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Midpoint Type Rules from an Inequalities Point of View

P.C. Cerone and S.S. Dragomir

Abstract. The article investigates interior point rules which contain the mid-
point as a special case, and obtains explicit bounds through the use of a Peano
kernel approach and the modern theory of inequalities. Thus the simplest open
Newton-Cotes rules are examined. Both Riemann-Stieltjes and Riemann inte-
grals are evaluated with a variety of assumptions about the integrand enabling
the characterisation of the bound in terms of a variety of norms. Perturbed
quadrature rules are obtained through the use of Grüss, Chebychev and Lupaş
inequalities, producing a variety of tighter bounds. The implementation is
demonstrated through the investigation of a variety of composite rules based
on inequalities developed. The analysis allows the determination of the parti-
tion required that would assure that the accuracy the result would be within a
prescribed error tolerance. It is demonstrated that the bounds of the approx-
imations are equivalent to those obtained from a Peano kernel that produces
Trapezoidal type rules.

1. Introduction

The following inequality is well known in the literature as the midpoint inequal-
ity: ∣∣∣∣∣

∫ b

a

f (x) dx− (b− a) f
(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)3

24
‖f ′′‖∞ ,(1.1)

where the mapping f : [a, b] ⊂ R→ R is assumed to be twice differentiable on
the interval (a, b) and having the second derivative bounded on (a, b) . That is,
‖f ′′‖∞ := supx∈(a,b) |f ′′ (x)| <∞.

Now, if we assume that In : a = x0 < x1 < ... < xn−1 < xn = b is a partition of
the interval [a, b] and f is as above, then we can approximate the integral

∫ b
a
f (x) dx

by the midpoint quadrature formula AM (f, In) having an error given by RM (f, In) ,
where

AM (f, In) =
n−1∑
i=0

f

(
xi+1 + xi

2

)
hi(1.2)
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2 P.C. CERONE AND S.S. DRAGOMIR

and the remainder RM (f, In) satisfies the estimation

|RM (f, In)| ≤
‖f ′′‖∞

24

n−1∑
i=0

h3
i ,(1.3)

where hi = xi+1 − xi for i = 0, 1, 2, ..., n− 1.
Equation (1.2) is known as the midpoint rule for n = 1 and as the composite

midpoint rule for n > 1. The midpoint rule is the most basic open Newton-Cotes
quadrature in which function evaluations occur at the midpoints of equispaced
intervals.

The current work investigates an interior point (which contains the midpoint
as a special case) and obtains explicit bounds through the use of a Peano kernel
approach and the modern theory of inequalities. This approach allows for the
investigation of quadrature rules that place fewer restrictions on the behaviour of
the integrand and thus allow us to cope with larger classes of functions. Expression
(1.1) relies on the behaviour of the second derivative whereas bounds for the interior
point are obtained in terms of Riemann-Stieltjes integrals in Sections 2, 3 and 4 for
functions that are of bounded variation, Lipschitzian and monotonic respectively.
In Section 5, interior point rules are obtained for f (n) ∈ Lp [a, b] , implying that

∥∥∥f (n)
∥∥∥
p

:=

(∫ b

a

∣∣∣f (n) (x)
∣∣∣p dx) 1

p

<∞ for p ≥ 1

and
∥∥f (n)

∥∥
∞ := supx∈[a,b]

∣∣f (n) (x)
∣∣ .

Further, a generalised Taylor series representation is presented that enables an
expansion about any point on an interval.

In Section 6, perturbed interior point rules are obtained using what are termed
as premature variants of Grüss, Chebychev and Lupaş inequalities. Atkinson [30]
uses an asymptotic error estimate technique to obtain what he defines as a corrected
rule. His approach, however, does not readily produce a bound on the error.

Further, in 6.2, alternate Grüss type results are obtained to produce perturbed
interior point rules with bounds given in terms of norms associated with f ′ (x)−S,
where S = f(b)−f(a)

b−a is the secant slope.
Finally, in Section 7, a perturbed interior point rule is obtained whose per-

turbation involves S and not f ′(b)−f ′(a)
b−a . The bound relies on the behaviour of

f ′′ (·).
The current work brings together results for interior point type rules giving ex-

plicit error bounds, using Peano type kernels and results from the modern theory of
inequalities. Although bounds through the use of Peano kernels have been obtained
in some classical review books on numerical integration such as Stroud [35], Engels
[34], and Davis and Rabinowitz [33], these do not seem to be utilised to perhaps
the extent that they should be. So much so that even in the more recent compre-
hensive monograph by Krommer and Ueberhuber [34], a constructive approach is
taken via Taylor or interpolating polynomials to obtain quadrature results. This
approach does not readily provide explicit error bounds but rather gives the order
of the approximation.
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2. The Ostrowski Inequality for Mappings of
Bounded Variation

In this section we develop interior point type quadrature rules for functions that
are of bounded variation. It includes the midpoint rule as a special case. Functions
of bounded variation include a very large class in contrast to traditional interior or
specifically midpoint rules which rely on the second derivative of the function for
its error approximation.

2.1. Some Integral Inequalities. The following inequality for mappings of
bounded variation holds [2]:

Theorem 1. Let u : [a, b] → R be a mapping of bounded variation on [a, b] .
Then for all x ∈ [a, b] , we have the inequality∣∣∣∣∣

∫ b

a

u (t) dt− (b− a)u (x)

∣∣∣∣∣ ≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(u) ,(2.1)

where
∨b
a (u) denotes the total variation of u.

The constant 1
2 is the best possible one.

Proof. Using the integration by parts formula for Riemann-Stieltjes integrals
we have ∫ x

a

(t− a) du (t) = u (x) (x− a)−
∫ x

a

u (t) dt

and ∫ b

x

(t− b)du (t) = u (x) (b− x)−
∫ b

x

u (t) dt.

If we add the above two equalities, we obtain

(b− a)u (x)−
∫ b

a

u (t) dt =
∫ b

a

p (x, t) du (t) ,(2.2)

where

p (x, t) :=
{
t− a if t ∈ [a, x)
t− b if x ∈ [x, b]

,

for all x, t ∈ [a, b] .
It is well known [30] that if p : [a, b] → R is continuous on [a, b] and v : [a, b] → R
is of bounded variation on [a, b] , then∣∣∣∣∣

∫ b

a

p (x) dv (x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

|p (x)|
b∨
a

(v).(2.3)
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Applying the inequality (2.3) for p (x, t) as above and v (x) = u (x) , x ∈ [a, b] , we
get ∣∣∣∣∣

∫ b

a

p (x, t) du (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|p (x, t)|
b∨
a

(u)(2.4)

= max{x− a, b− x}
b∨
a

(u)

=
[
b− a

2
+
∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(u)

and then by (2.4), via the identity (2.2), we deduce the desired inequality (2.1).
Now to prove that 1

2 is the best possible constant assume that the inequality (2.1)
holds with a constant C > 0. That is,∣∣∣∣∣

∫ b

a

u (t) dt− u (x) (b− a)

∣∣∣∣∣ ≤
[
C (b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(u)(2.5)

for all x ∈ [a, b] .
Consider the mapping u : [a, b]→ R, given by

u (x) =
{

0 if x ∈ [a, b] \{a+b
2 }

1 if x = a+b
2

in (2.5). Then u is of bounded variation on [a, b] , and
b∨
a

(u) = 2,
∫ b

a

u (t) dt = 0 .

For x = a+b
2 , we get in (2.5)

1 ≤ 2C ,

which implies that C ≥ 1
2 and the theorem is completely proved.

The following corollary holds for monotonic mappings.

Corollary 1. Let u : [a, b] → R be a monotonic mapping on [a, b] . Then we
have the inequality∣∣∣∣∣

∫ b

a

u (t) dt− (b− a)u (x)

∣∣∣∣∣ ≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] |u (b)− u (a)| .

The case of Lipschitzian mappings is embodied in the following corollary.

Corollary 2. Let u : [a, b]→ R be an L-Lipschitzian mapping on [a, b] . That
is, we recall

|u (x)− u(y)| ≤ L |x− y| for all x, y ∈ [a, b] .

Then, for all x ∈ [a, b] we have the inequality∣∣∣∣∣
∫ b

a

u (t) dt− (b− a)u (x)

∣∣∣∣∣ ≤ L
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] (b− a) ,

giving a midpoint type rule.
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Corollary 3. Let u : [a, b]→ R be as above. Then we have the inequality:∣∣∣∣∣
∫ b

a

u (t) dx− (b− a)u
(
a+ b

2

)∣∣∣∣∣ ≤ 1
2

(b− a)
b∨
a

(u) .(2.6)

Similar inequalities can be found if we assume that u is monotonic or Lips-
chitzian on [a, b] by taking x = a+b

2 in Corollaries 1 and 2 respectively.

Remark 1. If we assume that u is continuous differentiable on (a, b) and u′ is
integrable on (a, b) , then, by (2.1), we get∣∣∣∣∣

∫ b

a

u (t) dx− (b− a)u (x)

∣∣∣∣∣ ≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] ‖u′‖1 ,
which is the inequality obtained by Dragomir and Wang in the recent paper [7].

Remark 2. It is well known that if f : [a, b]→ R is a convex mapping on [a, b],
then the Hermite-Hadamard inequality

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

(2.7)

holds [1].
Now, if we assume that f : I ⊂ R → R is convex on I and a, b ∈ Int (I) , a < b;
then f ′+ is monotonic nondecreasing on [a, b] and, by Corollary 3, we obtain

0 ≤ 1
b− a

∫ b

a

f (x) dx− f
(
a+ b

2

)
≤ 1

2

∥∥f ′+∥∥1 ,(2.8)

which gives a counterpart for the first membership of Hadamard’s inequality.

Similar results can be obtained if we assume that f is convex and monotonic
or convex and Lipschitzian on [a, b] .

2.2. A Quadrature Formula of Riemann Type. Let In : a = x0 < x1 <
... < xn−1 < xn = b be a division of the interval [a, b] and ξi ∈ [xi, xi+1] (i =
0, ..., n− 1) a sequence of intermediate points for In. Construct the Riemann sums

Rn (f, In, ξ) =
n−1∑
i=0

f (ξi)hi ,

where hi := xi+1 − xi.
We have the following quadrature formula [2].

Theorem 2. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] and
In, ξi (i = 0, ..., n− 1) be as above. Then we have the Riemann quadrature formula∫ b

a

f (x) dx = Rn (f, In, ξ) +Wn (f, In, ξ) ,(2.9)
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where the remainder satisfies the estimation

|Wn (f, In, ξ)| ≤ sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] b∨
a

(f)(2.10)

≤
[

1
2
ν (h) + sup

i=0,...,n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] b∨
a

(f)

≤ ν (h)
b∨
a

(f)

for all ξi (i = 0, ..., n− 1) as above, where ν (h) := max {hi|i = 0, 1, ..., n}.
The constant 1

2 is sharp in (2.10).

Proof. Apply Theorem 1 on the interval [xi, xi+1] to get∣∣∣∣∫ xi+1

xi

f (x) dx− f (ξi)hi

∣∣∣∣ ≤ [1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] xi+1∨
xi

(f) .(2.11)

Summing over i from 0 to n − 1 and using the generalized triangle inequality we
get

|Wn (f, In, ξ)| ≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f (x) dx− f (ξi)hi

∣∣∣∣
≤

n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] xi+1∨
xi

(f)

≤ sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] n−1∑
i=0

xi+1∨
xi

(f)

= sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] b∨
a

(f) .

The second inequality follows by the properties of sup (·) .
Now, as ∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ ≤ 1
2
hi

for all ξi ∈ [xi, xi+1](i = 0, ..., n− 1) the last part of (2.10) is also proved.

