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Three Point Identities and Inequalities for n-time
Differentiable Functions

P. Cerone and S.S. Dragomir

Abstract. Identities and inequalities are obtained involving n-time differen-
tiable functions in terms of evaluations at an interior and at the end points.
It is shown how previous work is recaptured as particular instances of the cur-
rent development. Generalised Taylor type series expansions are obtained and
applications to numerical quadrature are demonstrated.

1. Introduction

Recently, Cerone and Dragomir [2] obtained the following three point identity
for f : [a, b]→ R and α : [a, x]→ R, β : (x, b]→ R then∫ b

a

f (t) dt− [(β (x)− α (x)) f (x) + (α (x)− a) f (a) + (b− β (x)) f (b)](1.1)

=
∫ b

a

K (x, t) df (t) ,

where

K (x, t) =

 t− α (x) , t ∈ [a, x]

t− β (x) , t ∈ (x, b].
(1.2)

They obtained a variety of inequalities for f satisfying different conditions such
as bounded variation, Lipschitzian or monotonic. For f absolutely continuous then
the above Riemann-Stieltjes integral would be equivalent to a Riemann integral and
again a variety of bounds were obtained for f ∈ Lp [a, b], p ≥ 1.

Inequalities of Grüss type and a number of premature variants were examined
fully in the comprehensive article covering the situation in which f exhibits at
most a first derivative. Applications to numerical quadrature were investigated
covering rules of Newton-Cotes type containing the evaluation of the function at
three possible points: the interior and extremities. The development included the
midpoint, trapezoidal and Simpson type rules. However, unlike the classical rules,
the results were not as restrictive in that the bounds are derived in terms of the
behaviour of at most the first derivative and the Peano kernel (1.2).
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2 P. CERONE AND S.S. DRAGOMIR

It is the aim of the current article to obtain inequalities for f (n) ∈ Lp [a, b],
p ≥ 1 where f (n) are again evaluated at most at an interior point x and the end
points. Results that involve the evaluation only at an interior point are termed
Ostrowski type and those that involve only the boundary points will be referred to
as trapezoidal type. In the numerical analysis literature these are also termed as
Open and Closed Newton-Cotes rules (Atkinson [1]) respectively.

In 1938, Ostrowski (see for example [32, p. 468]) proved the following integral
inequality:

Let f : I ⊆ R→ R be a differentiable mapping on I̊ (̊I is the interior of I),
and let a, b ∈̊I with a < b. If f ′ : (a, b) → R is bounded on (a, b), i.e., ‖f ′‖∞ :=
sup
t∈(a,b)

|f ′ (t)| <∞, then we have the inequality:∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞(1.3)

for all x ∈ [a, b].
The constant 1

4 is sharp in the sense that it cannot be replaced by a smaller
one.

For applications of Ostrowski’s inequality to some special means and some
numerical quadrature rules, we refer the reader to the recent paper [24] by S.S.
Dragomir and S. Wang who used integration by parts from

∫ b
a
p (x, t) f ′ (t) dt to

prove Ostrowski’s inequality (1.3) where p (x, t) is a peano kernel given by

p (x, t) =

 t− a, t ∈ [a, x]

t− b, t ∈ (x, b].
(1.4)

Fink [27] used the integral remainder from a Taylor series expansion to show
that for f (n−1) absolutely continuous on [a, b], then the identity∫ b

a

f (t) dt− 1
n

(
(b− a) f (x) +

n−1∑
k=1

Fk (x)

)
=
∫ b

a

KF (x, t) f (n) (t) dt(1.5)

is shown to hold where

KF (x, t) =
(x− t)n−1

(n− 1)!
· p (x, t)

n
with p (x, t) being given by (1.4)(1.6)

and

Fk (x) =
n− k
k!

[
(x− a)k f (k−1) (a) + (−1)k−1 (b− x)k f (k−1) (b)

]
.

Fink then proceeds to obtain a variety of bounds from (1.5), (1.6) for f (n) ∈ Lp [a, b].
Milovanović and Pečarić [31] earlier obtained a result for f (n) ∈ L∞ [a, b] although
they did not use the integral form of the remainder. It may be noticed that (1.5) is
again an identity that involves function evaluations at three points to approximate
the integral from the resulting inequalities. See Mitrinović, Pečarić and Fink [33,
Chapter XV] for further related results and papers [19], [20] and [21].

A number of other authors have obtained results in the literature that may
be recaptured under the general formulation of the current paper. These will be
highlighted throughout the article.

The paper is structured as follows.
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A variety of identities are obtained in Section 2 for f (n−1) absolutely contin-
uous for a generalisation of the kernel (1.2). Specific forms are highlighted and a
generalised Taylor-like expansion is obtained. Inequalities are developed in Section
3 and perturbed results through Grüss inequalities and premature variants are dis-
cussed in Section 4. Section 5 demonstrates the applicability of the inequalities to
numerical integration. Concluding remarks are given in Section 6.

2. Some Integral Identities

In this section identities are obtained involving n-time differentiable functions
with evaluation at an interior point and at the end points.

Theorem 1. Let f : [a, b] → R be a mapping such that f (n−1) is absolutely
continuous on [a, b]. Further, let α : [a, x] → R and β : (x, b] → R. Then, for all
x ∈ [a, b] the following identity holds,

(−1)n
∫ b

a

Kn (x, t) f (n) (t) dt(2.1)

=
∫ b

a

f (t) dt−
n∑
k=1

1
k!

[
Rk (x) f (k−1) (x) + Sk (x)

]
,

where the kernel Kn : [a, b]2 → R is given by

Kn (x, t) :=


(t−α(x))n

n! , t ∈ [a, x]

(t−β(x))n

n! , t ∈ (x, b],
(2.2)

{
Rk (x) = (β (x)− x)k + (−1)k−1 (x− α (x))k

and Sk (x) = (α (x)− a)k f (k−1) (a) + (−1)k−1 (b− β (x))k f (k−1) (b)
.(2.3)

Proof. Let

In (x) = (−1)n
∫ b

a

Kn (x, t) f (n) (t) dt = (−1)n Jn (a, x, b)(2.4)

then from (2.3)

Jn (a, x, x) =
∫ x

a

(t− α (x))n

n!
f (n) (t) dt

giving, upon using integration by parts

Jn (a, x, x) =
(x− α (x))n

n!
f (n−1) (x)(2.5)

+ (−1)n−1 (α (x)− a)n f (n−1) (a)
n!

− Jn−1 (a, x, x) .

Similarly,

Jn (x, x, b) = (−1)n−1 (β (x)− x)n

n!
f (n−1) (x)

+
(b− β (x))n

n!
f (n−1) (b)− Jn−1 (x, x, b)

and so upon adding to (2.5) gives from (2.4) the recurrence relation

In (x)− In−1 (x) = −ωn (x) ,(2.6)
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where

n!ωn (x) =
[
Rn (x) f (n−1) (x) + Sn (x)

]
(2.7)

with Rn (x) and Sn (x) being given by (2.3).
It may easily be shown that

In (x) = −
n∑
k=1

ωk (x) + I0 (x)(2.8)

is a solution of (2.6) and so the theorem is proven since (2.8) is equivalent to (2.1)
and In (x) is as given by (2.4).

