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A GRUSS TYPE DISCRETE INEQUALITY IN INNER
PRODUCT SPACES AND APPLICATIONS

S. S. DRAGOMIR

ABSTRACT. A Griiss type inequality in inner product spaces and applications
for the discrete Fourier transform, Mellin transform of sequences, polynomials
with coefficients in Hilbert spaces and Lipschitzian vector valued mappings are
given.

1. INTRODUCTION

In 1935, G. Griiss proved the following integral inequality [9]

bia/abf(x)g(m)dx—ﬁ/:f(x)da;-bia/abg(x)dx

1

< Z((I)f(b)(ri’wa

provided that f and g are two integrable functions on [a, b] and satisfy the condition

(1.1)

(1.2) p< f(z)<Pand y<g(x)<T forall z € [a,b].

The constant i is the best possible and is achieved for

f<x>=g<x>:sgn(x—“;”).

The discrete version of (1.1) states that:
Ifa<a, <A b<b <B(i=1,..,n) where a, A, a;,b, B,b; are real numbers,
then

(1.3) %ialbz_%i(h%ibl
i=1 i=1 =1

where the constant i is the best possible.

For an entire chapter devoted to the history of this inequality see the book [11]
where further references are given.

New results in the domain can be found in the papers [1]-[7] and [10].

In the recent paper [2], the author proved the following generalization in inner
product spaces.

< U-a)B-b),
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2 S. S. DRAGOMIR

Theorem 1. Let (X, (-,-)) be an inner product space over K,K = C,R and e €
X, el =1. If ,®,7,T € K and z,y € X such that

(1.4) Re (Pe — z, 2 — ¢e) > 0 and Re (T'e —y,y —ve) >0,
holds, then we have the inequality

1
(15) |<l’,y>—<$,6> <e7y>| < Z|¢_¢| |F_7|

The constant % is the best possible.

It has been shown in [1] that the above theorem, for real cases, contains the
usual integral and discrete Griiss inequality and also some Griiss type inequalities
for mappings defined on infinite intervals.

Namely, if p : (—00,00) — (—00,00) is a probabilistic density function, i.e.,
ffooo p (t)dt =1, then pt e L? (=00, ) and obviously ‘ p2
we assume that f,g € L? (—00,00) and
(1.6) a-pt < f<u-pi BopE <g<O-ptae on (—o0,00),

then we have the inequality

(17) \/megumv1/:prﬂwﬁ~/zgmpﬂwﬁ\
1

= 1. Consequently, if
2

< JW-a)O-9).

Similarly, if | = (I;);cy € 12 (R) with 3, [li]* = 1 and @ = (24),cn. ¥ = Wi)ien €
I2 (R) are such that

(1.8) ol <z <l Bl <y <00

for all 7 € N, then we have

1
1.9 TiY; — J,‘llz 1ll S— —a) (0 — .
(1.9) %% y % %;1 yili| < 7 (¥ —a) (0 - 6)
In this paper we point out some other Griiss type discrete inequalities in inner
product spaces. Applications for Fourier transform, Mellin transform, polynomials
with coefficients in Hilbert spaces and Lipschitzian mappings with values in normed
spaces are also given.

2. PRELIMINARY RESULTS
The following lemma is of interest in itself.

Lemma 1. Let (H;{-,-)) be an inner product space over the real or complex number
fieldK, z; € H andp; >0 (i =1,...,n) such that >~ ;pi=1(n>2). Ifz, X € H
are such that

(2.1) Re(X — zj,x; —x) >0 for alli € {1,...,n},

then we have the inequality

2

= 2 1 2
(2.2) 0<> pillail” - < 7 IX =zl
i=1

n
E Di%i
i=1

The constant i is sharp.
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Proof. Define