Corollary 4. Let f : [a, b]→ R be a monotonic mapping on [a, b] and In, ξi
(i = 0, ..., n− 1) be as above. Then we have the Riemann quadrature formula (2.9)
where the remainder satisfies the estimation

|Wn (f, In, ξ)| ≤ sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] |f (b)− f (a)|

≤
[

1
2
ν (h) + sup

i=0,...,n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] |f (b)− f (a)|

≤ ν (h) |f (b)− f (a)|
for all ξi (i = 0, ..., n− 1) as above.

The case of Lipschitzian mappings is embodied within the following corollary.
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Corollary 5. Let f : [a, b] → R be an L-Lipschitzian mapping on [a, b] and
In, ξi (i = 0, ..., n− 1) be as above. Then we have the Riemann quadrature formula
(2.9) where the remainder satisfies the estimation

|Wn (f, In, ξ)| ≤ L

n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣]hi
≤ L

n−1∑
i=0

h2
i .

The proof is obvious by Corollary 2 applied on the intervals [xi, xi+1] and
summing the resulting inequalities.

We shall omit the details.
Note that the best estimation we can get from (2.10) is that one for which

ξi = xi+xi+1
2 , obtaining the following midpoint formula for functions of bounded

variation.

Corollary 6. Let f, In be as Theorem 2. Then we have the midpoint rule∫ b

a

f (x) dx = Mn (f, In) + Sn (f, In) ,

where

Mn (f, In) =
n−1∑
i=0

f

(
xi + xi+1

2

)
hi

and the remainder Sn (f, In) satisfies the estimation

|Sn (f, In)| ≤ 1
2
ν (h)

b∨
a

(f) .

Similar results can be obtained from Corollaries 4 and 5.

Remark 3. If we assume that f : [a, b] → R is differentiable on (a, b) and
whose derivative f ′ is integrable on (a, b) we can put instead of

∨b
a (f) the L1−

norm ‖f ′‖1 obtaining the estimation due to Dragomir and Wang from the paper
[7].

3. An Inequality for Monotonic Mappings

Bounds were obtained for monotonic mappings in Corollary 2 as a particular
case in the development for functions of bounded variation. This section treats
specifically monotonic functions and obtains tighter bounds.

3.1. Integral Inequalities. The following results of Ostrowski type holds
[37].
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Theorem 3. Let u : [a, b] → R be a monotonic nondecreasing mapping on
[a, b] . Then for all x ∈ [a, b] , we have the inequality∣∣∣∣∣(b− a)u (x)−

∫ b

a

u (t) dt

∣∣∣∣∣(3.1)

≤ [2x− (a+ b)]u (x) +
∫ b

a

sgn(t− x)u (t) dt

≤ (x− a)(u (x)− u (a)) + (b− x)(u (b)− u (x))

≤
[
b− a

2
+
∣∣∣∣x− a+ b

2

∣∣∣∣] (u (b)− u (a)) .

All the inequalities in (3.1) are sharp and the constant 1
2 is the best possible one.

Proof. Using the integration by parts formula for Riemann-Stieltjes integrals,
we have the identity as given by (2.2).

Now, assume that ∆n : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a sequence of

divisions with ν (∆n)→ 0 as n→∞, where ν (∆n) := maxi∈{0,...,n−1}(x
(n)
i+1−x

(n)
i )

and ξ
(n)
i ∈

[
x

(n)
i , x

(n)
i+1

]
. If p : [a, b] → R is continuous on [a, b] and v : [a, b] → R is

monotonic nondecreasing on [a, b] , then∣∣∣∣∣
∫ b

a

p (x) dv (x)

∣∣∣∣∣ =

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p
(
ξ

(n)
i

) [
v
(
x

(n)
i+1

)
− v

(
x

(n)
i

)]∣∣∣∣∣
≤ lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ ∣∣∣v (x(n)
i+1

)
− v

(
x

(n)
i

)∣∣∣
≤ lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ (v (x(n)
i+1

)
− v

(
x

(n)
i

))
=

∫ b

a

|p (x)| dv (x) .

As u is monotonic nondecreasing on [a, b], and p(x, ·) is continuous on the intervals,
then using the above inequality we can state that∣∣∣∣∣

∫ b

a

p (x, t) du (t)

∣∣∣∣∣ ≤
∫ b

a

|p (x, t)| du (t) .(3.2)

Now, let us observe that ∫ b

a

|p (x, t)| du (t)

=
∫ x

a

|t− a| du (t) +
∫ b

x

|t− b| du (t)

=
∫ x

a

(t− a)du (t) +
∫ b

x

(b− t)du (t)



9

= (t− a)u (t)
]x
a
−
∫ x

a

u (t) dt− (b− t)u (t)
]b
x

+
∫ b

x

u (t) dt

= [2x− (a+ b)]u (x)−
∫ x

a

u (t) dt+
∫ b

x

u (t) dt

= [2x− (a+ b)]u (x) +
∫ b

a

sgn(t− x)u (t) dt.

Using the inequality (3.2) and the identity (2.2) we get the first part of (3.1).
Now let us observe that∫ b

a

sgn(t− x)u (t) dt = −
∫ x

a

u (t) dt+
∫ b

x

u (t) dt.

As u is monotonic nondecreasing on [a, b] , we can state that∫ x

a

u (t) dt ≥ (x− a)u (a) and
∫ b

x

u (t) dt ≤ (b− x)u (b)

so that ∫ b

a

sgn(t− x)u (t) dt ≤ (b− x)u (b)− (x− a)u (a) .

Consequently

[2x− (a+ b)]u (x) +
∫ b

a

sgn(t− x)u (t) dt

≤ [2x− (a+ b)]u (x) + (b− x)u (b)− (x− a)u (a)
= (b− x)(u (b)− u (x)) + (x− a)(u (x)− u (a))

and the second part of (3.1) is proved.
Finally, let us observe that

(b− x)(u (b)− u (x)) + (x− a)(u (x)− u (a))
≤ max{b− x, x− a}[u (b)− u (x) + u (x)− u (a)]

=
[
b− a

2
+
∣∣∣∣x− a+ b

2

∣∣∣∣] (u (b)− u (a))

and the inequality (3.1) is thus proved.
Now for the sharpness of the inequalities, assume that (3.1) holds with a constant
C > 0 instead of 1

2 . That is,∣∣∣∣∣(b− a)u (x)−
∫ b

a

u (t) dt

∣∣∣∣∣(3.3)

≤ [2x− (a+ b)]u (x) +
∫ b

a

sgn(t− x)u (t) dt

≤ (x− a)(u (x)− u (a)) + (b− x)(u (b)− u (x))

≤
[
C (b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] (u (b)− u (a)).

Consider the mapping u0 : [a, b]→ R given by

u0 (x) :=
{
−1 if x = a
0 if x ∈ (a, b] .
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Putting in (3.3) u = u0 and x = a, we have∣∣∣∣∣u (x)−
∫ b

a

u (t) dt

∣∣∣∣∣
= [2x− (a+ b)]u (x) +

∫ b

a

sgn(t− x)u (t) dt

= (x− a)(u (x)− u (a)) + (b− x)(u (b)− u (x)) = 1

≤
[
C (b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] (u (b)− u (a))

=
(
C +

1
2

)
(b− a) ,

which proves the sharpness of the first two inequalities and the fact that C should
not be less than 1

2 .

The following corollaries are interesting.

Corollary 7. Let u be as above. Then we have the midpoint inequality:∣∣∣∣∣(b− a)u
(
a+ b

2

)
−
∫ b

a

u (t) dt

∣∣∣∣∣(3.4)

≤
∫ b

a

sgn

(
t− a+ b

2

)
u (t) dt

≤ b− a
2

[u (b)− u (a)] .

Also, we have the following “trapezoid inequality” for monotonic nondecreasing
mappings.

Corollary 8. Under the above assumptions, we have∣∣∣∣∣b− a2
[u (a) + u (b)]−

∫ b

a

u (t) dt

∣∣∣∣∣ ≤ b− a
2

[u (b)− u (a)] .(3.5)

Proof. Taking x = a and x = b in Theorem 3, summing, using the triangle
inequality and dividing by 2, we get the desired inequality (3.5).

3.2. A Quadrature Formula. Let In : a = x0 < x1 < ... < xn−1 < xn = b
be a division of the interval [a, b] and ξi ∈ [xi, xi+1] (i = 0, ..., n− 1) a sequence of
intermediate points for In. Construct the Riemann sums

Rn (f, In, ξ) =
n−1∑
i=0

f (ξi)hi ,

where hi := xi+1 − xi.
We have the following quadrature formula.

Theorem 4. Let f : [a, b] → R be a monotonic nondecreasing mapping on
[a, b] and In, ξi (i = 0, ..., n−1) be as above. Then we have the Riemann quadrature
formula ∫ b

a

f (x) dx = Rn (f, In, ξ) +Wn (f, In, ξ) ,(3.6)
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where the remainder satisfies the estimation

|Wn (f, In, ξ)|(3.7)

≤ 2
n−1∑
i=0

(
ξi −

xi + xi+1

2

)
f (ξi) +

∫ b

a

S(t, In, ξ)f (t) dt

≤
n−1∑
i=0

[(ξi − xi) (f (ξi)− f (xi)) + (xi+1 − ξi)(f (xi+1)− f (ξi))]

≤ sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] (f (b)− f (a))

≤
[

1
2
ν(h) + sup

i=0,...,n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] (f (b)− f (a))

≤ ν(h)(f (b)− f (a))

for all ξi (i = 0, ..., n− 1) as above, where ν(h) := maxi=0,...,n{hi} and

S(t, In, ξ) =sgn(t− ζi) if t ∈ [xi, xi+1)(i = 0, ..., n− 1).

Proof. Apply Theorem 3 on the interval [xi, xi+1] to get∣∣∣∣∫ xi+1

xi

f (x) dx− f (ξi)hi

∣∣∣∣
≤ 2(ξi −

xi + xi+1

2
)f (ξi) +

∫ xi+1

xi

S(t, In, ξ)f (t) dt

≤ (ξi − xi) (f (ξi)− f (xi)) + (xi+1 − ξi)(f (xi+1)− f (ξi))

≤
[

1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] (f (xi+1)− f (xi)).

Summing over i from 0 to n − 1 and using the generalized triangle inequality we
get

|Wn (f, In, ξ)|

≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f (x) dx− f (ξi)hi

∣∣∣∣
≤ 2

n−1∑
i=0

[(
ξi −

xi + xi+1

2

)
f (ξi) +

∫ xi+1

xi

S(t, In, ξ)f (t) dt
]

≤
n−1∑
i=0

[(ξi − xi) (f (ξi)− f (xi)) + (xi+1 − ξi)(f (xi+1)− f (ξi))]

≤
n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] (f (xi+1)− f (xi))

≤ sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] n−1∑
i=0

(f (xi+1)− f (xi))

= sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] (f (b)− f (a)).
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The fourth inequality follows by the properties of sup(·).
Now, as ∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ ≤ 1
2
hi

for all ξi ∈ [xi, xi+1](i = 0, ..., n− 1) the last part of (3.7) is also proved.

Corollary 9. Let f, In be as in Theorem 4. Then we have the midpoint rule∫ b

a

f (x) dx = Mn (f, In) + Sn (f, In) ,

where

Mn (f, In) =
n−1∑
i=0

f

(
xi + xi+1

2

)
hi

and the remainder Sn (f, In) satisfies the estimation

|Sn (f, In)| ≤
∫ b

a

µ(In)f (t) dt ≤ 1
2
ν(h)(f (b)− f (a)) ,

where

µ (In) = sgn

(
t− xi + xi+1

2

)
if t ∈ [xi, xi+1) (i = 0, ..., n− 1).

4. Ostrowski Inequality for Lipschitzian Mappings

In Corollary 2, bounds were obtained for an interior point rule for Lipschitzian
mappings as a special instance of functions of bounded variation. Treating specifi-
cally Lipschitzian mappings, tighter bounds are now obtained.