Remark 1. If we take n = 1 then an identity obtained by Cerone and Dragomir
[2] results. In the same paper Riemann-Stieltjes integrals were also considered.

Remark 2. If α (x) = a and β (x) = b then Sk (x) ≡ 0 and the Ostrowski
type results for n-time differentiable functions of Cerone et al. [9] are recaptured.
Merkle [30] also obtains Ostrowski type results. For α (x) = β (x) = x then R (x) ≡
0 and the generalized trapezoidal type rules for n-time differentiable functions of
Cerone et al. [10] are obtained. Qi [36] used a Taylor series whose remainder was
not expressed in integral form so that only the supremum norm was possible. If
the integral form of the remainder were used, then similar to Fink [27], the other
Lp (a, b) norms for p ≥ 1 would be possible. However, this will not be pursued
further here. For α (x) and β (x) at their respective midpoints, then the identity

(−1)n
∫ b

a

Kn (x, t) f (n) (t) dt(2.9)

=
∫ b

a

f (t) dt−
n∑
k=1

2−k

k!

{[
(b− x)k + (−1)k−1 (x− a)k

]
f (k−1) (x)

+
[
(x− a)k f (k−1) (a) + (−1)k−1 (b− x)k f (k−1) (b)

]}
results, where

Kn (x, t) =


(t− a+x

2 )n
n! , t ∈ [a, x]

(t− x+b
2 )n
n! , t ∈ (x, b].

(2.10)

As demonstrated in the above remarks, different choices of α (x) and β (x) give
a variety of identities. The following corollary allows for α (x) and β (x) to be in
the same relative position within their respective intervals.

Corollary 1. Let f satisfy the conditions as stated in Theorem 1. Then the
following identity holds for any γ ∈ [0, 1] and x ∈ [a, b]. Namely,

(−1)n
∫ b

a

Cn (x, t) f (n) (t) dt(2.11)

=
∫ b

a

f (t) dt−
n∑
k=1

1
k!

{
(1− γ)k

[
(b− x)k + (−1)k−1 (x− a)k

]
f (k−1) (x)

+γk
[
(x− a)k f (k−1) (a) + (−1)k−1 (b− x)k f (k−1) (b)

]}
,
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where

Cn (x, t) =


[t−(γx+(1−γ)a)]n

n! , t ∈ [a, x]

[t−(γx+(1−γ)b)]n

n! , t ∈ (x, b].
(2.12)

Proof. Let

α (x) = γx+ (1− γ) a and β (x) = γx+ (1− γ) b,(2.13)

then {
x− α (x) = (1− γ) (x− a) , α (x)− a = γ (x− a)

and β (x)− x = (1− γ) (b− x) , b− β (x) = γ (b− x)(2.14)

so that from (2.3)

Rk (x) = (1− γ)k
[
(b− x)k + (−1)k−1 (x− a)k

]
and

Sk (x) = γk
[
(x− a)k f (k−1) (a) + (−1)k−1 (b− x)k f (k−1) (b)

]
.

In addition, Cn (x, t) is the same as Kn (x, t) in (2.2) with α (x) and β (x) as given
by (2.13) and hence the corollary is proven.

The following Taylor-like formula with integral remainder also holds.

Corollary 2. Let g : [a, y] → R be a mapping such that g(n) is absolutely
continuous on [a, y]. Then for all x ∈ [a, y] we have the identity

g (y)(2.15)

= g (a) +
n∑
k=1

1
k!

{[
(β (x)− x)k + (−1)k−1 (x− α (x))k

]
g(k) (x)

+
[
(α (x)− a)k g(k) (a) + (−1)k−1 (y − β (x))k g(k) (y)

]}
+ (−1)n

∫ y

a

τn (x, t) g(n+1) (t) dt

where

τn (x, t) =


(t−α(x))n

n! , t ∈ [a, x]

(t−β(x))n

n! , t ∈ (x, y].
(2.16)

Proof. The proof is straight forward from Theorem 1 on taking f ≡ g′ and
b = y so that β (x) ∈ (x, y] and τn (x, t) ≡ Kn (x, t) for t ∈ [a, y].

Remark 3. If α (x) = β (x) = x then we recapture the results of Cerone et al.
[10], a trapezoidal type series expansion. That is, an expansion involving the end
points. For α (x) = a, β (x) = b then a Taylor-like expansion of Cerone et al. [9]
is reproduced as are the results of Merkle [30].
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3. Integral Inequalities

In this section we develop some inequalities from using the identities obtained
in Section 2.

Theorem 2. Let f : [a, b] → R be a mapping such that f (n−1) is absolutely
continuous on [a, b] and, let α : [a, x] → R and β : (x, b] → R. Then the following
inequalities hold for all x ∈ [a, b]

|Pn (x)| : =

∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

1
k!

[
Rk (x) f (k−1) (x) + Sk (x)

]∣∣∣∣∣(3.1)

≤



‖f(n)‖∞
n! Qn (1, x) if f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n! [Qn (q, x)]
1
q if f (n) ∈ Lp [a, b]

with p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n! Mn (x) , if f (n) ∈ L1 [a, b] ,

where

Qn (q, x) =
1

nq + 1

[
(α (x)− a)nq+1 + (x− α (x))nq+1(3.2)

+ (β (x)− x)nq+1 + (b− β (x))nq+1
]
,

M (x) =
1
2

{
b− a

2
+
∣∣∣∣α (x)− a+ x

2

∣∣∣∣+
∣∣∣∣β (x)− x+ b

2

∣∣∣∣(3.3)

+
∣∣∣∣x− a+ b

2
+
∣∣∣∣α (x)− a+ x

2

∣∣∣∣+
∣∣∣∣β (x)− x+ b

2

∣∣∣∣∣∣∣∣} ,
Rk (x), Sk (x) are given by (2.3), and

∥∥∥f (n)
∥∥∥
∞

:= ess sup
t∈[a,b]

∣∣∣f (n) (t)
∣∣∣ <∞ and

∥∥∥f (n)
∥∥∥
p

:=

(∫ b

a

∣∣∣f (n) (t)
∣∣∣p) 1

p

, p ≥ 1.

Proof. Taking the modulus of (2.1) then

|Pn (x)| = |In (x)| ,(3.4)

where Pn (x) is as defined by the left hand side of (3.1) and

|In (x)| =

∣∣∣∣∣
∫ b

a

Kn (x, t) f (n) (t) dt

∣∣∣∣∣ ,(3.5)

with Kn (x, t) given by (2.2).
Now, observe that

|In (x)| ≤
∥∥∥f (n)

∥∥∥
∞
‖Kn (x, ·)‖1(3.6)

=
∥∥∥f (n)

∥∥∥
∞

∫ b

a

|Kn (x, t)| dt,
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where, from (2.2),∫ b

a

|Kn (x, t)| dt =
1
n!

{∫ α(x)

a

|t− α (x)|n dt+
∫ x

α(x)
|t− α (x)|n dt(3.7)

+
∫ β(x)

x

|t− β (x)|n dt+
∫ b

β(x)
|t− β (x)|n dt

}

=
1

(n+ 1)!

