3+ 1
q

n!(nq+1)
1
q (n+2+ 1

q )(n+3+ 1
q )

if f (n+1) ∈ Lp [a, b] , p > 1

‖f(n+1)‖1(b−a)n+3

n!(n+2)(n+3) if f (n+1) ∈ L1 [a, b]

where ‖·‖p (1 ≤ p ≤ ∞) are the usual Lebesgue norms on [a, b], i.e.,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)| , ‖g‖p :=

(∫ b

a

|g (t)|p dt

) 1
p

(p ≥ 1) .

Proof. The following Taylor’s formula with integral remainder is well known in the
literature (see for example [3]):

f (t) =
n∑
k=0

(t− a)k

k!
f (k) (a) +

1
n!

∫ t

a

(t− s)n f (n+1) (s) ds(2.13)

for all t ∈ [a, b].
Since

[E (X)− a] [b− E (X)]− σ2 (X) =
∫ b

a

(t− a) (b− t) f (t) dt,(2.14)
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then we have

[E (X)− a] [b− E (X)]− σ2 (X)(2.15)

=
∫ b

a

(t− a) (b− t)

[
n∑
k=0

(t− a)k

k!
f (k) (a) +

1
n!

∫ t

a

(t− s)n f (n+1) (s) ds

]
dt

=
n∑
k=0

f (k) (a)
k!

∫ b

a

(t− a)k+1 (b− t) dt

+
1
n!

∫ b

a

[
(t− a) (b− t)

∫ t

a

(t− s)n f (n+1) (s) ds
]
dt.

Using the transform, t = (1− u) a+ ub, we have∫ b

a

(t− a)k+1 (b− t) dt = (b− a)k+3
∫ 1

0
uk+1 (1− u) du =

1
(k + 2) (k + 3)

and by (2.15), we deduce that∣∣∣∣∣[E (X)− a] [b− E (X)]− σ2 (X)−
n∑
k=0

(k + 1) (b− a)k+3
f (k) (a)

(k + 3)!

∣∣∣∣∣
≤ 1

n!

∫ b

a

(t− a) (b− t)
∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds
∣∣∣∣ dt =: M (a, b) .

However, for all t ∈ [a, b] we have∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds
∣∣∣∣ ≤ ∫ t

a

|t− s|n
∣∣∣f (n+1) (s)

∣∣∣ ds
≤ sup

s∈[a,b]

∣∣∣f (n+1) (s)
∣∣∣ ∫ t

a

(t− s)n ds

≤
∥∥∥f (n+1)

∥∥∥
∞

(t− a)n+1

n+ 1
.

By Hölder’s integral inequality we have,∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds
∣∣∣∣

≤
(∫ t

a

∣∣∣f (n+1) (s)
∣∣∣p ds) 1

p
(∫ t

a

(t− s)nq ds
) 1
q

≤
∥∥∥f (n+1)

∥∥∥
p

[
(t− a)nq+1

nq + 1

] 1
q

,
1
p

+
1
q

= 1, p > 1

for all t ∈ [a, b].
Finally, we observe that∣∣∣∣∫ t

a

(t− s)n f (n+1) (s) ds
∣∣∣∣ ≤ ∫ t

a

(t− s)n
∣∣∣f (n+1) (s)

∣∣∣ ds
≤ (t− a)n

∫ t

a

∣∣∣f (n+1) (s)
∣∣∣ ds

≤ (t− a)n
∥∥∥f (n+1)

∥∥∥
1
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for all t ∈ [a, b].
Consequently,

M (a, b) ≤ 1
n!
×



‖f(n+1)‖∞
n+1

∫ b
a

(t− a)n+2 (b− t) dt

‖f(n+1)‖
p

(nq+1)
1
q

∫ b
a

(t− a)n+1+ 1
q (b− t) dt

∥∥f (n+1)
∥∥

1

∫ b
a

(t− a)n+1 (b− t) dt

=



‖f(n+1)‖∞
n+1 (b− a)n+4 ∫ 1

0 u
n+2 (1− u) du

‖f(n+1)‖
p

(nq+1)
1
q

(b− a)n+3+ 1
q
∫ 1

0 u
n+1+ 1

q (1− u) du

∥∥f (n+1)
∥∥

1 (b− a)n+3 ∫ 1
0 u

n+1 (1− u) du

and as ∫ 1

0
un+2 (1− u) du =

1
(n+ 3) (n+ 4)

,∫ 1

0
un+1+ 1

q (1− u) du =
1(

n+ 2 + 1
q

)(
n+ 3 + 1

q

) and

∫ 1

0
un+1 (1− u) du =

1
(n+ 2) (n+ 3)

,

the inequality (2.12) is proved.

Remark 2. A similar result can be obtained if use is made of a Taylor expansion
around the point b.
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