4.1. Integral Inequalities. The following inequality for Lipschitzian map-
pings holds [38].

Theorem 5. Let u : [a, b] → R be an L−Lipschitzian mapping on [a, b]. That
is,

|u(x)− u(y)| |≤ L |x− y| for all x, y ∈ [a, b].

Then we have the inequality∣∣∣∣∣
∫ b

a

u(t)dt− (b− a)u(x)

∣∣∣∣∣ ≤ L
[

(b− a)2

4
+ (x− a+ b

2
)2
]
,(4.1)

for all x ∈ [a, b] .
The constant 1

4 is the best possible one.

Proof. Using the integration by parts formula for Riemann-Stieltjes integrals
we have the identity as given in (2.2).
Now, assume that ∆n : a = x

(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a sequence of

divisions with ν(∆n)→ 0 as n→∞, where ν(∆n) := maxi∈{0,...,n−1}

(
x

(n)
i+1 − x

(n)
i

)
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and ξ(n)
i ∈

[
x

(n)
i , x

(n)
i+1

]
. If p : [a, b]→ R is Riemann integrable on [a, b] and v : [a, b]

→ R is L-Lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a

p(x)dv(x)

∣∣∣∣∣
=

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p
(
ξ

(n)
i

)
[v
(
x

(n)
i+1

)
− v

(
x

(n)
i

)
]

∣∣∣∣∣
≤ lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ (x(n)
i+1 − x

(n)
i

) ∣∣∣∣∣∣
v
(
x

(n)
i+1

)
− v

(
x

(n)
i

)
x

(n)
i+1 − x

(n)
i

∣∣∣∣∣∣
≤ L lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ (x(n)
i+1 − x

(n)
i

)
and so ∣∣∣∣∣

∫ b

a

p(x)dv(x)

∣∣∣∣∣ ≤ L
∫ b

a

|p(x)| dx.(4.2)

Applying the inequality (4.2) for p(x, t) as given in (2.2) and v(x) = u(x), x ∈ [a, b],
we get ∣∣∣∣∣

∫ b

a

p(x, t)du(t)

∣∣∣∣∣ ≤ L

[∫ x

a

|t− a| dt+
∫ b

x

|t− b|dt

]

=
L

2
[
(x− a)2 + (b− x)2]

= L

[
(b− a)2

4
+
(
x− a+ b

2

)2
]

(4.3)

and so by (4.3), via the identity (2.2), we deduce the desired inequality (4.1).
Now to determine the best constant, assume that the inequality (4.1) holds with a
constant C > 0. That is∣∣∣∣∣

∫ b

a

u(t)dt− (b− a)u(x)

∣∣∣∣∣ ≤ L
[
C(b− a)2 +

(
x− a+ b

2

)2
]

(4.4)

for all x ∈ [a, b].
Consider the mapping f : [a, b]→ R, f(x) = x in (4.4). Then∣∣∣∣x− a+ b

2

∣∣∣∣ ≤ C(b− a)2 +
(
x− a+ b

2

)2

for all x ∈ [a, b]; and then for x = a, we get

b− a
2
≤
(
C +

1
4

)
(b− a)

which implies that C ≥ 1
4 and the theorem is completely proved.

The following corollary holds, giving a midpoint rule for Lipschitzian functions.
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Corollary 10. Let u : [a, b]→ R be as above. Then we have the inequality:∣∣∣∣∣
∫ b

a

u(t)dx− (b− a)u
(
a+ b

2

)∣∣∣∣∣ ≤ 1
4
L(b− a)2.(4.5)

Remark 4. It is well known that if f : [a, b]→ R is a convex mapping on [a, b],
then the Hermite-Hadamard inequality holds

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

.(4.6)

Now, if we assume that f : I ⊂ R→ R is convex on I and a, b ∈ Int(I), a < b; then
f ′+ is monotonic nondecreasing on [a, b] and by Theorem 5 we obtain

0 ≤ 1
b− a

∫ b

a

f(x)dx− f
(
a+ b

2

)
≤ 1

4
f ′+(b)(b− a) ,(4.7)

which gives a counterpart for the first membership of Hadamard’s inequality.

4.2. A Quadrature Formula of Riemann Type. Let In : a = x0 < x1 <
... < xn−1 < xn = b be a division of the interval [a, b] and ξi ∈ [xi, xi+1] (i =
0, ..., n− 1) a sequence of intermediate points for In. Construct the Riemann sums

Rn(f, In, ξ) =
n−1∑
i=0

f(ξi)hi ,

where hi := xi+1 − xi.
We have the following quadrature formula [38].

Theorem 6. Let f : [a, b] → R be an L−Lipschitzian mapping on [a, b] and
In, ξi (i = 0, ..., n− 1) be as above. Then we have the Riemann quadrature formula∫ b

a

f(x)dx = Rn(f, In, ξ) +Wn(f, In, ξ) ,(4.8)

where the remainder satisfies the estimation

|Wn(f, In, ξ)| ≤
1
4
L

n−1∑
i=0

h2
i + L

n−1∑
i=0

(
ξi −

xi + xi+1

2

)2

(4.9)

≤ 1
2
L

n−1∑
i=0

h2
i

for all ξi (i = 0, ..., n− 1) as above. The constant 1
4 is sharp in (4.9).

Proof. Apply Theorem 5 on the interval [xi, xi+1] to get∣∣∣∣∫ xi+1

xi

f(x)dx− f(ξi)hi

∣∣∣∣ ≤ L
[

1
4
h2
i +

(
ξi −

xi + xi+1

2

)2
]
.(4.10)

Summing over i from 0 to n − 1 and using the generalized triangle inequality we
get

|Wn(f, In, ξ)| ≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f(x)dx− f(ξi)hi

∣∣∣∣
≤ L

n−1∑
i=0

[
1
4
h2
i + (ξi −

xi + xi+1

2
)2
]
.
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Now, as (
ξi −

xi + xi+1

2

)2

≤ 1
4
h2
i

for all ξi ∈ [xi, xi+1](i = 0, ..., n− 1) the second part of (4.9) is also proved.

Note that the best estimation we can get from (4.9) is that one for which
ξi = xi+xi+1

2 obtaining the following midpoint formula.

Corollary 11. Let f, In be as above. Then we have the midpoint rule∫ b

a

f(x)dx = Mn(f, In) + Sn(f, In)

where

Mn(f, In) =
n−1∑
i=0

f

(
xi + xi+1

2

)
hi

and the remainder Sn(f, In) satisfies the estimation

|Sn(f, In)| ≤ 1
4
L

n−1∑
i=0

h2
i .

Remark 5. If we assume that f : [a, b] → R is differentiable on (a, b) and
whose derivative f ′ is bounded on (a, b) we can put instead of L the infinity norm
‖f ′‖∞ , obtaining the estimation due to Dragomir and Wang from the paper [4].

5. A Generalisation for Derivatives that are Absolutely Continuous

In 1938, Ostrowski (see for example [1, p.468]) proved the following integral
inequality.

Let f : I ⊆ R→R be a differentiable mapping on I◦( I◦ is the interior of I),
and let a, b ∈ I◦ with a < b. If f ′ : (a, b)→R is bounded on (a, b), i.e., ‖f ′‖∞ :=
sup
t∈(a,b)

|f ′ (t)| <∞, then we have the inequality:

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞

for all x ∈ [a, b] .
The constant 1

4 is sharp in the sense that it can not be replaced by a smaller
one.

For applications of Ostrowski’s inequality to some special means and some
numerical quadrature rules, we refer the reader to the recent paper [4] by S.S.
Dragomir and S. Wang.

In 1976, G.V. Milovanović and J.E. Pec̆arić (see for example [1, p. 468]), proved
the following generalization of Ostrowski’s result.
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Let f : [a, b] → R be an n-times differentiable function, n ≥ 1, such that∥∥f (n)
∥∥
∞ := sup

t∈(a,b)

∣∣f (n) (t)
∣∣ <∞. Then

∣∣∣∣∣ 1n
(
f(x) +

n−1∑
k=1

n− k
k!
· f

(k−1)(a)(x− a)k − f (k−1)(b)(x− b)k

b− a

)

− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
∥∥f (n)

∥∥
∞

n(n+ 1)!
· (x− a)n+1 + (b− x)n+1

b− a

for all x ∈ [a, b].
In [8], P. Cerone, S.S. Dragomir and J. Roumeliotis proved the following Os-

trowski type inequality for twice differentiable mappings:
Let f : [a, b]→ R be a twice differentiable mapping on (a, b) and f ′′ : (a, b)→ R

is bounded, i.e., ‖f ′′‖∞ = sup
t∈(a,b)

|f ′′ (t)| <∞. Then we have the inequality:

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt−
(
x− a+ b

2

)
f ′ (x)

∣∣∣∣∣
≤

[
1
24

(b− a)2 +
1
2

(
x− a+ b

2

)2
]
‖f ′′‖∞ ≤

(b− a)2

6
‖f ′′‖∞

for all x ∈ [a, b] .
In this section we establish another generalization of the Ostrowski inequality

for n-time differentiable mappings which naturally generalizes the result from [8].
Further, work on representation in terms of power series expansion of functions on
an interval is presented, giving a generalisation of Taylor series which produces an
expansion about a point.

5.1. Integral identities. The following theorem holds [15] (see also [39]).

Theorem 7. Let f : [a, b] → R be a mapping such that f (n−1) is absolutely
continuous on [a, b]. Then for all x ∈ [a, b] we have the identity:∫ b

a

f (t) dt =
n−1∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x)(5.1)

+ (−1)n
∫ b

a

Kn (x, t) f (n) (t) dt

where the kernel Kn : [a, b]2 → R is given by

Kn (x, t) :=


(t− a)n

n!
if t ∈ [a, x]

(t− b)n

n!
if t ∈ (x, b]

, x ∈ [a, b](5.2)

and n is a natural number, n ≥ 1.

Proof. The proof is by mathematical induction [15]. For a different argument,
see [39].
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For n = 1, we have to prove the equality∫ b

a

f (t) dt = (b− a) f (x)−
∫ b

a

K1 (x, t) f (1) (t) dt(5.3)

where

K1 (x, t) :=

 t− a if t ∈ [a, x]

t− b if t ∈ (x, b]
.

Integrating by parts, we have:∫ b

a

K1 (x, t) f (1) (t) dt

=
∫ x

a

(t− a) f ′ (t) dt+
∫ b

x

(t− b) f ′ (t) dt

= (t− a) f (t)|xa −
∫ x

a

f (t) dt+ (t− b) f (t)|bx −
∫ b

x

f (t) dt

= (x− a) f (x) + (b− x) f (x)−
∫ b

a

f (t) dt

= (b− a) f (x)−
∫ b

a

f (t) dt

and the identity (5.3) is proved.
Assume that (5.1) holds for “n” and let us prove it for “n + 1”. That is, we

have to prove the equality∫ b

a

f (t) dt =
n∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x)(5.4)

+ (−1)n+1
∫ b

a

Kn+1 (x, t) f (n+1) (t) dt.

We have, using (5.2),∫ b

a

Kn+1 (x, t) f (n+1) (t) dt

=
∫ x

a

(t− a)n+1

(n+ 1)!
f (n+1) (t) dt+

∫ b

x

(t− b)n+1

(n+ 1)!
f (n+1) (t) dt

and integrating by parts gives∫ b

a

Kn+1 (x, t) f (n+1) (t) dt

=
(t− a)n+1

(n+ 1)!
f (n) (t)

∣∣∣∣∣
x

a

− 1
n!

∫ x

a

(t− a)n f (n) (t) dt

+
(t− b)n+1

(n+ 1)!
f (n) (t)

∣∣∣∣∣
b

x

− 1
n!