I = <X - ipil’i,ipim - $>
i=1 i=1

and
IQ = Zpl <X — X4, X5 —(E> .
i=1
Then
n n 2 n
I = Zpi (X zi) — (X, 2) - Zpizi + Zpi (i, @)
i=1 i=1 i=1
and
L= pi(X,z) = (X,2) = > pillai® + D pi(wi,2).
i=1 i=1 i=1
Consequently,
n n 2
(2.3) L -1 ZZZH a1 — sz‘xi
i=1 i=1

Taking the real value in (2.3), we can state that

n
sz‘xz‘
i=1

n n n
= Re <X = pixi, Y pivi — :v> —> piRe(X —zj,z; — ),
i=1 i=1 i=1

which is also an identity of interest in itself.
Using the assumption (2.1), we can conclude, by (2.4), that

n n 2 n n
(2.5) Zpi Hl’l”Q — Zp,xl <Re <XZpixi,Zpi:r,; :L'> .
i=1 i=1 i=1 i=1

It is known that if y, z € H, then

2

(2.4) sz' ||%’H2 -
i=1

(2.6) 4Re(z,y) < ||z +y|,

with equality iff z = y.
Now, by (2.6) we can state that

n n
Re <X = pii, Y piwi — 9U>
i=1 i=1

2

IN

n n
X — Zpil“i + Zpiﬂﬁi -z
i=1 i=1

I1X — .

== e

Using (2.5), we obtain (2.2).
To prove the sharpness of the constant i, let us assume that the inequality (2.2)
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holds with a constant ¢ > 0, i.e.,
2
2
<c||X -z

(2.7) 0< > pillwll* -
i=1

n
E PiZ;
i=1

for all p;, z; and n as in the hypothesis of Lemma 1.
Assume that n = 2,p; = ps = %,xl =x and z3 = X with z,X € H and = # X.
Then, obviously,

(X —z1,21 —2) = (X — 29,22 —x) =0,
which shows that the condition (2.1) holds.

If we replace n, p1, p2, 1, 2 in (2.7), we obtain

2 2

2 1 2 2
> willeil® = | Y pias 5 (Ilall” + 117) -
1=1 1=1

2 2

r+ X
2

1 2
= —|lz—-X
1= x|
< cle-X|7,
from where we deduce that ¢ > i, which proves the sharpness of the constant i. ]

Remark 1. The assumption (2.1) can be replaced by the more general condition
(2.8) Zpi Re (X —z;,x; —x) > 0,
i=1

and the conclusion (2.2) will still remain valid.
The following corollary is natural.

Corollary 1. Leta; €K, p; > 0,(i=1,...,n) (n>2) with >, p; =1. Ifa,A €
K are such that

(2.9) Re[(A—a;)(a; —a)] >0 forallic {1,..,n},
then we have the inequality
2

- 1
(2.10) 0< Epi lag|* — < 1\A7a|2.

n
E piag
i=1

The constant % is sharp.

The proof follows by the above lemma by choosing H = K, (x,y) := zg,x; =
a;,x =a and X = A. We omit the details.

Remark 2. The condition (2.9) can be replaced by the more general assumption
(2.11) > piRe((A - a;)(a; —a)] > 0.
i=1

Remark 3. If we assume that K =R, then (2.8) is equivalent to
(2.12) a<a; <A foralie{l,.. n},
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and then, with the assumption (2.12), we obtain the discrete Griiss type inequality

(2.13) 0<> pial - (
i=1

where the constant % is sharp.

2
- 1
pi%) < 1 (A— a)2 )

i=1

3. A DISCRETE INEQUALITY OF GRUSS’ TYPE
The following Griiss type inequality holds.

Theorem 2. Let (H;(-,-)) be an inner product space over K K = R,C, z; €
H a; €K, p; >0 (i=1,..,n) (n>2) with > ;p; = 1. If a,A € K and
x, X € H are such that

(3.1) Rel[(A—a;)(a; —a)] >0,Re(X —x;,x; —x) >0 foralli € {1,...,n};

then we have the inequality

n n n
E Diaix; — § biag - E Di%;
i=1 i=1 i=1

The constant % is sharp.