[
(α (x)− a)n+1 + (x− α (x))n+1

+ (β (x)− x)n+1 + (b− β (x))n+1
]
.

Thus, on combining (3.4), (3.6) and (3.7), the first inequality in (3.1) is obtained.
Further, using Hölder’s integral inequality we have the result

|In (x)| ≤
∥∥∥f (n)

∥∥∥
p
‖Kn (x, ·)‖q where

1
p

+
1
q

= 1, with p > 1(3.8)

=
∥∥∥f (n)

∥∥∥
p

(∫ b

a

|Kn (x, t)|q dt

) 1
q

.

Now,∫ b

a

|Kn (x, t)|q dt =
1
n!

{∫ α(x)

a

|t− α (x)|nq dt+
∫ x

α(x)
|t− α (x)|nq dt(3.9)

+
∫ β(x)

x

|t− β (x)|nq dt+
∫ b

β(x)
|t− β (x)|nq dt

}

=
1
n!
Qn (q, x) ,

where Qn (q, x) is as given by (3.2).
Combing (3.9) with (3.8) gives the second inequality in (3.1).
Finally, let us observe that from (3.4)

|In (x)|(3.10)

≤ ‖Kn (x, ·)‖∞
∥∥∥f (n)

∥∥∥
1

=
∥∥∥f (n)

∥∥∥
1

sup
t∈[a,b]

|Kn (x, t)|

=

∥∥f (n)
∥∥

1

n!
max {|a− α (x)|n , |x− α (x)|n , |b− β (x)|n , |x− β (x)|n}

=

∥∥f (n)
∥∥

1

n!
Mn (x) ,

where

M (x) = max {M1 (x) ,M2 (x)}(3.11)

with

M1 (x) = max {α (x)− a, x− α (x)}

and

M2 (x) = max {β (x)− x, b− β (x)} .
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The well known identity

max {X,Y } =
X + Y

2
+
∣∣∣∣X − Y2

∣∣∣∣(3.12)

may be used to give

M1 (x) = x−a
2 +

∣∣α (x)− a+x
2

∣∣ ,
and M2 (x) = b−x

2 +
∣∣β (x)− x+b

2

∣∣ .(3.13)

Using the identity (3.12) again gives, from (3.11),

M (x) =
M1 (x) +M2 (x)

2
+
∣∣∣∣M1 (x)−M2 (x)

2

∣∣∣∣
which on substituting (3.13) gives (3.3) and so from (3.10) and (3.4) readily results
in the third inequality in (3.1) and the theorem is completely proved.

Remark 4. Various choices of α (·) and β (·) allow us to reproduce many of
the earlier inequalities involving function and derivative evaluations at an interior
point and/or boundary points. For other related results see Chapter XV of [32].

If α (x) = a and β (x) = b then Sk (x) ≡ 0 and Ostrowski type results for n-time
differentiable functions of Cerone et al. [9] are reproduced (see also [35]). Further,
taking n = 1 recaptures the results of Dragomir and Wang [22]-[25] and n = 2
gives the results of Cerone, Dragomir and Roumeliotis [5]-[8]. The n = 2 case is
of importance since with x = a+b

2 the classic midpoint rule is obtained. However,
here the bound is obtained for f ′′ ∈ Lp [a, b] for p ≥ 1 rather than the traditional
f ′′ ∈ L∞ [a, b], see for example [16] and [17].

If α (x) = β (x) = x then R (x) ≡ 0 and inequalities are obtained for a gen-
eralised trapezoidal type rule in which functions are assumed to be n-time differ-
entiable, recapturing the results in Cerone et al. [10]. Taking n = 2 the classic
trapezoidal rule in which the bound involves the behaviour of the second derivative
is recaptured as presented in Dragomir et al. [18].

Taking α (·) and β (·) to be other than at the extremities results in three point
inequalities for n−time differentiable functions. Cerone and Dragomir [2] presented
results for functions that at most admit a first derivative.

Remark 5. It should be noted that the bounds in (3.1) may themselves be
bounded since α (·), β (·) and x have not been explicitly specified.

To demonstrate, consider the mappings, for t ∈ [A,B], h1 (t) = (t−A)θ + (B − t)θ , θ > 1

and h2 (t) = B−A
2 +

∣∣t− A+B
2

∣∣ .(3.14)

Now, both these functions attain their maximum values at the ends of the interval
and their minimums at the midpoints. That is, they are symmetric and convex.
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Thus, 

sup
t∈[A,B]

h1 (t) = h1 (A) = h1 (B) = (B −A)θ ,

sup
t∈[A,B]

h2 (t) = h2 (A) = h2 (B) = B −A,

inf
t∈[A,B]

h1 (t) = h1
(
A+B

2

)
= 2

(
B−A

2

)θ
,

and inf
t∈[A,B]

h2 (t) = h2
(
A+B

2

)
= B−A

2 .

(3.15)

Using (3.14) and (3.15) then from (3.2) and (3.3), on taking α (·) and β (·) at
either of their extremities gives

Qn (q, x) ≤ QUn (q, x) =
1

nq + 1

[
(x− a)nq+1 + (b− x)nq+1

]
≤ (b− a)nq+1

nq + 1

and

M (x) ≤MU (x) =
1
2

[b− a+ |x− a|] ≤ b− a,

where the coarsest bounds are obtained from taking x at its extremities.
The following corollary holds.

Corollary 3. Let the conditions of Theorem 2 hold. Then the following result
is valid for any x ∈ [a, b]. Namely,∣∣∣∣∣

∫ b

a

f (t) dt−
n∑
k=1

2−k

k!

{[
(b− x)k + (−1)k−1 (x− a)k

]
f (k−1) (x)(3.16)

+
[
(x− a)k f (k−1) (a) + (−1)k−1 (b− x)k f (k−1) (b)

]}∣∣∣∣

≤



‖f(n)‖∞
n! 2−n

[
(x− a)n+1 + (b− x)n+1

]
, f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!
2−n

(nq+1)
1
q

[
(x− a)nq+1 + (b− x)nq+1

] 1
q

f (n) ∈ Lp [a, b]

with p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n! 2−n
[
b−a

2 +
∣∣x− a+b

2

∣∣]n , f (n) ∈ L1 [a, b] .

Proof. Taking α (·) and β (·) at their respective midpoints, namely α (x) =
a+x

2 and β (x) = x+b
2 in (3.1)-(3.3) and using (2.3) readily gives (3.16)

Remark 6. Corollary 3 could have equivalently been proven using (2.9) and
(2.10) following essentially the same proof of Theorem 2 from using identity (2.9).
The more general setting however, allows greater flexibility and, it is argued, is no
more difficult to prove.



10 P. CERONE AND S.S. DRAGOMIR

Corollary 4. Let the conditions on f of Theorem 2 hold. Then the following
result for any x ∈ [a, b], is valid. Namely, for any γ ∈ [0, 1]

∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

(−1)k

k!