∫ b

x

(t− b)n f (n) (t) dt

=
(x− a)n+1 + (−1)n+2 (b− x)n+1

(n+ 1)!
f (n) (x)−

∫ b

a

Kn (x, t) f (n) (t) dt.
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That is∫ b

a

Kn (x, t) f (n) (t) dt =
(x− a)n+1 + (−1)n+2 (b− x)n+1

(n+ 1)!
f (n) (x)

−
∫ b

a

Kn+1 (x, t) f (n+1) (t) dt.

Now, using the mathematical induction hypothesis, we get∫ b

a

f (t) dt =
n−1∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x)

+
(b− x)n+1 + (−1)n (x− a)n+1

(n+ 1)!
f (n) (x)

−(−1)n
∫ b

a

Kn+1 (x, t) f (n+1) (t) dt

=
n∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x)

+ (−1)n+1
∫ b

a

Kn+1 (x, t) f (n+1) (t) dt.

That is, identity (5.4) and the theorem is thus proved.

Corollary 12. With the above assumptions, we have the representation∫ b

a

f (t) dt =
n−1∑
k=0

[
1 + (−1)k

(k + 1)!

]
(b− a)k+1

2k+1 f (k)
(
a+ b

2

)
(5.5)

+ (−1)n
∫ b

a

Mn (t) f (n) (t) dt

where

Mn (t) :=


(t− a)n

n!
if t ∈

[
a, a+b

2

]
(t− b)n

n!
if t ∈

(
a+b

2 , b
] .

The proof follows by Theorem 7 by choosing x = a+b
2 so that Mn (t) =

Kn

(
a+b

2 , t
)
.

Corollary 13. With the above assumptions, we have the representation:∫ b

a

f (t) dt =
n−1∑
k=0

(b− a)k+1

(k + 1)!

[
f (k) (a) + (−1)k f (k) (b)

2

]

+
∫ b

a

Tn (t) f (n) (t) dt(5.6)

where

Tn (t) :=
1
n!

[
(b− t)n + (−1)n (t− a)n

2

]
, t ∈ [a, b] .(5.7)
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Proof. Choose x = a and x = b in (5.1) , then summing the resulting identities
and dividing by 2, gives∫ b

a

f (t) dt =
n∑
k=0

(b− a)k+1

(k + 1)!

[
f (k) (a) + (−1)k f (k) (b)

2

]

+
∫ b

a

Tn (t) f (n) (t) dt

and the corollary is proved.

The following Taylor-like formula with integral remainder also holds.

Corollary 14. Let g : [a, y] → R be a mapping such that g(n) is absolutely
continuous on [a, y] . Then for all x ∈ [a, y] , we have the identity

g (y) = g (a) +
n−1∑
k=0

[
(y − x)k+1 + (−1)k (x− a)k+1

]
(k + 1)!

g(k+1) (x)

+ (−1)n
∫ y

a

Kn (y, t) g(n+1) (t) dt.(5.8)

The proof is obvious by Theorem 7 choosing f = g′, and b = y.

Remark 6. If we choose n = 1 in (5.1), we get the identity (5.3) which is
the identity employed by S.S. Dragomir and S. Wang to prove an Ostrowski type
inequality in paper [4].

If in (5.5) we choose n = 1, then we get∫ b

a

f (t) dt = (b− a) f
(
a+ b

2

)
−
∫ b

a

M1 (t) f ′ (t) dt(5.9)

where

M1 (t) =

 t− a if t ∈
[
a, a+b

2

]
t− b if t ∈

(
a+b

2 , b
]

which gives the midpoint type identity useful in Numerical Analysis, although here
only the first derivative is involved.

Also, if we put n = 1 in (5.6), we get the trapezoid identity∫ b

a

f (t) dt =
b− a

2
(f (a) + f (b)) +

∫ b

a

T1 (t) f ′ (t) dt(5.10)

where

T1 (t) =
a+ b

2
− t, t ∈ [a, b] .

Finally, if in the Taylor-like formula (5.8) we put n = 1, we get

g (y) = g (a) + (y − a) g′ (x)−
∫ y

a

K1 (y, t) g(2) (t) dt

where x ∈ [a, y] .
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Remark 7. If we choose n = 2 in (5.1), we get the identity:

∫ b

a

f (t) dt = (b− a) f (x)−
(
x− a+ b

2

)
f ′ (x)(5.11)

+
∫ b

a

K2 (x, t) f ′′ (t) dt

where K2 (x, t) is as given in (5.2), which is the identity employed by P. Cerone,
S.S. Dragomir and J. Roumeliotis to prove some Ostrowski type inequalities for
twice differentiable mappings in the paper [8].

If in (5.5) we choose n = 2, then we get

∫ b

a

f (t) dt = (b− a) f
(
a+ b

2

)
+
∫ b

a

M2 (t) f ′′ (t) dt(5.12)

where

M2 (t) =


(t− a)2

2
if t ∈

[
a, a+b

2

]
(t− b)2

2
if t ∈

(
a+b

2 , b
]

which is the classical midpoint identity.
Also, if we put n = 2 in (5.6) , we get the identity

∫ b

a

f (t) dt =
b− a

2
(f (a) + f (b)) +

(b− a)2

2
· f
′ (a)− f ′ (b)

2
(5.13)

+
∫ b

a

T2 (t) f ′′ (t) dt

where T2 (t) is as given in (5.7).
Finally, if we put n = 2 in (5.8), we get

g (y) = g (a) + (y − a) g′ (x)− (y − a)
(
x− a+ y

2

)
g′′ (x)(5.14)

+
∫ y

a

K2 (y, t) g(3) (t) dt,

where K2 is given in (5.2) and a ≤ x ≤ y.

5.2. Some integral inequalities. The following theorem holds (see also [15]
for the case of the ‖·‖∞ norm).
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Theorem 8. Let f : [a, b] → R be a mapping such that f (n−1) is absolutely
continuous on [a, b] . Then for all x ∈ [a, b] , we have the inequalities∣∣∣∣∣

∫ b

a

f (t) dt−
n−1∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x)

∣∣∣∣∣

≤



‖f(n)‖∞
(n+1)!

[
(x− a)n+1 + (b− x)n+1

]
if f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!

[
(x−a)nq+1+(b−x)nq+1

nq+1

] 1
q

if p > 1, 1
p + 1

q = 1

and f (n) ∈ Lp [a, b] ,
‖f(n)‖1

n!

[ 1
2 (b− a) +

∣∣x− a+b
2

∣∣]n if f (n) ∈ L1 [a, b] ,

(5.15)

where

∥∥∥f (n)
∥∥∥
∞

:= sup
t∈[a,b]

∣∣∣f (n) (t)
∣∣∣ <∞ and

∥∥∥f (n)
∥∥∥
p

:=

(∫ b

a

∣∣∣f (n) (t)
∣∣∣p dt) 1

p

.

Proof. Using the identity (5.1) , we have:∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

Kn (x, t) f (n) (t) dt

∣∣∣∣∣ := Q (x) .

Now, observe that

Q (x) ≤
∥∥∥f (n)

∥∥∥
∞
‖Kn (x, ·)‖1 =

∥∥∥f (n)
∥∥∥
∞

∫ b

a

|Kn (x, t)| dt

and so using (5.2),

Q (x) ≤
∥∥∥f (n)

∥∥∥
∞

[∫ x

a

(t− a)n

n!
dt+

∫ b

x

(b− t)n

n!
dt

]

=

∥∥f (n)
∥∥
∞

(n+ 1)!

[
(x− a)n+1 + (b− x)n+1

]
,

and the first part of inequality (5.15) is proved.
Further, using Hölder’s integral inequality, we have

Q (x) ≤
∥∥∥f (n)

∥∥∥
p

(∫ b

a

|Kn (x, t)|q dt

) 1
q

=

∥∥f (n)
∥∥
p

n!

[∫ x

a

(t− a)nq dt+
∫ b

x

(b− t)nq dt

] 1
q

,

and so, on evaluation of the above integrals, the second inequality in (5.15) is
proven.
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Finally, let us observe that,

Q (x) ≤ ‖Kn (x, ·)‖∞
∥∥∥f (n)

∥∥∥
1

=
∥∥∥f (n)

∥∥∥
1

sup
t∈[a,b]

|Kn (x, t)|

=

∥∥f (n)
∥∥

1

n!
[max {x− a, b− x}]n

=

∥∥f (n)
∥∥

1

n!

[
b− a

2
+
∣∣∣∣x− a+ b

2

∣∣∣∣]n
and the theorem is completely proved.

Remark 8. It may be noticed that the expressions for the bounds of a gener-
alised interior point rule such as that given by (5.15) are upper bounded by taking
x = a or x = b in the bound while keeping a general x ∈ [a, b] for the rule. The
sharpest bound is obtained by taking x = a+b

2 , giving the result expressed in the
following corollary.

Corollary 15. Let the conditions of Theorem 8 hold. Then∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

(
b− a

2

)k+1 [
1 + (−1)k

] f (k)
(
a+b

2

)
(k + 1)!

∣∣∣∣∣

≤



(b−a)n+1

2n(n+1)!

∥∥f (n)
∥∥
∞ if f (n) ∈ L∞ [a, b] ,

(b−a)
n+ 1

q

2nn!(nq+1)
1
q

∥∥f (n)
∥∥
p

if p > 1, 1
p + 1

q = 1

and f (n) ∈ Lp [a, b] ,
(b−a)n

2nn!

∥∥f (n)
∥∥

1 if f (n) ∈ L1 [a, b] .

(5.16)

Remark 9. Taking n = 1 in Theorem 8 and Corollary 14 reproduces some
of the results obtained by Dragomir and Wang ( [4]-[7]) while n = 2 reproduces
the results of Cerone, Dragomir and Roumeliotis ([8]-[11]). It is important to note
that assuming that the behaviour of the first derivatives determines the bound on the
rule allows greater flexibility than assumptions about the second derivative. Taking
n = 2 allows a comparison with traditional midpoint

(
x = a+b

2

)
or interior point

rules. It should further be noted that only even derivatives occur in the rule given
in (5.16).

Remark 10. It is most interesting to observe that the bounds given in (5.15)
for a generalised interior point method obtained from investigating various norms of
Kn (x, t) as given by (5.2) are the same as the bounds obtained from the generalised
trapezoidal type rule resulting from various norms of the Peano kernel given by
(x−t)n
n! .

The following corollary is a generalisation of the trapezoidal inequality [15].
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Corollary 16. With the above assumptions, we have the inequality:∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

(b− a)k+1

(k + 1)!

[
f (k) (a) + (−1)k f (k) (b)

2

]∣∣∣∣∣(5.17)

≤ (b− a)n+1

(n+ 1)!

∥∥∥f (n)
∥∥∥
∞
×


1 if n = 2r

22r+1 − 1
22r if n = 2r + 1

.

Proof. Using the identity (5.6), we get∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

(b− a)k+1

(k + 1)!

[
f (k) (a) + (−1)k f (k) (b)

2

]∣∣∣∣∣(5.18)

=

∣∣∣∣∣
∫ b

a

Tn (t) f (n) (t) dt

∣∣∣∣∣ ≤ ∥∥∥f (n)
∥∥∥
∞

∫ b

a

|Tn (t)| dt.

If n = 2r, then∫ b

a

|Tn (t)| dt(5.19)

=
1

(2r)!

∫ b

a

[
(b− t)2r + (t− a)2r

2

]
dt

=
1

(2r)!
· 1

2

[
(b− a)2r+1

(2r + 1)
+

(b− a)2r+1

(2r + 1)

]
=

(b− a)2r+1

(2r + 1)!
.

