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SOME ELEMENTARY INEQUALITIES FOR THE EXPECTATION
AND VARIANCE OF A RANDOM VARIABLE WHOSE PDF IS
DEFINED ON A FINITE INTERVAL

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. Some elementary inequalities for the expectation and variance of
a continuous random variable whose pdf is defined on a finite interval are
obtained using some standard and recent results from the theory of inequalities.

1. INTRODUCTION

Let X be a continuous random variable having the probability density function
f defined on a finite interval [a, b].
By definition

E(X) :_/btf(t)dt

the expectation of X, and
b
2(X) : = / (t—E (X)) f(t)dt

b

= [ erwa- EeoP
a

the variance of X.

Using some tools from the theory of inequalities, namely Holder’s inequality,
pre-Griiss inequality, pre-Chebychev inequality, Taylor’s formula with the integral
remainder, we point out some elementary inequalities for the expectation and vari-
ance.

2. THE RESULTS

Theorem 1. Let X be a continuous random variable defined on [a,b] having p.d.f.,
f. Then

(i) we have the inequality

Nl

(2.1) 0<o(X)<[b—EX)?[E(X)—a]’ <= (b-a)

DO =

Date: November 15, 1999.
1991 Mathematics Subject Classification. Primary 60E15; Secondary 26D15.
Key words and phrases. Random Variable, Expectation, Variance.

1



2 N.S. BARNETT AND S.S. DRAGOMIR

and
(2.2) 0 < [b—E(X)][E(X)—a]-o*(X)
O3 £l
B(g+1,q+1)]7 (b—a)* 7 ||f],
if f€Lplab], p>1,1+1=1
where B (-,-) is Euler’s Beta function.
(ii) If m < f <M a.e. on [a,b], then
23 Mo p (0] () -] - o? () < M)
and
21) b= ECOIE () —a] - (x) - E20) < VOl O )

Proof. Note that:-
b
(2.5) / (b—1)(t—a) f (t) dt

b
= /[(b E(X))+(EX) -] [(E(X) —a)+ (- EX))]f(t)dt

(b—E —a/f dt + (E )/ (E(X) —1t) f(t) dt
+<b—E(X>>/ (t—E(X))f()dt—/ (t— B (X)) (1) dt

a a

= b-EX)][EX)-d-0"(X)
b b
/f(t)dtzl and /(t—E(X))f(t)dt:O.

(i) Using the fact that

/b(t—a)(b—t)f(t)dtzo,
it follows that
o*(X) < [~ E (X)) [E(X) - d

and so the first inequality in (2.1) is established.
The second inequality in (2.1) follows from the elementary result that

af < y(a+p)?, 0 R
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wherea=b—-E(X), =E(X) —a.
The first inequality in (2.2) follows, since

b b
/)@—aﬂb—ﬂf@%ﬁ < Hfmm/)@—aﬂb—ﬂdt

_ (b-a)?
= AL

The second inequality is obvious by Hoélder’s integral inequality,

(/abfp(t)dty (/ab(ta)q(bt)th>

I£l, (b —a)* % [B(g+1,q + 1)]7 .

q

IN

b
/ (t—a)(b—t) f(t)dt

(ii) The inequality (2.3) is obvious, taking into account that if m < f < M a.e.
on [a,b], then m(t—a)(b—1t) < (t—a)(b—1t)f(t) < M(t—a)(b—1t) ae.
on [a,b], and by integrating over [a, b].
To prove (2.4), we use the following “pre-Griiss” inequality established in [1]

b b b
L /h(t)g(t)dt—bia/ h(t)dt-ﬁ g () dt

b—a

b X 27 2
< 36 [b_la/ag%t)dt—(b_la/ag(t)dt)] ,

provided that the mappings h, g : [a,b] — R are measurable, all the integrals
involved in (2.6) exist and are finite and v < h < ¢ a.e. on [a,b].
Choose in (2.6), h (t) = f(t) and ¢ (t) = (t — a) (b — t), which then gives

b
(2.7) bia/ (t—a)(b—1) f (1) dt
b b
—bia/ (t—a)(b—t)dt-ﬁ/ ) dt
< ;<M—m>[bla/abu—af(b—tfdt
. X 273
—<b_a/ (t—a)(b—t)dt) .
However,
/ab(t—a)(b—t)dt - (b_ﬁa)g, /abf(t)dtzl,

b _as
/a(t—a)?(b—t)?dt - (b—a)5/0 t2(1—t)2dt:(b30)
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bia/b(t—a)Q(b—t)th— (b_la/b(t—a)(b—t)dt>

b-a (-a' (-

30 36 180
Consequently, by (2.7), we deduce that

and

(b—a)’
6

/(t—a)(b—t)f(t)dt—

Using (2.5), we deduce (2.4).
|

Remark 1. For a different proof of the inequality (2.1) see [2].

With additional information about the derivative of f, we can state the following
result which complements (2.4).