1
(3.2) 0< < lA—dl|x—a|.

Proof. A simple computation shows that

(3.3) Zpiaimi - Zpiai Zpixi = % Z pip; (a; — aj) (zi — x;).
=1 1=1 =1

4,j=1

Taking the norm in both parts of (3.3) and using the generalized triangle inequality,
we obtain

1 n
<3 Mz_:lpipj lai — a;l ||z — ;] -

(3.4)

n n n
E piaix; — E piaq E PiZi
i=1 i=1 i=1

By the Cauchy-Buniakowsky-Schwartz discrete inequality for double sums, we ob-
tain

2

1 n
(35) 5 O plas =l —
ij=1

1 n 1 n
< |3 Z pipj lai — a;|” 3 Z pipj ||z — 25|
1,5=1 3,7=1
As a simple calculation reveals that

1 n n n
2 Z pipj la; — (1j|2 = Zpi |ai|2 - Zpiai
i=1 1=1

i,7=1

2

and
2

7

1 . 2 = 2
5 > pip llzi = ayl1* = Y] -
=1

i,j=1

n
E DiZq
i=1
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then, by (3.4) and (3.5), we conclude that
n n n
Zpiaixi - Zpiai Zpixi
i=1 i=1 i=1
1
2\ 2

n n n
< Zpi Jai|* - Zpiai X Zpi il —
i=1 i=1 i=1

However, from Lemma 1 and Corollary 1, we know that

(3.6)

1
2\ 2

n
E PiZ;
i=1

1
2\ 2
n n 1
2
(3.7) > opillal = (> i <5 IX -2l
i=1 i=1
and
1
n n 2 2 1
3.8 iaiQ— e S—A—a.
(3.8) Z;pll Z;p 5|

Consequently, by using (3.6) — (3.8), we deduce the desired estimate (3.2).
To prove the sharpness of the constant i, assume that (3.2) holds with a constant
c>0,ie.,

(3.9) <clA-all|X -z

n n n
§ pia;T; — § Dia; § PiZs
=1 1=1 =1

for all p;,a;,z;,a, A, x, X and n as in the hypothesis of Theorem 2.

If we choose n = 2,a1 = a,a02 = A,x1 =x,20 =X (a# A,z # X) and p; = ps =
1

=, then

2

2 2 2 2
1
E DiGi%; — E pia; E DbiZi B} E pip; (a; — a;) (z; — ;)
=1 1=1 =1 1,7=1
1
= Z(a—A)(m—X).

Consequently, from (3.9), we deduce
1
7la—AllX —zl| <clA-al[| X -],
which implies that ¢ > %, and the theorem is completely proved. i
Remark 4. The condition (3.1) can be replaced by the more general assumption

(3.10) Zpi Re[(A —a;) (a; —a)] >0, Zpi Re(X —xzj,x; —x) >0

i=1

and the conclusion (3.2) will still be valid.
The following corollary for real or complex numbers holds.

Corollary 2. Let a;,b; e K (K=C,R),p; >0 (i =1,...n) with >, p; = 1. If
a,A,b, B € K are such that

(3.11) Re[(A —a;) (@i —a)] > 0,Re [(B = b;) (b; = b)] >0,
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then we have the inequality
n n n 1

where the constant i is sharp.

Remark 5. If we assume that a;,b;,a, A, b, B are real numbers, then (3.11) is
equivalent to

(3.13) a<a; <Ab<b;<B foraliec{l,..n},

and (3.12) becomes

n n n 1
3.14 0< iaibi - e ibi S - (A—a)(B-0b 5
(3:14) < [ = 3 Y pbi| < (A=) (B =D

which is the classical Griiss inequality for sequences of real numbers.

4. APPLICATIONS FOR DISCRETE FOURIER TRANSFORMS

Let (H; (-, -)) be an inner product space over K and Z = (z1, ..., ¥, ) be a sequence
of vectors in H.
For a given w € R, define the discrete Fourier transform

(4.1) Fu (T) (m) := > exp (2wimk) x v, m=1,...,n.
k=1

The following approximation result for the Fourier transform (4.1) holds.