For n = 2r + 1, put h2r+1 (t) := (b− t)2r+1 − (t− a)2r+1
, t ∈ [a, b] . Observe

that h2r+1(t) = 0 iff t = a+b
2 and h2r+1 (t) > 0 if t ∈ [a, a+b

2 ) and h2r+1 (t) < 0 if
t ∈ (a+b

2 , b].
Then∫ b

a

|T2r+1 (t)| dt

=
∫ a+b

2

a

[
(b− t)2r+1 − (t− a)2r+1

]
dt+

∫ b

a+b
2

[
(t− a)2r+1 − (b− t)2r+1

]
dt

= 2
(b− a)2r+2

2r + 2
−

4
(
b−a

2

)2r+2

2r + 2

=
1

2r + 2

[
2 (b− a)2r+2 − (b− a)2r+2

22r

]

=
(b− a)2r+2

2r + 2

(
2− 1

22r

)
=

(b− a)2r+2

2r + 2
· 22r+1 − 1

22r .

Using (5.17) we get the desired inequality (5.18) .

The following inequalities for the Taylor like expansion (5.8) also hold.
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Corollary 17. Let g be as in Corollary 14. Then we have the inequality:∣∣∣∣∣∣g (y)− g (a)−
n−1∑
k=0

[
(y − x)k+1 + (−1)k (x− a)k+1

]
(k + 1)!

g(k+1) (x)

∣∣∣∣∣∣

≤



‖g(n+1)‖∞
(n+1)!

[
(x− a)n+1 + (y − x)n+1

]
, g(n+1) ∈ L∞ [a, b] ,

‖g(n+1)‖
p

n!

[
(x−a)nq+1+(y−x)nq+1

nq+1

] 1
q

, g(n+1) ∈ Lp [a, b]
1
p + 1

q = 1, p > 1,
‖g(n+1)‖1

n!

[ 1
2 (y − a) +

∣∣x− a+y
3

∣∣]n , g(n+1) ∈ L1 [a, b]

(5.20)

for all a ≤ x ≤ y.

Proof. From equation (5.8) and using norms, or else from (5.15) on choosing
f = g′ and b = y readily produces the above result.

Remark 11. Since the right hand side of (5.20) are convex functions, then up-
per bounds may be found by taking either x = a or b on the right.
It is well known that for the classical Taylor expansion around a we have the in-
equality ∣∣∣∣∣g (y)−

n∑
k=0

(y − a)k

k!
g(k) (a)

∣∣∣∣∣ ≤ (y − a)n+1

(n+ 1)!

∥∥∥g(n+1)
∥∥∥
∞

(5.21)

for all y ≥ a. It is clear now that the above approximation (5.20) around the arbi-
trary point x ∈ [a, y] provides a better approximation for the mapping g at the point
y than the classical Taylor expansion around the point a.

If in (5.20) we choose x = a+y
2 , then we get∣∣∣∣∣∣g (y)− g (a)−
n∑
k=1

[
1 + (−1)k−1

]
k!

(y − a)k

2k
g(k)

(
a+ y

2

)∣∣∣∣∣∣

≤



(y−a)n+1

(n+1)!2n
∥∥g(n+1)

∥∥
∞ , g(n+1) ∈ L∞ [a, b] ,

(y−a)
n+ 1

q

2nn!(nq+1)
1
q

∥∥g(n+1)
∥∥
p
, g(n+1) ∈ Lp [a, b]

with 1
p + 1

q = 1, p > 1,
(y−a)n

2nn!

∥∥g(n+1)
∥∥

1 , g(n+1) ∈ L1 [a, b] .

(5.22)

The above inequality (5.22) shows that for g ∈ C∞ [a, b] the series

g (a) +
∞∑
k=0

[
1 + (−1)k

]
(k + 1)!

(y − a)k+1

2k+1 g(k+1)
(
a+ y

2

)
converges more rapidly to g (y) than the usual one

∞∑
k=0

(y − a)k g(k) (a)
k!



25

which comes from Taylor’s expansion. Further, it should be noted that the Taylor-
like expansion in (5.22) only involves odd derivatives of g.

Remark 12. If in the inequality (5.15) we choose n = 1 we get∣∣∣∣∣
∫ b

a

f (t) dt− (b− a) f (x)

∣∣∣∣∣ ≤ (x− a)2 + (b− x)2

2
‖f ′‖∞ .

As a simple calculation shows that

1
2

[
(x− a)2 + (b− x)2

]
=

1
4

(b− a)2 +
(
x− a+ b

2

)2

consequently we obtain the Ostrowski inequality:∣∣∣∣∣
∫ b

a

f (t) dt− (b− a) f (x)

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a)2 ‖f ′‖∞(5.23)

for all x ∈ [a, b] .

If in (5.18) we put n = 1, we get the midpoint inequality∣∣∣∣∣
∫ b

a

f (t) dt− (b− a) f
(
a+ b

2

)∣∣∣∣∣ ≤ 1
4

(b− a)2 ‖f ′‖∞ .(5.24)

From the inequality (5.17), for n = 1, we get the trapezoid inequality∣∣∣∣∣
∫ b

a

f (t) dt− b− a
2

[f (a) + f (b)]

∣∣∣∣∣ ≤ 1
2

(b− a)2 ‖f ′‖∞ .(5.25)

Also, from (5.20) we deduce

|g (y)− g (a)− (y − a) g′ (x)| ≤

[
(y − a)2

4
+
(
x− a+ y

2

)2
]
‖g′′‖∞(5.26)

for all a ≤ x ≤ y.

Remark 13. If in the inequality (5.15) we choose n = 2, then we get∣∣∣∣∣
∫ b

a

f (t) dt− (b− a) f (x) + (b− a)
(
x− a+ b

2

)
f ′ (x)

∣∣∣∣∣
≤ 1

6

[
(x− a)3 + (b− x)3

]
‖f ′′‖∞

for all x ∈ [a, b] .

From which, on noting that

(x− a)3 + (b− x)3 = (b− a)

[(
b− a

2

)2

+ 3
(
x− a+ b

2

)2
]
,

we recapture the result obtained in [8], namely∣∣∣∣∣
∫ b

a

f (t) dt− (b− a) f (x) + (b− a)
(
x− a+ b

2

)
f ′ (x)

∣∣∣∣∣(5.27)

≤

[
1
24

+
1
2

(
x− a+b

2

)2
(b− a)2

]
(b− a)3 ‖f ′′‖∞ .
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For f ′′ ∈ L∞ [a, b] with n = 2 in (5.16) , we get the classical midpoint inequality∣∣∣∣∣
∫ b

a

f (t) dt− (b− a) f
(
a+ b

2

)∣∣∣∣∣ ≤ 1
24

(b− a)3 ‖f ′′‖∞ ,(5.28)

while from (5.17) , we get a perturbed trapezoid inequality,∣∣∣∣∣
∫ b

a

f (t) dt− b− a
2

[f (a) + f (b)]− (b− a)2

4
[f ′ (b)− f ′ (a)]

∣∣∣∣∣(5.29)

≤ (b− a)3

6
‖f ′′‖∞ .

Finally, if we put n = 2 in (5.20) for g′′′ ∈ L∞ [a, b], then we get the inequality:∣∣∣∣g (y)− g (a)− (y − a) g′ (x) + (y − a)
(
x− a+ y

2

)
g′′ (x)

∣∣∣∣
≤

[
1
24

+
1
2
·
(
x− a+y

2

)2
(y − a)2

]
(y − a)3 ‖g′′′‖∞ ,

valid for any x ∈ [a, y].
Equivalent results may also be produced which involve the Lp [a, b] spaces for

p ≥ 1.
The following particular case for euclidean norms is of particular interest.

Corollary 18. Let f : [a, b] → R be twice differentiable on (a, b) and f ′′ ∈
L2 (a, b) . Then we have the following inequality∣∣∣∣∣

∫ b

a

f (t) dt− (b− a)
[
f (x)−

(
x− a+ b

2

)
f ′ (x)

]∣∣∣∣∣(5.30)

≤ (b− a)
1
2

2
√

5

[(
b− a

2

)4

+ 10
(
b− a

2

)2(
x− a+ b

2

)2

+ 5
(
x− a+ b

2

)4
] 1

2

≤ (b− a)
5
2

2
√

5
.

Proof. Let p = q = 2 and n = 2 in (5.15) to give the left hand side of (5.30)
with the right hand side given by∥∥f (2)

∥∥
2

2!
√

5

[
(x− a)5 + (b− x)5

] 1
2
.

Now, expansion of (x− a)5 + (b− x)5 in a Taylor series about x = a+b
2 readily

produces the first bound in (5.30). The coarser bound is obtained from evaluating
at either of the end points. Hence, the corollary is proved.

Remark 14. The optimal rule from (5.30) in terms of obtaining the tightest
bound occurs on taking x = a+b

2 since the bound is symmetric and convex.

Now, using the celebrated Hermite-Hadamard integral inequality for convex
functions, g : [a, b]→ R, which may be written as

g

(
a+ b

2

)
≤ 1
b− a

∫ b

a

g (x) dx ≤ g (a) + g (b)
2

,(5.31)
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we obtain the following theorem [40].

Theorem 9. Let f : [a, b] → R be twice differentiable and γ ≤ f (x) ≤ Γ for
all x ∈ (a, b) . Then we have the following double inequality:

γ (b− a)2

24
≤ 1
b− a

∫ b

a

f (x) dx− f
(
a+ b

2

)
≤ Γ (b− a)2

24
(5.32)

and the estimation∣∣∣∣∣
∫ b

a

f (x) dx− (b− a) f
(
a+ b

2

)
− (γ + Γ) (b− a)3

48

∣∣∣∣∣ ≤ (Γ− γ) (b− a)3

48
.(5.33)

Proof. Let us choose in (5.31) g (x) = f (x) − γx2

2 , then g (x) is a convex
function in x, since g′′ (x) ≥ 0, and hence

f

(
a+ b

2

)
− γ (a+ b)2

8
≤ 1
b− a

(∫ b

a

f (x) dx−
γ
(
b3 − a3

)
6

)
,

which is equivalent to

1
b− a

∫ b

a

f (x) dx− f
(
a+ b

2

)
≥ γ

2

(
b3 − a3

3 (b− a)
−
(
a+ b

2

)2
)

=
γ (b− a)2

24
,

and the first part of (5.32) is therefore obtained. For the second part, let g (x) =
x2Γ

2 − f (x) , and similar manipulations, as previously lead to the second part of
(5.32). The inequality (5.33) is now obvious by (5.32). The details have been
omitted.

5.3. Applications for numerical integration. Consider the partition Im :
a = x0 < x1 < ... < xm−1 < xm = b of the interval [a, b] and the intermediate
points ξ =

(
ξ0, ..., ξm−1

)
where ξj ∈ [xj , xj+1] , j = 0, ...,m−1. Define the formula

Fm,n (f, Im, ξ) :=
m−1∑
j=0

n−1∑
k=0

[(
xj+1 − ξj

)k+1 + (−1)k
(
ξj − xj

)k+1
]

(k + 1)!
f (k) (ξj)

which can be regarded as a perturbation of Riemann’s sum

Γ (f, Im, ξ) =
m−1∑
j=0

f
(
ξj
)
hj

where hj := xj+1 − xj , j = 0, ...,m− 1.
The following theorem holds.

Theorem 10. Let f : [a, b] → R be a mapping such that f (n−1)is absolutely
continuous on [a, b] and Im a partitioning of [a, b] as above. Then we have the
quadrature formula∫ b

a

f (x) dx = Fm,n (f, Im, ξ) +Rm,n (f, Im, ξ)(5.34)
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where Fm,n is defined above and the remainder Rm,n satisfies the estimation:

|Rm,n (f, Im, ξ)|

≤



‖f(n)‖∞
(n+1)!

m−1∑
j=0

[(
ξj − xj

)n+1 +
(
xj+1 − ξj

)n+1
]

for f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!(nq+1)
1
q

[
m−1∑
j=0

(
ξj − xj

)nq+1 +
m−1∑
j=0

(
xj+1 − ξj

)nq+1

] 1
q

for f (n) ∈ Lp [a, b] , where 1
p + 1

q = 1, p > 1,

‖f(n)‖1
n!