Theorem 2. Assume that the p.d.f. of X is absolutely continuous on [a,b].
(i) If f' € Ly [a,b], then we have:

2 (b_a)2 \/% /
08 |b-EXIEE) -0 () - L <y g ap,
(ii) If f' € Laa,b], then we have:
29) |- EE)EE) —a -0 - L2 By g,

Proof. (i) Use is made of the following “pre-Chebychev” inequality proved in [1],

b b b
bia/a h(t)g(t)dt—bia/a h(t)dt~ﬁ/a g () dt

< i”h’u 1/b 2(t)dt — ! /b (t) dt ik
- 23 Oob—aag b—aag

(2.10)

Provided that h, g : [a,b] — R are measurable on [a, b], the integrals involved
in (2.10) exist and are finite, h is absolutely continuous and h’ € L, [a, b].
Now, if we choose h (t) = f (t), g(t) = (t —a) (b—1) in (2.10), we get

’ (b—a)’ W)l (b—a) (b—a)®
/a(t—a)(b—t)f(t)dt— e < e . N
GO L[
2430

Using (2.5), we deduce (2.8).
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(ii) For the second part of the theorem, we use the following “pre-Lupas” inequal-
ity as stated in [1]

b b b
(2.11) bia/ h(t)g(t)dtfbia/ h(t)dt~ﬁ g (1) dt

27 %
b0 1/b 2 (t)dt — 1/b (t) dt
7 21b—a ag b—a ag ’

provided that g, h are as above and b’ € Ly [a, b].
Now if we choose in (2.11) h(t) = f(t), g(t) = (t — a) (b —t), we obtain the
desired inequality (2.9). The details are omitted.

IA

Theorem 3. Let X be a random variable and f : [a,b] — R its p.d.f. If f is such
that ) (n > 0) is absolutely continuous on [a,b], then we have the inequality

n k+3 (k) (g
(2.12) [E(X) —a][b— E(X Z — (bk+)3)' e
k=0 .

s

n+4 .
ey 0 — o) i fOTY € Lo [a, )

[0 )™

IA

; (n+1)
L 2 € Lyla,bl, p>1
"!(nq+1)5(n+2+§)(n 3 %) / f p[ ]

TN
n!(n+2)(n+3)

if ftY e Ly [a,b]

where ||-||,, (1 <p < o) are the usual Lebesgue norms on [a,b], i.e

)

‘= ess su , t)|F d >1).
loll.. w lo(6), ol (/ 19.(0) t) (r>1)

€la,b

Proof. The following Taylor’s formula with integral remainder is well known in the
literature (see for example [3]):

n k t
e 1= @ [ ()
k=0 ’ Ta
for all ¢ € [a,b].

Since

b
(2.14) [E(X) —a][b - E(X)] - 0®(X) :/ (t—a)(b—1t) f(t)dt,
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then we have

(215)  [E(X)—d][b—E(X)]-0*(X)

n

b _a k t
= / (t—a)(b—1t) [Z(tk!)f(’“) (a)—#% / (t —s)" fHD (s)ds] dt

k=0

_ zn:f(k];(a)/b(t_a)k“(b—t)dt
k=0 @

=1 b t-aw-o [ (-0 £ (o) is] .

Using the transform, ¢ = (1 — u) a + ub, we have

b kil s [l e 1
[t tomna= 0wt [ 0w = gt

and by (2.15), we deduce that

" (k+1)(b—a)" f®) (g
Z )(b—a)""" f) (a)

[ (X) —a][p— (X e

=0
/t (t—s)" fO+Y (s) ds

However, for all ¢ € [a,b] we have
t t
[a=sr st @as < [e-
e

s€la,b]

Ly Y

- dt =: M (a,b).

IA

" | £0740) ()] ds

/at(t—s)nds

n+1

n+1)H )
Hf n+ 1

IN

IN

By Holder’s integral inequality we have,

/t (t—s)" f"Y () ds

¢ p N\7 /[t G
< (/ fntD (s)’ ds) (/ (t—s)™ ds)
a +1 N a
_\"g q
< Hf(n+1) (t—a) 7 1+1:1,p>1
p| ng+1 P oq

for all ¢ € [a, b].
Finally, we observe that

/t (t = )" fOHD (s) ds

IN
—
~+~

—

o

|

@

S~—

AN
—
-
|
Q
=
3 3
D\H

IN
—
-
|
S
=
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for all t € [a, b].

Consequently,
f(n+1) b n+2
%[a (t—a)" P (b—t)dt
1 (n+1)
M(a,b) < —x ufj (t —a)""'9 (b—t) dt
s (ng+1)9
LA S (¢ =)™ o = )t
(n+1)
% (b— a)"+4 fol u" 2 (1 —u) du
_ [ £ nt3+l 1 pgil
- mTl)%p(b_a)++qf0U+1+q(1_u)dU
Hf(n+1) ||1 (b— a)n+3 fol u"t (1 — ) du
and as
1 , 1
P l-wdy = —m8M ———,
/0 ( ) (n+3)(n+4)

1

1 1
/ W (1 —w)du = and
0

(n+2+§) (n+3+§)

! n+1 1
/Ou (1—w)du = ISk

the inequality (2.12) is proved. I

Remark 2. A similar result can be obtained if use is made of a Taylor expansion
around the point b.
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