[
(1− γ)k rk (x) f (k−1) (x) + γksk (x)

]∣∣∣∣∣(3.17)

≤



‖f(n)‖∞
(n+1)! H1 (γ)G1 (x) , f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!(nq+1)
1
q
H

1
q
q (γ)G

1
q
q (x) , f (n) ∈ Lp [a, b]

p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n! νn (x) , f (n) ∈ L1 [a, b] ,

where



Hq (γ) = γnq+1 + (1− γ)nq+1
,

Gq (x) = (x− a)nq+1 + (b− x)nq+1
,

ν (x) =
[1

2 +
∣∣γ − 1

2

∣∣] [ b−a
2 +

∣∣x− a+b
2

∣∣] ,
rk (x) = (b− x)k + (−1)k−1 (x− a)k ,

and sk (x) = (x− a)k f (k−1) (a) + (−1)k−1 (b− x)k f (k−1) (b) .

(3.18)

Proof. Take α (·) and β (·) to be a convex combination of their respective
boundary points as given by (2.13) then from (3.1)-(3.3) and using (2.14) and (2.3)
readily produces the stated result. We omit any further details.

Remark 7. It is instructive to note that the relative location of α (·) and β (·)
is the same in Corollary 4 and is determined through the parameter γ as defined in
(2.13). Theorem 2 is much more general. From (2.13) it may be seen that α (x) =
β (x) = x is equivalent to γ = 1, giving trapezoidal type rules while α (x) = a,
β (x) = b corresponds to γ = 0 which produces interior point rules. Taking γ = 0
and γ = 1 reproduces the results of Cerone et al. [9] and [10] respectively.

Taking γ = 1
2 in (3.17) produces the optimal rule while keeping x general and

thus reproducing the result of Corollary 3. Following the discussion in Remark 5
and as may be ascertained from (3.18) the optimal rules, in the sense of providing
the tightest bounds, are obtained by taking γ and x at their respective midpoints.

The following two corollaries may thus be stated.
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Corollary 5. Let the conditions on f of Theorem 2 be valid. Then for any
γ ∈ [0, 1], the following inequalities hold∣∣∣∣∣

∫ b

a

f (t) dt(3.19)

−
n∑
k=1

(−1)k

k!

[
(1− γ)k rk

(
a+ b

2

)
f (k−1)

(
a+ b

2

)
+ γksk

(
a+ b

2

)]∣∣∣∣∣

≤



‖f(n)‖∞
(n+1)! H1 (γ)G1

(
a+b

2

)
, f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!(nq+1)
1
q
H

1
q
q (γ)G

1
q
q

(
a+b

2

)
, f (n) ∈ Lp [a, b]

p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n! νn
(
a+b

2

)
, f (n) ∈ L1 [a, b] ,

where 

Hq (γ) is as given by (3.18),

Gq
(
a+b

2

)
= 2

(
b−a

2

)nq+1
,

ν
(
a+b

2

)
=
(
b−a

2

) ( 1
2 +

∣∣γ − 1
2

∣∣) ,
rk
(
a+b

2

)
=
(
b−a

2

)k [
1 + (−1)k−1

]
and sk

(
a+b

2

)
=
(
b−a

2

)k [
f (k−1) (a) + (−1)k−1

f (k−1) (b)
]
.

(3.20)

Proof. The proof is trivial. Taking x = a+b
2 in (3.17)-(3.18) readily produces

the result.

Remark 8. It is of interest to note from (3.20) that

rk

(
a+ b

2

)
=

 2
(
b−a

2

)k
, k odd

0, k even
(3.21)

so that only the evaluation of even order derivatives are involved in (3.19). Further,
for f (k−1) (a) = f (k−1) (b) then

sk

(
a+ b

2

)
= f (k−1) (a) rk

(
a+ b

2

)
= f (k−1) (b) rk

(
a+ b

2

)
(3.22)

so that only evaluation of even order derivatives at the end points are present.
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Corollary 6. Let the conditions on f of Theorem 2 hold. Then the following
inequalities are valid∣∣∣∣∣

∫ b

a

f (t) dt−
n∑
k=1

(−1)k

k!
2−k

[
rk

(
a+ b

2

)
f (k−1)

(
a+ b

2

)
+ sk

(
a+ b

2

)]∣∣∣∣∣(3.23)

≤



‖f(n)‖∞
(n+1)! · 2

−(n−1)
(
b−a

2

)n+1
, f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!(nq+1)
1
q
· 2−n

(
b−a
nq+1

) 1
q ( b−a

2

)n
, f (n) ∈ Lp [a, b]

with p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n!

(
b−a

4

)n
, f (n) ∈ L1 [a, b] ,

where rk
(
a+b

2

)
and sk

(
a+b

2

)
are as given by (3.20).

Proof. Taking γ = 1
2 in Corollary 5 will produce inequalities with the tightest

bounds as given in (3.23). Alternatively, taking γ = 1
2 and x = a+b

2 in Corollary 4
will produce the results (3.23).

The results (3.21) and (3.22) together with the discussion in Remark 8 are also
valid for Corollary 6.

The following are Taylor-like inequalities which are of interest (see [12] and
[14] for related results).

Corollary 7. Let g : [a, y] → R be a mapping such that g(n) is absolutely
continuous on [a, y]. Then for all x ∈ [a, y]∣∣∣∣∣g (y)− g (a)−

n∑
k=1

1
k!

{[
(β (x)− x)k + (−1)k−1 (x− α (x))k

]
g(k) (x)(3.24)

+
[
(α (x)− a)k g(k) (a) + (−1)k−1 (y − β (x))k g(k) (y)

]}∣∣∣∣

≤



‖g(n+1)‖∞
n! Q̃n (1, x) , g(n+1) ∈ L∞ [a, b] ,

‖g(n+1)‖
p

n!

[
Q̃n (q, x)

] 1
q

, g(n+1) ∈ Lp [a, b]
with p > 1, 1

p + 1
q = 1,

‖g(n+1)‖1
n! M̃n (x) , g(n+1) ∈ L1 [a, b] ,

where

Q̃n (q, x) =
1

nq + 1

[
(α (x)− a)nq+1 + (x− α (x))nq+1

+ (β (x)− a)nq+1 + (y − β (x))nq+1
]
,

M̃ (x) =
1
2

{
y − a

2
+
∣∣∣∣α (x)− a+ x

2

∣∣∣∣+
∣∣∣∣β (x)− x+ y

2

∣∣∣∣
+
∣∣∣∣x− a+ y

2
+
∣∣∣∣α (x)− a+ x

2

∣∣∣∣+
∣∣∣∣β (x)− x+ y

2

∣∣∣∣∣∣∣∣} .
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Proof. The proof follows from Theorem 2 on taking f (·) ≡ g′ (·) and b = y
so that β (x) ∈ (x, y]. Alternatively, starting from (2.15) and (2.16) and, following
the proof of Theorem 2 with b replaced by y and f (·) replaced by g′ (·) readily
produces the results shown and the corollary is thus proven.

Remark 9. Similar corollaries to 3, 4, 7 and 8 could be determined from the
Taylor-like inequalities given in Corollary 6. This would simply be done by taking
specific forms of α (·), β (·) or values of x as appropriate.