Theorem 3. Let (H;(-,-)) and T € H"™ be as above. If there exists the vectors
x,X € H such that

(4.2) Re(X —zp,zp —x) >0 for all k€ {1,...,n},
then we have the inequality

sin (wmn)

(4.3) Fo (%) (m) — exp[(n + 1) im)] % S o

k=1

sin (wm)

1
1 2 2

< LX) - L))
2 sin® (wm)

forallm e {1,..,n} andw e R, w# Ltr 1 €Z.

Proof. From the inequality (3.6) in Theorem 2, we can state that

I I I

1
2 2

n 2

x %§)u2ﬁﬁzpk
k=1

k=1

1"’L

2
< E a
- nk1|k|

1 n
o 2
n

k=1
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forallak€K7ack€H(k 1,..,n).
However, the z, (k=1,...,n) satlsfy (4.2), and therefore, by Lemma 1, we have

2
1 — 1 —
(4.5) *ZH&%H ﬁZxk <
k=1

Consequently, by (4.4) and (4.5) , we conclude that

1
1% = 2.

3

2\ 2
= 1 ¢ 1
(4.6) Zak’ﬁzwk 5 X -z HZI%\
k=1 k=1 k=1
forallay e K (k=1,....,n).
We now choose in (4.6) , ar, = exp (2wimk) to obtain
n 1 n
(4.7 - Z exp (2wimk) x — Z T
k=1 "=
1
2 2

< ||X—J?H TLZ|€Xp (2wimk)|
k=1

Z exp (2wimk)

k=1

for all m € {1,...,n}.
As a simple calculation reveals that

Zexp (2wimk) = exp (2wim) X {

exp (2wimn) — 1}
k=1

exp (2wim) — 1

_ exp (2wim) x {cos (2wmn) + isin (2wmn) — 1}

cos (2wm) + isin (2wm) — 1

— oxp (2wim) x Snlwmn) {COS (wmn) + 7sin (wmn)}

sin (wm) | cos(wm) 4+ isin (wm)

_ sin(wmn) o Qwim) [

i (e exp (iwmn)}

exp (fwm)
sin (wmn)

= o (wm) x exp[(n+1)im],

n

Z lexp (2wimk)|* = n

k=1

and

2
.2
:78111 (wmn) forw;é gl leZ,

Z exp (2wimk) sin? (wm)

k=1
thus, from (4.7), we deduce the desired inequality (4.3). I

Remark 6. The assumption (4.2) can be replaced by the more general condition
(4.8) ZRe (X —zj,x; —x) >0,

and the conclusion (4.3) will still remain valid.
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The following corollary is an obvious consequence of (4.3) .
Corollary 3. Leta; € K (i=1,...,n). If a, A € K are such that
(4.9) Re[(A—a;)(a; —a)] >0 for alli € {1,..,n},
then we have an approzimation of the Fourier transform for the vector a = (a1, ..., a,) €
K™ :

Fo @) (m) = ) o 1) i) ¢ -

(410) |
k=1

sin (wm)

1
sin? (wmn)] 2

1
< Z|A-a||n? - —>
2| |[ sin? (wm)

forallme {1,....n} and w € R so that w # %ﬂ', leZ.
Remark 7. If we assume that K =R, then (4.9) is equivalent to
(4.11) a<a; <A forallie{l,..,n}.

Consequently, with the assumption (4.11), we obtain the following approximation
of the Fourier transform

(4.12) Fo (@) (m) — % exp [(n + 1) im] x % 3 a
k=1
1. o 2 sin? (wmn) :
- 2 (4 ) [ sin? (wm) ’

for allm € {1,...,n} and w # Ltr 1 € L.