[
1
2ν (h) + maxj=0,...,m−1

∣∣∣ξj − xj+xj+1
2

∣∣∣]n
for f (n) ∈ L1 [a, b] ,

(5.35)

for all ξ as above and ν (h) = max {hj |j = 0, ...,m− 1} .

Proof. Apply Theorem 8 on the interval [xj , xj+1] to get∣∣∣∣∣∣
∫ xj+1

xj

f (t) dt−
n−1∑
k=0


[(
xj+1 − ξj

)k+1 + (−1)k
(
ξj − xj

)k+1
]

(k + 1)!

 f (k) (ξj)
∣∣∣∣∣∣

≤



1
(n+1)! sup

t∈[xj ,xj+1]

∣∣f (n) (t)
∣∣ [(ξj − xj)n+1 +

(
xj+1 − ξj

)n+1
]
,

1
n!

(∫ xj+1

xj

∣∣f (n) (s)
∣∣p ds) 1

p

[
(ξj−xj)

nq+1
+(xj+1−ξj)

nq+1

nq+1

] 1
q

,

1
n!

(∫ xj+1

xj

∣∣f (n) (s)
∣∣ ds) [ 1

2hj +
∣∣∣ξj − xj+xj+1

2

∣∣∣]n .
Summing over j from 0 to m− 1 and using the generalized triangle inequality, we
have

|Rm,n (f, In, ξ)|

≤



1
(n+1)!

m−1∑
j=0

sup
t∈[xj ,xj+1]

∣∣f (n) (t)
∣∣ [(ξj − xj)n+1 +

(
xj+1 − ξj

)n+1
]
,

1
n!

m−1∑
j=0

(∫ xj+1

xj

∣∣f (n) (s)
∣∣p ds) 1

p

[
(ξj−xj)

nq+1
+(xj+1−ξj)

nq+1

nq+1

] 1
q

,

1
n!

m−1∑
j=0

(∫ xj+1

xj

∣∣f (n) (s)
∣∣ ds) [ 1

2hj +
∣∣∣ξj − xj−xj+1

2

∣∣∣]n .
As sup

t∈[xj ,xj+1]

∣∣f (n) (t)
∣∣ ≤ ∥∥f (n)

∥∥
∞, the first inequality in (5.35) readily follows.
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Now, using the discrete Hölder inequality, we have

1
(nq + 1)1/q

m−1∑
j=0

(∫ xj+1

xj

∣∣∣f (n) (s)
∣∣∣p ds) 1

p [(
ξj − xj

)nq+1 +
(
xj+1 − ξj

)nq+1
] 1
q

≤ 1
(nq + 1)1/q

m−1∑
j=0

(∫ xj+1

xj

∣∣∣f (n) (s)
∣∣∣p ds) 1

p

p
1
p

×

m−1∑
j=0

[[(
ξj − xj

)nq+1 +
(
xj+1 − ξj

)nq+1
] 1
q

]q 1
q

=
1

(nq + 1)1/q

∥∥∥f (n)
∥∥∥
p

m−1∑
j=0

(
ξj − xj

)nq+1 +
m−1∑
j=0

(
xj+1 − ξj

)nq+1

 1
q

and thus the second inequality in (5.35) is proved.
Finally, let us observe that

1
n!

m−1∑
j=0

(∫ xj+1

xj

∣∣∣f (n) (s)
∣∣∣ ds)[1

2
hj +

∣∣∣∣ξj − xj + xj+1

2

∣∣∣∣]n

≤ max
j=0,...,m−1

[
1
2
hj +

∣∣∣∣ξj − xj + xj+1

2

∣∣∣∣]n m−1∑
j=0

(∫ xj+1

xj

∣∣∣f (n) (s)
∣∣∣ ds)

≤
[

1
2
hj + max

j=0,...,m−1

∣∣∣∣ξj − xj + xj+1

2

∣∣∣∣]n ∥∥∥f (n)
∥∥∥

1

and the last part of (5.35) is proved.

Remark 15. As (x− a)α + (b− x)α ≤ (b− a)α for α ≥ 1, x ∈ [a, b], then we
remark that the first branch of (5.35) can be bounded by

1
(n+ 1)!

∥∥∥f (n)
∥∥∥
∞

m−1∑
j=0

hn+1
j .(5.36)

The second branch can be bounded by

1
n!(nq + 1)1/q

∥∥∥f (n)
∥∥∥
p

m−1∑
j=0

hnq+1
j

 1
q

(5.37)

and finally, the last branch in (5.35) can be bounded by
1
n!

[ν(h)]n
∥∥∥f (n)

∥∥∥
1
.(5.38)

Note that all the bounds provided by (5.36)-(5.38) are uniform bounds for Rm,n (f, Im, ξ)
in terms of the intermediate points ξ.

As an interesting particular case, we can consider the following perturbed mid-
point formula

Mm,n (f, Im) :=
m−1∑
j=0

n−1∑
k=0

[
1 + (−1)k

(k + 1)!

]
hk+1
j

2k+1 f
(k)
(
xj + xj+1

2

)
,
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which in effect involves only even k.
We state the following result concerning the estimation of the remainder term.

The traditional midpoint rule (1.2), (1.3) is obtained if we take n = 2 and f ′′ ∈
L2 [a, b].

Corollary 19. Let f and Im be as in Theorem 10. Then we have∫ b

a

f (t) dt = Mm,n (f, Im) +Rm,n (f, Im)(5.39)

and the remainder term Rm,n satisfies the estimation

|Rm,n (f, Im)|

≤



‖f(n)‖∞
2n(n+1)!

m−1∑
j=0

hn+1
j , f (n) ∈ L∞ [a, b]

‖f(n)‖
p

2nn!(nq+1)1/q

[
m−1∑
j=0

hn+1
j

] 1
q

, f (n) ∈ Lp [a, b]

1
p + 1

q = 1, p > 1
‖f(n)‖1

2nn! [ν(h)]n , f (n) ∈ L1 [a, b] .

(5.40)

We can consider the following perturbed version of the trapezoid formula:

Tm,n (f, Im) :=
m−1∑
j=0

n−1∑
k=0

hk+1
j

(k + 1)!

[
f (k) (xj) + (−1)k f (k) (xj+1)

2

]
.

By the use of Corollary 16, we have the following approximation of the integral∫ b
a
f (t) dt in terms of Tm,n (f, Im) :

Corollary 20. Let f and Im be as in Theorem 10. Then we have∫ b

a

f (t) dt = Tm,n (f, Im) + R̃m,n (f, Im)(5.41)

and the remainder R̃m,n (f, Im) satisfies the inequality∣∣∣R̃m,n (f, Im)
∣∣∣ ≤ Cn

(n+ 1)!

∥∥∥f (n)
∥∥∥
∞

m−1∑
j=0

hn+1
j

where

Cn :=


1 if n = 2r

22r+1 − 1
22r if n = 2r + 1

.

Remark 16. a) If we choose n = 1 in the above quadrature formulae
(5.34) and (5.39), we recapture some results from the paper [4].

b) If we put n = 2, then by the above Theorem 10 and Corollary 19, we recover
some results from the paper [8].

We omit the details.
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5.4. Application of Taylor like Expansions for some particular map-
pings.

a) Consider g : R→ R, g (x) = ex. Then g(n) (x) = ex, n ∈ N and∥∥∥g(n+1)
∥∥∥
∞

= sup
t∈[a,y]

∣∣∣g(n+1) (t)
∣∣∣ = ey.

Using inequality (5.20) , we have∣∣∣∣∣∣ey − ea − ex
n−1∑
k=0

[
(y − x)k+1 + (−1)k (x− a)k+1

]
(k + 1)!

∣∣∣∣∣∣(5.42)

≤ ey

(n+ 1)!

[
(y − x)n+1 + (x− a)n+1

]
≤ ey

(n+ 1)!
(y − a)n+1

for all a ≤ x ≤ y.
In particular, if we choose a = 0, then we get∣∣∣∣∣∣ey − 1− ex

n−1∑
k=0

[
(y − x)k+1 + (−1)k xk+1

]
(k + 1)!

∣∣∣∣∣∣(5.43)

≤ ey

(n+ 1)!

[
(y − x)n+1 + xn+1

]
≤ ey

(n+ 1)!
yn+1.

Moreover, if we choose x = y
2 , then we get∣∣∣∣∣ey − 1− e

y
2

n−1∑
k=0

1 + (−1)k

(k + 1)!
· y

k+1

2k+1

∣∣∣∣∣ ≤ eyyn+1

2n (n+ 1)!
(5.44)

for all y ≥ 0.
b) Consider g : (0,∞)→ R, g (x) = lnx. Then

g(n) (x) =
(−1)n−1 (n− 1)!

xn
, n ≥ 1, x > 0

and ∥∥∥g(n+1)
∥∥∥
∞

= sup
t∈[a,y]

∣∣∣∣ (−1)n n!
tn+1

∣∣∣∣ =
n!
an+1 , a > 0.

Using the inequality (5.20) we can state:∣∣∣∣∣ln y − ln a−
n−1∑
k=0

(y − x)k+1 + (−1)k (x− a)k+1

(k + 1)!
· (−1)k k!

xk+1

∣∣∣∣∣
≤ n!

(n+ 1)!an+1

[
(y − x)n+1 + (x− a)n+1

]
≤ n!

(n+ 1)!an+1 (y − a)n+1
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which is equivalent to∣∣∣∣∣ln(ya)−
n−1∑
k=0

1
k + 1

· (x− a)k+1 + (−1)k (y − x)k+1

xk+1

∣∣∣∣∣(5.45)

≤ (y − x)n+1 + (x− a)n+1

(n+ 1) an+1

≤ 1
(n+ 1) an+1 (y − a)n+1

.

Now, if we choose in (5.45) y = z + 1, x = w + 1, a = 1, z ≥ w ≥ 0, then we
get ∣∣∣∣∣ln (z + 1)−

n−1∑
k=0

1
k + 1

· w
k+1 + (−1)k (z − w)k+1

(w + 1)k+1

∣∣∣∣∣(5.46)

≤ (z − w)n+1 + wn+1

n+ 1
≤ 1

(n+ 1)
zn+1.

Finally, if we choose in (5.45) , y = ua, x = wa with u ≥ w > 1, then we have∣∣∣∣∣lnu−
n−1∑
k=0

1
k + 1

(w − 1)k+1 + (−1)k (u− w)k+1

wk+1

∣∣∣∣∣
≤ (u− w)n+1 + (w − 1)m+1

n+ 1
≤ (u− 1)n+1

(n+ 1)
.

6. Perturbed Interior Point Rules Through Grüss Type Inequalities

In 1935, G. Grüss (see for example [14]), proved the following integral inequality
which gives an approximation for the integral of a product in terms of the product
of integrals.

Theorem 11. Let f, g : [a, b] → R be two integrable mappings so that φ ≤
h (x) ≤ Φ and γ ≤ g (x) ≤ Γ for all x ∈ [a, b] , where φ,Φ, γ,Γ are real numbers.
Then we have

|T (h, g)| ≤ 1
4

(Φ− φ) (Γ− γ)(6.1)

where

T (h, g) =
1

b− a

∫ b

a

h (x) g (x) dx− 1
b− a

∫ b

a

h (x) dx · 1
b− a

∫ b

a

g (x) dx(6.2)

and the inequality is sharp, in the sense that the constant 1
4 cannot be replaced by

a smaller one.

For a simple proof of this fact as well as for extensions, generalisations, discrete
variants and other associated material, see [14], and the papers [23]-[28] where
further references are given.

A premature Grüss inequality is embodied in following theorem which was
proved in the paper [21]. It provides a sharper bound than the above Grüss in-
equality. The term premature is used to denote the fact that the result is obtained
from not completing the proof of the Grüss inequality if one of the functions is
known explicitly.
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Theorem 12. Let h, g be integrable functions defined on [a, b] and let d ≤
g (t) ≤ D. Then

|T (h, g)| ≤ D − d
2

[T (h, h)]
1
2 ,(6.3)

where T (h, g) is as defined in (6.2).