Remark 10. If in particular we take α (x) = a and β (x) = y in (3.24) then
for any x ∈ [a, y]∣∣∣∣∣g (y)− g (a)−

n∑
k=1

1
k!

[
(y − x)k + (−1)k−1 (x− a)k

]
g(k) (x)

∣∣∣∣∣(3.25)

≤ en (x, y)

: =



‖g(n+1)‖∞
(n+1)!

[
(x− a)n+1 + (y − x)n+1

]
, g(n+1) ∈ L∞ [a, y] ,

‖g(n+1)‖
p

n!(nq+1)
1
q

[
(x− a)nq+1 + (y − x)nq+1

] 1
q

, g(n+1) ∈ Lp [a, y]

with p > 1, 1
p + 1

q = 1,
‖g(n+1)‖1

n!

[
x+y

2 − a
]n
, g(n+1) ∈ L1 [a, y] .

Merkle [30] effectively obtains the first bound in (3.25).
It is well known (see for example, Dragomir [14]) that the classical Taylor

expansion around a point satisfies the inequality∣∣∣∣∣g (y)−
n∑
k=1

(y − a)k

k!
g(k) (a)

∣∣∣∣∣(3.26)

≤
∣∣∣∣ 1
n!

∫ y

a

(y − u)n g(n+1) (u) du
∣∣∣∣ := En (y) ,

where

En (y) ≤



(y−a)n+1

(n+1)!

∥∥g(n+1)
∥∥
∞ , g(n+1) ∈ L∞ [a, y] ,

(y−a)
n+ 1

q

n!(nq+1)
1
q

∥∥g(n+1)
∥∥
p
, g(n+1) ∈ Lp [a, y]

with p > 1, 1
p + 1

q = 1,
(y−a)n

n!

∥∥g(n+1)
∥∥

1 , g(n+1) ∈ L1 [a, y] ,

(3.27)

for y ≥ a and y ∈ I ⊂ R.
Now, it may readily be noticed that if x = a in (3.25), then the classical result

as given by (3.26) is regained. As discussed in Remark 5 the bounds are convex so
that a coarse bound is obtained at the end points and the best at the midpoint.
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Thus, taking x = a+y
2 gives∣∣∣∣∣∣g (y)− g (a)−

n∑
k=1

[
1 + (−1)k−1

]
k!

2−k (y − a)k g(k)
(
a+ y

2

)∣∣∣∣∣∣(3.28)

≤ en

(
a+ y

2
, y

)

=



‖g(n+1)‖∞
(n+1)! 2−n (y − a)n+1

, g(n+1) ∈ L∞ [a, y] ,

‖g(n+1)‖
p

n!(nq+1)
1
q

2−n (y − a)n+ 1
q , g(n+1) ∈ Lp [a, y]

with p > 1, 1
p + 1

q = 1,
‖g(n+1)‖1

n!

( 3
4

)n (y − a)n , g(n+1) ∈ L1 [a, y] .

The above inequalities (3.28) show that for g ∈ C∞ [a, b] the series

g (a) +
∞∑
k=1

[
1 + (−1)k−1

]
k!2k

(y − a)k g(k)
(
a+ y

2

)
converges more rapidly to g (y) than the usual one

∞∑
k=0

(y − a)k

k!
g(k) (a) ,

which comes from Taylor’s expansion (3.26). It should further be noted that (3.27)
only involves the odd derivatives of g (·) evaluated at the midpoint of the interval
under consideration.

Remark 11. If α (x) = β (x) = x in (3.24), then for any x ∈ [a, y]∣∣∣∣∣g (y)− g (a)−
n∑
k=1

1
k!

[
(x− a)k g(k) (a) + (−1)k−1 (y − x)k g(k) (y)

]∣∣∣∣∣(3.29)

≤ en (x, y) ,

where en (x, y) is as defined by (3.25). See Cerone et al. [10] for related results.

4. Perturbed Rules Through Grüss Type Inequalities

In 1935, G. Grüss (see for example [32]), proved the following integral inequality
which gives an approximation for the integral of a product in terms of the product
of integrals.

Theorem 3. Let f, g : [a, b] → R be two integrable mappings so that φ ≤
h (x) ≤ Φ (x) and γ ≤ g (x) ≤ Γ for all x ∈ [a, b], where φ,Φ, γ,Γ are real numbers.
Then we have

|T (h, g)| ≤ 1
4

(Φ− φ) (Γ− γ) ,(4.1)

where

T (h, g) =
1

b− a

∫ b

a

h (x) g (x) dx− 1
b− a

∫ b

a

h (x) dx · 1
b− a

∫ b

a

g (x) dx(4.2)
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and the inequality is sharp, in the sense that the constant 1
4 cannot be replaced by

a smaller one.

For a simple proof of this fact as well as for extensions, generalisations, discrete
variants and other associated material, see [32], and the papers [6], [11], [13], [15]
and [22] where further references are given.

A premature Grüss inequality is embodied in the following theorem which was
proved in the paper [29]. It provides a sharper bound than the above Grüss in-
equality. The term premature is used to denote the fact that the result is obtained
from not completing the proof of the Grüss inequality if one of the functions is
known explicitly. See also [2] for further details.

Theorem 4. Let h, g be integrable functions defined on [a, b] and let d ≤ g (t) ≤
D. Then

|T (h, g)| ≤ D − d
2

[T (h, h)]
1
2 ,(4.3)

where T (h, g) is as defined in (4.2).

The above Theorem 4 will now be used to provide a perturbed generalised three
point rule.

4.1. Perturbed Rules From Premature Inequalities. We start with the
following result.

Theorem 5. Let f : [a, b] → R be such that the derivative f (n−1), n ≥ 1 is
absolutely continuous on [a, b]. Assume that there exist constants γ,Γ ∈ R such
that γ ≤ f (n) (t) ≤ Γ a.e. on [a, b]. Then the following inequality holds

|ρn (x)| : =

∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

1
k!

[
Rk (x) f (k−1) (x) + Sk (x)

]
(4.4)

− (−1)n
θn (x)
n+ 1

· f
(n−1) (b)− f (n−1) (a)

b− a

∣∣∣∣
≤ Γ− γ

2
· 1
n!
I (x, n)

≤ Γ− γ√
2
· n

(n+ 1)!
· (b− a)n+1

√
2n+ 1

,

where

I (x, n) =
1

(n+ 1)
√

2n+ 1

{
n2 (b− a) Q̂n (2, x)(4.5)

+ (2n+ 1)
4∑
i=1
j>i

zizj [zni − (−zj)n]2
}

Z = {α (x)− a, x− α (x) , β (x)− x, b− β (x)} , zi ∈ Z, i = 1, ..., 4,

Q̂n (·, x) = (2n+ 1)Qn (·, x) with Qn (·, x) being as defined in (3.2),

θn (x) = (−1)n zn+1
1 + zn+1

2 + (−1)n zn+1
3 + zn+1

4 ,

and Rk (x), Sk (x) are as given by (2.3).
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Proof. Applying the premature Grüss result (4.3) by associating f (n) (t) with
g (t) and h (t) with Kn (x, t), from (2.2) gives∣∣∣∣∣(−1)n

∫ b

a

Kn (x, t) f (n) (t) dt(4.6)

−

(
(−1)n

∫ b

a

Kn (x, t) dt

)
f (n−1) (b)− f (n−1) (a)

b− a

∣∣∣∣∣
≤ (b− a)

Γ− γ
2

[T (Kn,Kn)]
1
2 ,

where from (4.2)

T (Kn,Kn) =
1

b− a

∫ b

a

K2
n (x, t) dt−

(
1

b− a

∫ b

a

Kn (x, t) dt

)2

.