5. APPLICATIONS FOR THE DISCRETE MELLIN TRANSFORM

Let (H;(-,-)) be an inner product over R and & = (z1, ..., 2,) be a sequence of
vectors in H.
Define the Mellin transform:

(5.1) M (Z) (m) :=ka_1xk, m=1,..n;
k=1
of the sequence x € H".
The following approximation result holds.

Theorem 4. Let H and T be as above. If there exist the vectors ©, X € H such
that

(5.2) Re(X —zp,z—x) >0 forallk=1,...,m;

then we have the inequality

n

M (@) () = St (0) 5>

k=1

(5.3)

=

1
< 5 ||X - I’H [nS2m—2 (n) - S?n,—l (n)] , M€ {13 "'an}a
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where Sy (n), p € R, n € N is the p—powered sum of the first n natural numbers,
i.e.,

-y
k=1
Proof. We apply inequality (4.6) to obtain

n n 1 n

E k‘mflxk o § kmfl L § Tp
n

k=1 k=1 k=1

(5.4)

IN

1
27 2
%I\Xfxll § gD <§ k™ 1)

1 1
= 5lIX -zl [1S2m 2 (n) = S _y (n)] 7

and the inequality (5.3) is proved. I

Consider the following particular values of Mellin Transform
)=k
k=1
and
= Z k’2£L'k.
k=1
The following corollary holds.

Corollary 4. Let H and T be as in Theorem 4. Then we have the inequalities:

55) D N e e
and
(5.6) 1 (Z) — Lé%‘kl) . Zxk
k=1
1
< m||X—x||n\/(n—1)(n+1)(2n+1)(8n+1).

Remark 8. If we assume that p = (p1,...,Pn) 8 a probability distribution, i.e.,
pe>0(k=1,...,n)and Y ;_pr=1andp<py <P (k=1,...n), then by (5.5)
and (5.6) , we get the inequalities

(5.7) kak—“gl %(P—p)n{w:r
k=1
and
(5.8) Z k’py, — %6(52714—1)
k=1
< ! (P—p)ny/(n—1)(n+1)(2n+1) (8n + 1),

= 12V
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which have been obtained in [8] and applied to the estimation of the 1 and 2-moments
of a guessing mapping.
6. APPLICATIONS FOR POLYNOMIALS

Let (H; (-,-)) be an inner product space over K and ¢ = (¢, ..., ¢,) be a sequence
of vectors in H.
Define the polynomial P : C —H with the coefficients ¢ = (cq, ..., ¢,,) by

P(z)=co+zc1+...4+2"cn, 2€C, ¢, #0.
The following approximation result for the polynomial P holds.

Theorem 5. Let H,¢ and P be as above. If there exist the vectors ¢,C € H such
that

(6.1) Re(C' — ¢k, e —¢) >0 for all k € {0,...,n},

then we have the inequality

21 gt F .. Fep
6.2 P(z)—
(62) H (&)= — == n+t1
1
1 1221 2" —2Re (271Y) 417
< SlC=dl |(n+1) = - 2 )
2 |2]° =1 |2]” —2Re (2) + 1

forall z € C, |z| # 1.

Proof. Using the inequality (4.6), we can state that

n n 1 n
k k
(6.3) Zz ckfz,z .chk
k=0 k=0 k=0
1 2k
< gle=dl{m+ny 1= 324"
k=0 k=0
1
1 R S T
= -|lc- 1 -
51O =l | (n+1) 1 po
1
Lo [ B 21 P 2R () 41)
= = —c| |[(n -
2 l2)* — 1 12]> —2Re(2) + 1

and the inequality (6.2) is proved. I
The following result for the complex roots of the unity also holds.