The above Theorem 12 will now be used to provide a perturbed generalised
interior point rule.

6.1. Perturbed Rules From Premature Inequalities. We start with the
following result.

Theorem 13. Let f : [a, b] → R be such that the derivative f (n−1), n ≥ 1 is
absolutely continuous on [a, b] . Assume that there exist constants γ,Γ ∈ R such that
γ ≤ f (n) (t) ≤ Γ a.e on [a, b] . Then the following inequality holds

|PM (x)| : =

∣∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

]
(k + 1)!

f (k) (x)

− (x− a)n+1 + (−1)n (b− x)n+1

(n+ 1)!

[
f (n−1) (b)− f (n−1) (a)

b− a

]∣∣∣∣∣
≤ Γ− γ

2
· 1
n!
I (x, n)

≤ Γ− γ
2
· n

n+ 1
· (b− a)n+1

√
2n+ 1

,(6.4)

where

I (x, n) =
1

(n+ 1)
√

2n+ 1

{
n2 (b− a)

[
(x− a)2n+1 + (b− x)2n+1

]
+ (2n+ 1) (x− a) (b− x) [(x− a)n − (x− b)n]2

} 1
2
.(6.5)

Proof. Applying the premature Grüss result (6.3) by associating f (n) (t) with
g (t) and h (t) with Kn (x, t) , from (5.2), gives∣∣∣∣∣

∫ b

a

Kn (x, t) f (n) (t) dt−

(∫ b

a

Kn (x, t) dt

)
f (n−1) (b)− f (n−1) (a)

b− a

∣∣∣∣∣
≤ (b− a)

Γ− γ
2

[T (Kn,Kn)]
1
2 ,(6.6)

where from (6.2)

T (Kn,Kn) =
1

b− a

∫ b

a

K2
n (x, t) dt−

(
1

b− a

∫ b

a

Kn (x, t) dt

)2

.

Now, from (5.2),

1
b− a

∫ b

a

Kn (x, t) dt =
1

b− a

[∫ x

a

(t− a)n

n!
dt+

∫ b

x

(t− b)n

n!
dt

]

=
1

(b− a) (n+ 1)!

[
(x− a)n+1 + (−1)n (b− x)n+1

]
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and

1
b− a

∫ b

a

K2
n (x, t) dt =

1
(b− a) (n!)2

[∫ x

a

(t− a)2n
dt+

∫ b

x

(b− t)2n
dt

]

=
1

(b− a) (n!)2

[
(x− a)2n+1 + (b− x)2n+1

(2n+ 1)

]
.

Hence, substitution into (6.6) gives∣∣∣∣∣
∫ b

a

Kn (x, t) f (n) (t) dt

− (x− a)n+1 + (−1)n (b− x)n+1

(n+ 1)!
·
[
f (n−1) (b)− f (n−1) (a)

b− a

]∣∣∣∣∣
≤ Γ− γ

2
1
n!
J (x, n)(6.7)

where

J2 (x, n) =
1

(2n+ 1) (n+ 1)2

{
(n+ 1)2 (A+B)

(
A2n+1 +B2n+1)

− (2n+ 1)
(
An+1 + (−1)nBn+1)2}

with A = x− a, B = b− x.
Now, in the proof of Theorem 31 in the previous chapter relating to the trape-

zoid type inequalities it was shown that J (x, n) = (n+ 1)
√

2n+ 1I (x, n) , where
I (x, n) is as given by (6.5). Thus, using identity (5.1) into (6.7) readily produces
the result (6.4) and the first part of the theorem is proved. The upper bound results
on noticing that I (x, n) is convex and symmetric so that the maximum occurs at
either of the end points. Thus, the theorem is now completely proven.

Corollary 21. Let the conditions of Theorem 31 hold. Then the following
result holds ∣∣∣∣∣

∫ b

a

f (t) dt−
n−1∑
k=0

1
(k + 1)!

(
b− a

2

)k+1 [
1 + (−1)k

]
f (k)

(
a+ b

2

)

−
(
b− a

2

)n+1 [1 + (−1)n]
(n+ 1)!

[
f (n−1) (b)− f (n−1) (a)

b− a

]∣∣∣∣∣
≤ Γ− γ

2
· 1
n!

(
b− a

2

)n+1

· 1√
2n+ 1

·


2n
n+1 , n even

2, n odd
.(6.8)

Proof. Taking x = a+b
2 in (6.4) gives (6.8), where

I

(
a+ b

2
, n

)
=

1
(n+ 1)

√
2n+ 1

(
b− a

2

)n+1 {
4n2 + (2n+ 1) [1 + (−1)n]2

} 1
2
.

Examining the above expression for n even or n odd readily gives the result (6.8).
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Remark 17. For n odd, then the third term in the modulus sign vanished and
thus there is no perturbation to the generalised midpoint rule (6.8). Further, it may
be noticed that only even derivatives are present.
For n = 1 then there is no perturbation term, giving∣∣∣∣∣

∫ b

a

f (t) dt− (b− a) f
(
a+ b

2

)∣∣∣∣∣ ≤ Γ− γ√
3

(
b− a

2

)2

,

where γ ≤ f ′ (t) ≤ Γ.
The above result may be compared with (5.24).
If n = 2 is taken, then there is a perturbation term giving∣∣∣∣∣

∫ b

a

f (t) dt− (b− a) f
(
a+ b

2

)
− (b− a)2

24
(f ′ (b)− f ′ (a))

∣∣∣∣∣
≤ Γ− γ

5
√

5

(
b− a

2

)3

,

where γ ≤ f ′′ (t) ≤ Γ.

Theorem 14. Let the condition of Theorem 13 be satisfied. Further, suppose
that f (n) is differentiable and is such that∥∥∥f (n+1)

∥∥∥
∞

:= sup
t∈[a,b]

∣∣fn+1 (t)
∣∣ <∞.

Then

|PM (x)| ≤ b− a√
12

∥∥∥f (n+1)
∥∥∥
∞
· 1
n!
I (x, n) ,(6.9)

where PM (x) is the perturbed interior point rule given by the left hand side of (6.4)
and I (x, n) is as given by (6.5).

Proof. Let h, g : [a, b] → R be absolutely continuous and h′, g′ be bounded.
Then Chebychev’s inequality holds (see [14])

|T (h, g)| ≤ (b− a)2

√
12

sup
t∈[a,b]

|h′ (t)| · sup
t∈[a,b]

|g′ (t)| .

Matić, Pečarić and Ujević [21] using a premature Grüss type argument proved that

|T (h, g)| ≤ (b− a)√
12

sup
t∈[a,b]

|g′ (t)|
√
T (h, h).(6.10)

Thus, associating f (n) (·) with g (·) and K (x, ·) , from (5.2), with h (·) in (6.10)
produces (6.9) where I (x, n) is as given by (6.5).

Theorem 15. Let the conditions of Theorem 13 be satisfied. Further, suppose
that f (n) is locally absolutely continuous on (a, b) and let f (n+1) ∈ L2 (a, b) . Then

|PM (x)| ≤ b− a
π

∥∥∥f (n+1)
∥∥∥

2
· 1
n!
I (x, n) ,(6.11)

where PM (x) is the perturbed generalised interior point rule given by the left hand
side of (6.4) and I (x, n) is as given in (6.5).
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Proof. The following result was obtained by Lupaş (see [14]). for h, g :
(a, b)→ R locally absolutely continuous on (a, b) and h′, g′ ∈ L2 (a, b) , then

|T (h, g)| ≤ (b− a)2

π2 ‖h′‖2 ‖g
′‖2 ,

where

‖k‖2 :=

(
1

b− a

∫ b

a

|k (t)|2
) 1

2

for k ∈ L2 (a, b) .

Matić, Pečarić and Ujević [21] further show that

|T (h, g)| ≤ b− a
π
‖g′‖2

√
T (h, h).(6.12)

Now, associating f (n) (·) with g (·) and K (x, ·) , from (5.2) with h (·) in (6.12) gives
(6.11), where I (x, n) is as found in (6.5).

Remark 18. Results (6.9) and (6.11) are not readily comparable to that ob-
tained in Theorem 13 since the bound now involves the behaviour of f (n+1) (·) rather
than f (n) (·).

6.2. Alternate Grüss Type Results for Perturbed Interior Point Rules.
Let

σ (h (x)) = h (x)−M (h)(6.13)

where

M (h) =
1

b− a

∫ b

a

h (u) du.(6.14)

Then from (6.2),

T (h, g) =M (hg)−M (h)M (g) .(6.15)

Dragomir and McAndrew [36] showed effectively, that

T (h, g) = T (σ (h) , σ (g))(6.16)

and proceeded to obtain bounds for the trapezoidal rule. We now apply identity
(6.16) to obtain interior point rules.

Theorem 16. Let f : [a, b] → R be a mapping such that f (·) is absolutely
continuous on [a, b] . Then for all x ∈ [a, b]∣∣∣∣∣

∫ b

a

f (t) dt− (b− a) f (x) + (b− a)
(
x− a+ b

2

)
S

∣∣∣∣∣

≤



(
b−a

2

)2 ‖σ (f ′)‖∞ , if f ′ ∈ L∞ [a, b]

b−a
2

(
b−a
q+1

) 1
q ‖σ (f ′)‖p , if f ′ ∈ Lp [a, b]

with 1
p + 1

q = 1, p > 1,
b−a

2 ‖σ (f ′)‖1 , if f ′ ∈ L1 [a, b] ,

(6.17)

where S = f(b)−f(a)
b−a , the secant slope.
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Proof. Using identity (6.16), associate with h (t) , K1 (x, t) from (5.2) and
f ′ (t) for g (t) then ∫ b

a

K1 (x, t) f ′ (t) dt− (b− a)M (K1 (x, ·))S

=
∫ b

a

[K1 (x, t)−M (K1 (x, ·))] [f ′ (t)− S] dt,(6.18)

where, from (5.2),

M (K1 (x, t)) =
1

b− a

[∫ x

a

(t− a) dt+
∫ b

x

(t− b) dt

]
(6.19)

= x− a+ b

2

and from (6.13),

σ (K1 (x, ·)) =

 t− a+ a+b
2 − x, t ∈ [a, x]

t− b+ a+b
2 − x, t ∈ (x, b]

.(6.20)

Thus, (6.18), on utilising (6.19), (6.20) and (5.3) may be written, on taking the
modulus, as ∣∣∣∣∣

∫ b

a

f (t) dt− (b− a) f (x) + (b− a)
(
x− a+ b

2

)
S

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

σ (K1 (x, t)) (f ′ (t)− S) dt

∣∣∣∣∣ := B (x) .(6.21)

Now, observe that

B (x) ≤ ‖f ′ (·)− S‖∞
∫ b

a

|σ (K1 (x, t))| dt

= ‖f ′ (·)− S‖∞

[∫ b−a
2

a+b
2 −x

|u| du+
∫ a+b

2 −x

−( b−a2 )
|v| dv

]
and so after some algebra, the first bound in (6.17) is obtained.

Now, from (6.21) using Hölder’s inequality we have that

B (x) ≤ ‖σ (f ′)‖p

(∫ b

a

|σ (K1 (x, t))|q dt

) 1
q

.(6.22)

Now, ∫ b

a

|σ (K1 (x, t))|q dt =
∫ b−a

2

a+b
2 −x

|u|q du+
∫ a+b

2 −x

−( b−a2 )
|v|q dv.

That is,

L = L1 + L2, say.
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For x < a+b
2 ,

(q + 1)L1 =
∫ b−a

2

a+b
2 −x

uqdu =
(
b− a

2

)q+1

−
(
a+ b

2
− x
)q+1

and

(q + 1)L2 =
∫ 0

− b−a2

|v|q dv +
∫ a+b

2 −x

0
vqdv

=
(
b− a

2

)q+1

−
(
a+ b

2
− x
)q+1

.