Now, from (2.2),

1
b− a

∫ b

a

Kn (x, t) dt(4.7)

=
1

b− a

[∫ x

a

(t− α (x))n

n!
dt+

∫ b

x

(t− β (x))n

n!
dt

]

=
1

(b− a) (n+ 1)!

[
(x− α (x))n+1 + (−1)n (α (x)− a)n+1

(b− β (x))n+1 + (−1)n (β (x)− x)n+1
]

: =
1

(b− a) (n+ 1)!
θn (x)

and

1
b− a

∫ b

a

K2
n (x, t) dt(4.8)

=
1

(b− a) (n!)2

[∫ x

a

(t− α (x))2n
dt+

∫ b

x

(t− β (x))2n
dt

]

=
1

(b− a) (n!)2 (2n+ 1)

[
(x− α (x))2n+1 + (α (x)− a)2n+1

(b− β (x))2n+1 + (β (x)− x)2n+1
]

=
1

(b− a) (n!)2 (2n+ 1)
Q̂n (2, x)

on using (3.2).
Hence, substitution of (4.7) and (4.8) into (4.6) gives∣∣∣∣∣

∫ b

a

Kn (x, t) f (n) (t) dt− (−1)n
θn (x)

(n+ 1)!
· f

(n−1) (b)− f (n−1) (a)
b− a

∣∣∣∣∣(4.9)

≤ Γ− γ
2
· 1
n!
J (x, n) ,
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where

(2n+ 1) (n+ 1)2
J2 (x, n)(4.10)

= (n+ 1)2 (b− a) Q̂n (2, x)− (2n+ 1) θ2
n (x) .

Now, let

A = α (x)− a, X = x− α (x) , Y = β (x)− x and B = b− β (x) ,(4.11)

then (4.7) and (4.8) imply that

Q̂n (2, x) = A2n+1 +X2n+1 + Y 2n+1 +B2n+1

and

θn (x) = (−1)nAn+1 +Xn+1 + (−1)n Y n+1 +Bn+1.

Hence, from (4.10) and using the fact that b− a = A+X + Y +B,

(n+ 1)2 (b− a) Q̂n (2, x)− (2n+ 1) θ2
n (x)(4.12)

= n2Q̂n (2, x) + (2n+ 1)
[
(A+X + Y +B)Qn (2, x)− θ2

n (x)
]

= n2Q̂n (2, x) + (2n+ 1)
4∑
i=1
j>i

zizj [zni − (−zj)n]2

after some straight forward algebra, where Z = {A,X, Y,B} , zi ∈ Z, i = 1, ..., 4.
Substitution of (4.12) into (4.10) gives I (x, n) = J(x,n)

(n+1)
√

2n+1 as presented by
(4.5). Utilising identity (2.1) in (4.6) gives (4.4) and the first part of the theorem
is proved.

The upper bound is obtained by taking α (·), β (·), x at their end points since
I (x, n) is convex and symmetric. The second term for I (x, n) is then zero and
Q̂n (2, x) < 2 (b− a)2n+1 and hence after some simplification, the theorem is com-
pletely proven.

Corollary 8. Let the conditions of Theorem 3 hold. Then the following result
is valid,∣∣∣∣∣

∫ b

a

f (t) dt−
n∑
k=1

2−k

k!

[
rk (x) f (k−1) (x) + sk (x)

]
(4.13)

−2−n [1 + (−1)n] (An +Bn) · f
(n−1) (b)− f (n−1) (a)

b− a

∣∣∣∣
≤ Γ− γ

2
· 2−2(n+1)

n!

{[
4n2 +

(
1 + (−1)n−1

)
(2n+ 1)

] [
A2(n+1) +B2(n+1)

]
+
[
4n2 + 2 (2n+ 1)

]
AB

(
A2n +B2n)+ 4 (2n+ 1) (−1)n−1 (A−B)n+1

}
,

where rm (x) and sm (x) are as given by (3.18) and A = x− a, B = b− x.

Proof. Let α (x) = a+x
2 and β (x) = x+b

2 in (4.4), readily giving the left hand
side of (4.13). Now, for the right hand side. Taking A = x− a, B = b− x, we have

Q̂n (2, x) = 2−2n [A2n+1 +B2n+1]
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and
4∑
i=1
j>i

zizj [zni − (−zj)n]2 = 2−2(n+1)
[
A2(n+1) +B2(n+1)

] (
1 + (−1)n−1

)

+2AB
(
An + (−1)n−1

Bn
)2

so that from (4.5) and using the fact that b− a = A+B,

(n+ 1)
√

2n+ 1I (x, n)(4.14)

= 2−2(n+1)
{

4n2 (A+B)
[
A2n+1 +B2n+1]

+ (2n+ 1)
[(
A2(n+1) +B2(n+1)

)(
1 + (−1)n−1

)
+2AB

(
An + (−1)n−1

Bn
)2
]}

= 2−2(n+1)
{[

4n2 +
(

1 + (−1)n−1
)

(2n+ 1)
] [
A2(n+1) +B2(n+1)

]
+
[
4n2 + 2 (2n+ 1)

]
AB

(
A2n +B2n)+ 4 (2n+ 1) (−1)n−1 (AB)n+1

}
.

A simple substitution in (4.4) of (4.14) completes the proof.

Corollary 9. Let the conditions of Theorem 3 and Corollary 8 hold. Then
the following inequality results,∣∣∣∣∣

∫ b

a

f (t) dt−
n∑
k=1

2−k

k!

[
rk

(
a+ b

2

)
f (k−1)

(
a+ b

2

)
+ sk

(
a+ b

2

)]
(4.15)

−2 · 4−n (1 + (−1)n)
[
f (n−1) (b)− f (n−1) (a)

] ∣∣∣∣
≤ Γ− γ

n!

(
b− a

4

)2(n+1) [
8n2 + 3 (2n+ 1)

(
1 + (−1)n−1

)]
,

where rm
(
a+b

2

)
and sm

(
a+b

2

)
are as given in (3.20).

Proof. The proof follows directly from (4.13) with x = a+b
2 so that A = B =

b−a
2 , giving for the braces on the right hand side

2
(
b− a

4

)2(n+1) [
8n2 + 3 (2n+ 1)

(
1 + (−1)n−1

)]
.

Some straight forward simplification produces the result (4.15).

Remark 12. It may be noticed (See also Remark 8) that only even order de-
grees are involved, in (4.15), at the midpoint while this is only the case at the
endpoints if the further restriction f (k−1) (a) = f (k−1) (b) is imposed. Further, if n
is odd, then there is no perturbation arising from the Grüss type result (4.15).