Theorem 6. Let z, := cos (f—L) + isin (:—L), k € {0,...,n} be the complex

(n+ 1) —roots of the unity. Then we have the inequality
1
(6.4) 1P (z0)ll = 5 (n+DIIC —cll, k€11, ....n}s

where the coefficients ¢ = (cq, ...,c,) € H" L satisfy the assumption (6.1).
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Proof. From the inequality (6.3), we can state that

ZnJrl _

1 1 &
. P _7._§
(6:5) (2) z—1 n+1 k:OCk

n

(n+1)> |2 -

k=0

Zn+1 -1

1
< Z|c-
Sllc el —

21 3
forall z € C, z # 1.
Putting z = zj, k € {1,...,n} and taking into account that 2} =1, |2;| = 1, we
get the desired result (6.4). I

The following corollary is a natural consequence of Theorem 6.

Corollary 5. Let P (z) := ZZ:O apz® be a polynomial with real coefficients and 2y,
the (n + 1)-roots of the unity as defined above. If a < ar, < A, k=0, ...,n, then we
have the inequality:

(6.6) [P (z1)] < 5 (n+1)(A—a).

N =

7. APPLICATIONS FOR LIPSCHITZIAN MAPPINGS

Let (H;(-,-)) be as above and F' : H — B a mapping defined on the inner product
space H with values in the normed linear space B which satisfy the Lipschitzian
condition:

(7.1) |F'(z) = F(y)| < Lllz -y, for all z,y € H,

where | -| denotes the norm on B and || - | is the Euclidean norm on H.
The following theorem holds.

Theorem 7. Let F : H — B be as above and x; € H, p; > 0 (i=1,...,n) with
P, = Z?:l p; > 0. If there exists two vectors x, X € H such that

(7.2) Re(X —zj,x; —x) >0 foralli e {1,...,n},

then we have the inequality

%n 21%17 (xi) = F <Pin ;pw&)

Proof. As F is Lipschitzian, we have (7.1) for all z,y € H. Choose x = P% S DT
and y=z; (j=1,...,n), to get

r (Pin ;pm> — F (xy)

for all j € {1,...,n}.
If we multiply (7.4) by p; > 0 and sum over j from 1 to n, we obtain

j=1 noi=1 =1

Jj=1

1
(7.3) < g IX =zl

(7.4) <L

3

1 n
o Zpiﬂfi — Ty
Pn i=1
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Using the generalized triangle inequality, we have

n 1 n 1 n n
j=1 =1 =1 j=1

By the Cauchy-Buniakowsky-Schwartz inequality, we also have

(7.7) ZP;‘ Pi Zpifi — Xy
j=1 =1

IN

1 1
P—Zpixi —x; P
" i=1

n
.7
j=1

1
2 2

1 « 1 &
szixi 2Re<p Z:pwﬂuﬂﬂj>+||5L‘j||2
=1 noi=1

Jj=1

= Py ij|

-

= P2 |p,

9 2
1 n n n
_2Re<P— Zpifvi,ijxj —|-ij ||$J||2
=1 j=1 j=1

1
27 2

1 n
o Zpiﬂﬁi
Pa i=1

I
0

1 & 1 &

2
P E pi ||xil]” — P E Pi%;
=1 =1

Combining the above inequalities (7.5) — (7.7) we deduce, by dividing with P, > 0,
that

(7.8)

F (Pin Z:pixi> - Pin > piF ()

i=1

1
27 2

1 n
2
< P—sz l|zi]l” —
" oi=1

Finally, using Lemma 1, we obtain the desired result. |

1 n
o Zpifﬂi
P i=1

Remark 9. The condition (7.2) can be substituted by the more general condition
n

(7.9) > piRe(X —zi,2; —x) >0,
i=1

and the conclusion (7.3) will still remain valid.
The following corollary is a natural consequence of the above findings.

Corollary 6. Let x; € H (i=1,....,n) and x,X € H be such that the condition
(7.2) holds. Then we have the inequality

1 1 ¢
0< —ZI%H%H— —sz‘xi
P i=1 P i=1

The proof follows by Theorem 7 by choosing F : H — R, F (z) = ||z| which is
Lipschitzian with the constant L = 1, as |F (z) — F ()| = ||lz|| = llyll| < ||z — y]|,
for all z,y € H.

1
<5 lx—af.
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