Hence,

L =
b− a
q + 1

·
(
b− a

2

)q
.

A similar argument holds for x > a+b
2 and so from (6.22) and (6.21), the second

inequality in (6.17) is obtained.
For the third inequality we note from (6.21) that

B (x) ≤ ‖σ (f ′)‖1 ‖σ (K (x, ·))‖∞
= sup

t∈[a,b]
|σ (K (x, t))| · ‖σ (f ′)‖1 .(6.23)

Now,

sup
t∈[a,b]

|σ (K (x, t))| = max
{
b− a

2
,

∣∣∣∣x− b− a
2

∣∣∣∣}
and using the result

max {X,Y } =
X + Y

2
+

1
2
|Y −X|

gives, on treating the cases x > a+b
2 and x < a+b

2 separately,

max
{
b− a

2
,

∣∣∣∣x− b− a
2

∣∣∣∣} =
b− a

2
.

Thus, on substitution into (6.23), we obtain the third result in (6.17), and the
theorem is completely proved.

Remark 19. The results of this section allow the consideration of f ′ ∈ Lp [a, b] ,
p ∈ [1,∞) whereas the results of Section 6.1 to produce the perturbed rules are valid
using ‖·‖∞. The working, however, for explicit results with Kn (x, t) as given by
(5.2), is somewhat more difficult with the methodology of the current section.

This section considers results involving σ (f ′) which may be more useful when
information is known about deviations of the slope from its mean.

7. An Ostrowski Type Inequality for Mappings Whose Second
Derivatives Are Bounded

In [4], S.S. Dragomir and S. Wang obtained the Ostrowski type inequality using
for the proof essentially, the identity

f (x) =
1

b− a

∫ b

a

f (t) dt+
1

b− a

∫ b

a

p (x, t) f ′ (t) dt(7.1)
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for all x ∈ [a, b] , where f is as above and the kernel, p (·, ·) : [a, b]2 → R, is given by

p (x, t) :=

 t− a if t ∈ [a, x]

t− b if t ∈ (x, b]
.(7.2)

Identity (7.1) is easily proven from considering
∫ b
a
p (x, t) f ′ (t) dt and integrat-

ing by parts.
The main aim of this section is to obtain a perturbed interior point rule in

which the perturbation does not involve derivative evaluations.

7.1. A New Integral Inequality. The following results hold (see for exam-
ple [12]).

Theorem 17. Let f : [a, b] → R be a continuous on [a, b] and twice differen-
tiable function on (a, b) , whose second derivative f ′′ : (a, b) → R is bounded on
(a, b). Then we have the inequality∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

(
x− a+ b

2

)∣∣∣∣∣(7.3)

≤ 1
2


[(
x− a+b

2

)2
(b− a)2 +

1
4

]2

+
1
12

 (b− a)2 ‖f ′′‖∞

≤
‖f ′′‖∞

6
(b− a)2

for all x ∈ [a, b] .

Proof. Applying the identity (7.1) for f ′ (·) we can state

f ′ (t) =
1

b− a

∫ b

a

f ′ (s) ds+
1

b− a

∫ b

a

p (t, s) f ′′ (s) ds,

which is equivalent to

f ′ (t) =
f (b)− f (a)

b− a
+

1
b− a

∫ b

a

p (t, s) f ′′ (s) ds.

Substituting f ′ (t) in the right hand side of (7.1) we get

f (x) =
1

b− a

∫ b

a

f (t) dt

+
1

b− a

∫ b

a

p (x, t)

[
f (b)− f (a)

b− a
+

1
b− a

∫ b

a

p (t, s) f ′′ (s) ds

]
dt

=
1

b− a

∫ b

a

f (t) dt+
f (b)− f (a)

(b− a)2

∫ b

a

p (x, t) dt

+
1

(b− a)2

∫ b

a

∫ b

a

p (x, t) p (t, s) f ′′ (s) dsdt
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and as ∫ b

a

p (x, t) dt =
∫ x

a

(t− a) dt+
∫ b

x

(t− b) dt

= (b− a)
(
x− a+ b

2

)
,

the integral identity

f (x) =
1

b− a

∫ b

a

f (t) dt+
f (b)− f (a)

b− a

(
x− a+ b

2

)
+

1
(b− a)2

∫ b

a

∫ b

a

p (x, t) p (t, s) f ′′ (s) dsdt(7.4)

results for all x ∈ [a, b] .
Now, using the identity (7.4) , we get∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt− f (b)− f (a)
b− a

(
x− a+ b

2

)∣∣∣∣∣
≤ 1

(b− a)2

∫ b

a

∫ b

a

|p (x, t) p (t, s)| |f ′′ (s)| dsdt

≤
‖f ′′‖∞
(b− a)2

∫ b

a

∫ b

a

|p (x, t)| |p (t, s)| dsdt

: =
‖f ′′‖∞
(b− a)2A (x) .(7.5)

We have ∫ b

a

|p (t, s)| ds =
(t− a)2 + (b− t)2

2

and so, from (7.5),

A (x) =
∫ b

a

|p (x, t)|

[
(t− a)2 + (b− t)2

2

]
dt

=
1
2

[∫ x

a

(t− a)
[
(t− a)2 + (b− t)2

]
dt+

∫ b

x

(b− t)
[
(t− a)2 + (b− t)2

]
dt

]

=
1
2

[∫ x

a

[
(t− a)3 + (t− a) (b− t)2

]
dt+

∫ b

x

[
(t− a)2 (b− t) + (b− t)3

]
dt

]
.

Note that ∫ x

a

(t− a)3
dt =

(x− a)4

4
,

∫ b

x

(t− b)3
dt =

(x− b)4

4
,∫ x

a

(t− a) (b− t)2
dt = −1

3
(b− x)3 (x− a)− 1

12
(b− x)4 +

1
12

(b− x)4

and
∫ b

x

(t− b) (t− a)2
dt =

1
3

(x− a)3 (b− x)− 1
12

(b− a)4 +
1
12

(x− a)4
.
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Consequently, we have

A (x) =
1
12

[
(x− a)4 − 2 (b− x)3 (x− a)− 2 (x− a)3 (b− x)

+ (b− x)4 + (b− a)4
]
,

which may be simplified in a variety of ways to give

A (x) =
1
12

[
6
(
x− a+ b

2

)4

+ 3 (b− a)2
(
x− a+ b

2

)2

+
7
8

(b− a)4

]
.

Now, using the inequality (7.5) and simple algebraic manipulations, we get the first
result in (7.3) .

The second part is obvious from the fact that∣∣∣∣x− a+ b

2

∣∣∣∣ ≤ b− a
2

for all x ∈ [a, b] .

7.2. Applications in Numerical Integration. Let In : a = x0 < x1 < ... <
xn−1 < xn = b be a division of the interval [a, b], ξi ∈ [xi, xi+1] (i = 0, 1, ..., n− 1)
a sequence of intermediate points and hi := xi+1 − xi (i = 0, 1, ..., n− 1). As in
[12], consider the perturbed Riemann’s sum defined by

AG (f, In, ξ) :=
n−1∑
i=0

f (ξi)hi −
n−1∑
i=0

(
ξi −

xi + xi+1

2

)
(f (xi+1)− f (xi)) .(7.6)

In that paper Dragomir and Wang [5] proved the following result:

Theorem 18. Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b) , whose derivative f ′ : (a, b)→ R is bounded on (a, b) and assume that

γ ≤ f ′ (x) ≤ Γ for all x ∈ (a, b) .(7.7)

Then we have the quadrature formula:∫ b

a

f (x) dx = AG (f, In, ξ) +RG (f, In, ξ) ,(7.8)

where the remainder RG (f, In, ξ) satisfies the estimation

|RG (f, In, ξ)| ≤ 1
4

(Γ− γ)
n−1∑
i=0

h2
i ,(7.9)

for all ξ =
(
ξ0, ..., ξn−1

)
as above.

Here, we prove another type of estimation for the remainder RG (f, In, ξ) in
the case when f is twice differentiable [12].

Theorem 19. Let f : [a, b] → R be continuous on [a, b] and a twice differen-
tiable function on (a, b) , whose second derivative, f ′′ : (a, b) → R, is bounded on
(a, b). Denote ‖f ′′‖∞ := sup

t∈(a,b)
|f ′′ (t)| <∞. Then we have the quadrature formula
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(7.8), where the remainder RG (f, In, ξ) satisfies the estimation:

|RG (f, In, ξ)|(7.10)

≤
‖f ′′‖∞

2

n−1∑
i=0



(
ξi −

xi+xi+1
2

)2

h2
i

+
1
4


2

+
1
12

h3
i

≤
‖f ′′‖∞

6

n−1∑
i=0

h3
i ,

for all ξi as above.

Proof. Apply Theorem 17 on the interval [xi, xi+1] (i = 0, ..., n− 1) to obtain∣∣∣∣∣∣f (ξi)hi −
xi+1∫
xi

f (t) dt−
(
ξi −

xi + xi+1

2

)
(f (xi+1)− f (xi))

∣∣∣∣∣∣
≤
‖f ′′‖∞

2



(
ξi −

xi+xi+1
2

)2

h2
i

+
1
4


2

+
1
12

h3
i ≤
‖f ′′‖∞

6
h3
i

for all ξi ∈ [xi, xi+1] and i ∈ {0, ..., n− 1} .
Summing over i from 0 to n − 1 and using the generalized triangle inequality,

we get the desired inequality (7.10) .
We omit the details.

8. Concluding Remarks

The current work has demonstrated the development of interior point rules
which contains the midpoint rule as a special case. Identities are obtained by using
a Peano kernel approach which enables us, through the use of the modern theory
of inequalities, to obtain bounds in terms of a variety of norms. This is useful in
practice as the behaviour of the function would necessitate the use of one norm
over another. Although not all inequalities have been developed into composite
quadrature rules, we believe that enough demonstrations have been given that
would enable the reader to proceed further.

It has been shown that the bounds for interior point rules are the same as those
obtained for the trapezoidal rules of the previous chapter as highlighted in Remark
10.

Rules have also been developed that do not necessarily require the second de-
rivative to be well behaved or indeed, exist, thus allowing the treatment of a much
larger class of functions. Rules have been developed by examining the Riemann-
Stieltjes integral. Additionally, the results also allow for a non-uniform partition,
thus giving the user the option of choosing a partition that minimises the bound
or enabling the calculation of the bound given a particular partition.

If we wish to approximate the integral
∫ b
a
f (x) dx using a quadrature rule

Q (f, In) with bound B (n), where In is a uniform partition for example, with
an accuracy of ε > 0, then we will need nε ∈ N where

nε ≥
[
B−1 (ε)

]
+ 1
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with [x] denoting the integer part of x.
This approach enables the user to predetermine the partition required to assure

that the result is within a certain tolerance rather than utilizing the commonly used
method of halving the mesh size and comparing the resulting estimation.

We conclude the work by bringing to the attention of the reader that three-
point rules may be obtained by taking a convex combination of trapezoidal type
identities, IT (x) of the previous Chapter and interior point identities of the current
chapter, IM (x) . That is,

λIT (x) + (1− λ) IM (x) .

Simpson type rules would result from taking λ = 1
3 and x = a+b

2 .
This will not be presented here.
For a three-point quadrature rule involving at most the first derivative, see

Cerone and Dragomir [19].
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ities of Ostrowski and Simpson’s type, RGMIA Res. Rep. Coll., 4, 2(1999), Article 8.

[18] S.S. DRAGOMIR, A Taylor like formula and application in numerical integration, submitted.
[19] P. CERONE and S. S. DRAGOMIR, Three point quadrature rules involving, at most, a first

derivative, submitted, RGMIA Res. Rep. Coll., 4, 2(1999), Article 8.
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