Theorem 6. Let the conditions of Theorem 3 be satisfied. Further, suppose
that f (n) is absolutely continuous and is such that∥∥∥f (n+1)

∥∥∥
∞

:= ess sup
t∈[a,b]

∣∣∣f (n+1) (t)
∣∣∣ <∞.
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Then

|ρn (x)| ≤ b− a√
12

∥∥∥f (n+1)
∥∥∥
∞
· 1
n!
I (x, n) ,(4.16)

where ρn (x) is the perturbed interior point rule given by the left hand side of (4.4)
and I (x, n) is as given by (4.5).

Proof. Let h, g : [a, b] → R be absolutely continuous and h′, g′ be bounded.
Then Chebychev’s inequality holds (see [34, p. 207])

|T (h, g)| ≤ (b− a)2

√
12

sup
t∈[a,b]

|h′ (t)| · sup
t∈[a,b]

|g′ (t)| .

Matić, Pečarić and Ujević [29] using a premature Grüss type argument proved that

|T (h, g)| ≤ (b− a)√
12

sup
t∈[a,b]

|g′ (t)|
√
T (h, h).(4.17)

Thus, associating f (n) (·) with g (·) and K (x, ·) , from (2.2), with h (·) in (4.17)
produces (4.16) where I (x, n) is as given by (4.5).

Theorem 7. Let the conditions of Theorem 3 be satisfied. Further, suppose
that f (n) is locally absolutely continuous on (a, b) and let f (n+1) ∈ L2 (a, b). Then

|ρn (x)| ≤ b− a
π

∥∥∥f (n+1)
∥∥∥

2
· 1
n!
I (x, n) ,(4.18)

where ρn (x) is the perturbed generalised interior point rule given by the left hand
side of (4.4) and I (x, n) is as given in (4.5).

Proof. The following result was obtained by Lupaş (see [34, p. 210]). For
h, g : (a, b)→ R locally absolutely continuous on (a, b) and h′, g′ ∈ L2 (a, b), then

|T (h, g)| ≤ (b− a)2

π2 ‖h′‖2 ‖g
′‖2 ,

where

‖k‖2 :=

(
1

b− a

∫ b

a

|k (t)|2
) 1

2

for k ∈ L2 (a, b) .

Matić, Pečarić and Ujević [29] further show that

|T (h, g)| ≤ b− a
π
‖g′‖2

√
T (h, h).(4.19)

Now, associating f (n) (·) with g (·) and K (x, ·), from (2.2) with h (·) in (4.19) gives
(4.18) where I (x, n) is as found in (4.5).

Remark 13. Results (4.16) and (4.18) are not readily comparable to that ob-
tained in Theorem 3 since the bound now involves the behaviour of f (n+1) (·) rather
than f (n) (·).

Remark 14. Premature results presented in this section may also be obtained,
producing bounds for generalized Taylor-like series expansion by taking f ≡ g′ and
b = y. See also Matić et al. [29] for related results.



20 P. CERONE AND S.S. DRAGOMIR

5. Applications in Numerical Integration

Any of the inequalities in Sections 3 and 4 may be utilised for numerical im-
plementation. Here we illustrate the procedure by giving details for the implemen-
tation of Corollary 4.

Consider the partition Im : a = x0 < x1 < ... < xm−1 < xm = b of the interval
[a, b] and let the intermediate points ξ =

(
ξ0, ..., ξm−1

)
where ξj ∈ [xj , xj+1] for

j = 0, 1, ...,m− 1. Define the formula for γ ∈ [0, 1],

Am,n (f, Im, ξ) =
m−1∑
j=0

n∑
k=1

(−1)k

k!

{
(1− γ)k rk

(
ξj
)
f (k−1) (ξj)(5.1)

+γk
[
Akj f

(k−1) (xj) + (−1)k−1
Bkj f

(k−1) (xj+1)
]}

,

where 
rk
(
ξj
)

= Bkj + (−1)k−1
Akj

Aj = ξj − xj , Bj = xj+1 − ξj ,

and hj = Aj +Bj = xj+1 − xj for j = 0, 1, ...,m− 1.

(5.2)

The following theorem holds involving (5.1).

Theorem 8. Let f : [a, b] → R be a mapping such that f (n−1) is absolutely
continuous on [a, b] and Im be a partition of [a, b] as described above. Then the
following quadrature rule holds. Namely,∫ b

a

f (x) dx = Am,n (f, Im, ξ) +Rm,n (f, Im, ξ) ,(5.3)

where Am,n is as defined by (5.1)-(5.2) and the remainder Rm,n (f, Im, ξ) satisfies
the estimation

|Rm,n (f, Im, ξ)|(5.4)

≤



‖f(n)‖∞
(n+1)! H1 (γ)

m−1∑
j=0

(
An+1
j +Bn+1

j

)
, for f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!
Hq(γ)

(nq+1)
1
q

[
m−1∑
j=0

(
Anq+1
j +Bnq+1

j

)] 1
q

, for f (n) ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n!

( 1
2 +

∣∣γ − 1
2

∣∣)n×[
ν(h)

2 + max
j=0,...,m−1

∣∣∣ξj − xj+xj+1
2

∣∣∣]n , for f (n) ∈ L1 [a, b] ,

where Hq (γ) is given by (3.18), ν (h) = max {hj |j = 0, ...,m− 1} , and the rest of
the terms are as given in (5.2).
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Proof. Apply Corollary 4 on the interval [xj , xj+1] to give∣∣∣∣∣
∫ xj+1

xj

f (t) dt−
n∑
k=1

(−1)k

k!

{
(1− γ)k rk

(
ξj
)
f (k−1) (ξj)(5.5)

+γk
[
Akj f

(k−1) (xj) + (−1)k−1
Bkj f

(k−1) (xj+1)
]}∣∣∣∣

≤



H1(γ)
(n+1)! sup

t∈[xj ,xj+1]

∣∣f (n) (t)
∣∣ (An+1

j +Bn+1
j

)
,

Hq(γ)
n!

[∫ xj+1

xj

∣∣f (n) (u)
∣∣p du] 1

p

(
Anq+1
j +Bnq+1

j

nq+1

) 1
q

,

( 1
2 +|γ− 1

2 |)n
n!

[∫ xj+1

xj

∣∣f (n) (u)
∣∣ du] (hj2 +

∣∣∣ξj − xj+xj+1
2

∣∣∣)n ,
where the parameters are as defined in (5.2) and Hq (γ) is as given in (3.18). Sum-
ming over j from 0 to m− 1 and using the generalised triangle inequality gives

|Rm,n (f, Im, ξ)|(5.6)

≤



H1(γ)
(n+1)!

m−1∑
j=0

sup
t∈[xj ,xj+1]

∣∣f (n) (t)
∣∣ (An+1

j +Bn+1
j

)
,

Hq(γ)
n!

m−1∑
j=0

(∫ xj+1

xj

∣∣f (n) (u)
∣∣p du) 1

p

(
Anq+1
j +Bnq+1

j

nq+1

) 1
q

,

( 1
2 +|γ− 1

2 |)n
n!

m−1∑
j=0

(∫ xj+1

xj

∣∣f (n) (u)
∣∣ du)(hj2 +

∣∣∣ξj − xj+xj+1
2

∣∣∣)n .
Now, since sup

t∈[xj ,xj+1]

∣∣f (n) (t)
∣∣ ≤ ∥∥f (n)

∥∥
∞, the first inequality in (5.4) readily fol-

lows.
Further, using the discrete Hölder inequality, we have

m−1∑
j=0

(∫ xj+1

xj

∣∣∣f (n) (u)
∣∣∣p du) 1

p
(
Anq+1
j +Bnq+1

j

nq + 1

) 1
q

≤
(

1
nq + 1

) 1
q

m−1∑
j=0

(∫ xj+1

xj

∣∣∣f (n) (u)
∣∣∣p du) 1

p

p
1
p

×

m−1∑
j=0

[(
Anq+1
j +Bnq+1

j

) 1
q

]q 1
q

=

∥∥f (n)
∥∥
p

(nq + 1)
1
q

m−1∑
j=0

(
Anq+1
j +Bnq+1

j

) 1
q

and thus the second inequality in (5.4) is proven.
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Finally, let us observe from (5.5) that
m−1∑
j=0

(∫ xj+1

xj

∣∣∣f (n) (u)
∣∣∣ du)(hj

2
+
∣∣∣∣ξj − xj + xj+1

2

∣∣∣∣)n

≤ max
j=0,...,m−1

(
hj
2

+
∣∣∣∣ξj − xj + xj+1

2

∣∣∣∣)n m−1∑
j=0

∫ xj+1

xj

∣∣∣f (n) (u)
∣∣∣ du

≤
(
ν (h)

2
+ max
j=0,...,m−1

∣∣∣∣ξj − xj + xj+1

2

∣∣∣∣)n ∥∥∥f (n)
∥∥∥

1
.

Hence, the theorem is completely proved.

Remark 15. Following the discussion in Remark 5, coarser upper bounds to
those in (5.4) are obtained by taking ξj at either extremity of its interval, giving∥∥f (n)

∥∥
∞

(n+ 1)!
H1 (γ)

m−1∑
j=0

hn+1
j ,

∥∥f (n)
∥∥
p

n!
Hq (γ)

(nq + 1)
1
q

m−1∑
j=0

hnq+1
j

 1
q

,

∥∥f (n)
∥∥

1

n!
νn (h)

for f (n) belonging to the obvious Lp [a, b], 1 ≤ p ≤ ∞. These are uniform bounds
relative to the intermediate points ξ.

Corollary 10. Let the conditions of Theorem 8 hold. Then we have∫ b

a

f (x) dx = Am,n (f, Im) +Rm,n (f, Im) ,

where

Am,n (f, Im) =
m−1∑
j=0

n∑
k=1

(−1)k

k!

{
(1− γ)k rk (δj) f (k−1) (δj)

+γkhkj
[
f (k−1) (xj) + (−1)k−1

f (k−1) (xj+1)
]}

,

with

δj =
xj + xj+1

2
and rk (δj) =

hkj
2

(
1 + (−1)k−1

)
and the remainder Rm,n (f, Im) satisfies the inequality

|Rm,n (f, Im)|

≤



‖f(n)‖∞
(n+1)! 2

m−1∑
j=0

(
hj
2

)k
, for f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!
Hq(γ)

(nq+1)
1
q

[
m−1∑
j=0

2
(
hj
2

)nq+1
] 1
q

, for f (n) ∈ Lp [a, b]

p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n!

( 1
2 +

∣∣γ − 1
2

∣∣)n (ν(h)
2

)n
, for f (n) ∈ L1 [a, b] .
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Proof. The proof is trivial from Theorem 8. Taking ξj = xj+xj+1
2 gives Aj =

Bj = hj
2 and the results stated follow.

6. Concluding Remarks

Taking γ = 0 in Corollary 1 gives a generalised Ostrowski type identity which
has bounds given by Corollary 4 with γ = 0, reproducing the results of Cerone and
Dragomir [4]. This gives a coarse upper bound as discussed in Remark 5 since the
bound is convex and symmetric in both γ and x. Let the identity be denoted by
Mn (x) which is produced from taking a Peano kernel of

kM (x, t) =


(t−a)n

n! , t ∈ [a, x]

(t−b)n
n! , t ∈ (x, b].

(6.1)

Further, taking γ = 1 in Corollary 1 gives a generalised Trapezoidal type iden-
tity with bounds given by Corollary 4 with γ = 1 reproducing the results of Cerone
and Dragomir [3]. This choice of γ again gives the coarsest bound as discussed
in Remark 5. Let the resulting identity be denoted by Tn (x), which results from
taking a Peano kernel of

kT (x, t) =
(x− t)n

n!
.(6.2)

It was shown in Cerone and Dragomir [4] that ‖kM (x, t)‖q = ‖kT (x, t)‖q. Let

IL (x) = λMn (x) + (1− λ)Tn (x)

which is obtained from the kernel

k (x, t) = λkM (x, t) + (1− λ) kT (x, t)

where kM (x, t) and kT (x, t) are given by (6.1) and (6.2) respectively. The best one
can do for q > 1, q 6= 2 with such a kernel when determining bounds is to use the
triangle inequality and so

‖k (x, t)‖q ≤ λ ‖kM (x, t)‖q + (1− λ) ‖kT (x, t)‖q(6.3)

= ‖kM (x, t)‖q = ‖kT (x, t)‖q .

The results thus obtained would be given by, for f (n) ∈ Lp [a, b], p ≥ 1,∣∣∣∣∣
∫ b

a

f (t) dt− λ
n∑
k=1

(−1)k rk (x) f (k−1) (x)− (1− λ)
n∑
k=1

(−1)k sk (x)

∣∣∣∣∣

≤



‖f(n)‖∞
(n+1)! G1 (x) , for f (n) ∈ L∞ [a, b] ,

‖f(n)‖
p

n!(nq+1)
1
q
Gq (x) , for f (n) ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1,
‖f(n)‖1

n!

[
b−a

2 +
∣∣x− a+b

2

∣∣] , for f (n) ∈ L1 [a, b] ,

where rk (x), sk (x), Gq (x) are given by (3.18) and it should be noted that the
bound is independent of λ. This result would be no more difficult to implement than
(3.17) in Corollary 4, with the best bounds resulting from γ = 1

2 . For q = 1, 2 or
infinity, ‖k (x, t)‖q may be evaluated explicitly without using the triangle inequality
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at which stage comparison with the results of Corollary 4 would be less conclusive.
This will not be discussed further here.

In the application of the current work to quadrature, if we wished to approxi-
mate the integral

∫ b
a
f (x) dx using a rule Q (f, Im) with bound E (m), where Im is

a uniform partition for example, with an accuracy of ε > 0, then we require mε ∈ N
where

mε ≥
[
E−1 (ε)

]
+ 1,

with [w] denoting the integer part of w ∈ R.
The approach thus described enables the user to predetermine the partition

required to assure the result to be within a certain error tolerance. This approach
is somewhat different from that commonly used of systematic mesh refinement
followed by a comparison of successive approximations which forms the basis of a
stopping rule. See [1], [26] and [28] for a comprehensive treatment of traditional
methods.
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