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BETTER BOUNDS IN SOME OSTROWSKI-GRÜSS TYPE
INEQUALITIES

S.S. DRAGOMIR

Abstract. The main aim of this note is to point out some improvements of
the recent results in [1].

1. Introduction

As in [1], let {Pn}n∈N and {Qn}n∈N be two sequences of harmonic polynomials,
that is, polynomials satisfying

P ′n (t) = Pn−1 (t) , P0 (t) = 1, t ∈ R,(1.1)

Q′n (t) = Qn−1 (t) , Q0 (t) = 1, t ∈ R.(1.2)

In [1], the authors proved the following result.

Lemma 1. Let {Pn}n∈N and {Qn}n∈N be two harmonic polynomials. Set

Sn (t, x) :=
{

Pn (t) , t ∈ [a, x]
Qn (t) , t ∈ (x, b].(1.3)

Then we have the equality∫ b

a

f (t) dt(1.4)

=
n∑
k=1

(−1)k+1
[
Qk (b) f (k−1) (b) + (Pk (x)−Qk (x)) f (k−1) (x)

−Pk (a) f (k−1) (a)
]

+ (−1)n
∫ b

a

Sn (t, x) f (n) (t) dt,

provided that f : [a, b]→ R is such that f (n−1) is absolutely continuous on [a, b].

Using the following “pre-Grüss” inequality

|T (f, g)| ≤ 1
2

√
T (f, f) (Γ− γ) ,(1.5)

where

T (f, g) :=
1

b− a

∫ b

a

f (x) g (x) dx− 1
(b− a)2

∫ b

a

f (x) dx ·
∫ b

a

g (x) dx

is the Chebychev functional and f , g are such that the previous integrals exist
and γ ≤ g (x) ≤ Γ for a.e. x ∈ [a, b], the authors of [1] proved basically the
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following inequality for estimating the integral
∫ b
a
f (t) dt in terms of the harmonic

polynomials {Pn}n∈N, {Qn}n∈N.

Theorem 1. Assume that f : [a, b] → R is such that f (n) is integrable and γn ≤
f (n) (t) ≤ Γn for all t ∈ [a, b]. Put

Un (x) :=
Qn+1 (b)−Qn+1 (x) + Pn+1 (x)− Pn+1 (a)

b− a
.

Then for all x ∈ [a, b], we have the inequality∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

(−1)k+1
[
Qk (b) f (k−1) (b)(1.6)

+ (Pk (x)−Qk (x)) f (k−1) (x)− Pk (a) f (k−1) (a)
]

− (−1)n Un (x)
[
f (k−1) (b)− f (k−1) (a)

] ∣∣∣∣
≤ 1

2
K (Γn − γn) (b− a) ,

where

K :=

{
1

b− a

∫ x

a

P 2
n (t) dt+

∫ b

x

Q2
n (t) dt− [Un (x)]2

} 1
2

.

A number of particular cases by choosing some appropriate harmonic polynomi-
als have been obtained in [1] as well.

The main aim of this note is to point out a sharper bound in (1.6) in terms of
the Euclidean norm of f (n) which is valid also for a larger class of mappings, i.e.,
for the mappings f for which f (n) is unbounded on (a, b) but f (n) ∈ L2 [a, b]. Some
particular cases as in [1], are also considered.

2. The Results

The following theorem holds.

Theorem 2. Assume that the mapping f : [a, b] → R is such that f (n−1) is abso-
lutely continuous on [a, b] and f (n) ∈ L2 [a, b] (n ≥ 1). If we denote[

f (n−1); a, b
]

:=
f (n−1) (b)− f (n−1) (a)

b− a
,

then we have the inequality∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

(−1)k+1
[
Qk (b) f (k−1) (b)(2.1)

+ (Pk (x)−Qk (x)) f (k−1) (x)− Pk (a) f (k−1) (a)
]

− (−1)n [Qn+1 (b)−Qn+1 (x) + Pn+1 (x)− Pn+1 (a)]
[
f (n−1); a, b

] ∣∣∣∣
≤ K (b− a)

[
1

b− a

∥∥∥f (n)
∥∥∥2

2
−
([
f (n); a, b

])2
] 1

2

(
≤ 1

2
K (b− a) (Γn − γn) if f (n) ∈ L∞ (a, b)

)
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for all x ∈ [a, b], where K is defined in Theorem 1 (and γn, Γn are as in the
Introduction, i.e., γn ≤ f (n) (t) ≤ Γn for all t ∈ [a, b].

Proof. Recall Korkine’s identity

T (h, g) =
1

2 (b− a)2

∫ b

a

∫ b

a

(h (t)− h (s)) (g (t)− g (s)) dtds,(2.2)

where T (·, ·) is the Chebychev functional defined in the Introduction. Using (2.2)
and the identity (1.4), we may write (see also [1])∫ b

a

f (t) dt−
n∑
k=1

(−1)k+1
[
Qk (b) f (k−1) (b)(2.3)

+ (Pk (x)−Qk (x)) f (k−1) (x)− Pk (a) f (k−1) (a)
]

− (−1)n [Qn+1 (b)−Qn+1 (x) + Pn+1 (x)− Pn+1 (a)]
[
f (n−1); a, b

]
= (b− a)T

(
Sn (·, x) , f (n)

)
=

1
2 (b− a)

∫ b

a

∫ b

a

(Sn (t, x)− Sn (s, x))
(
f (n) (t)− f (n) (s)

)
dtds,

which is an identity that is interesting in itself as well.
Using the Cauchy-Buniakowski-Schwartz integral inequality for double integrals,

we may write ∣∣∣∣∣
∫ b

a

∫ b

a

(Sn (t, x)− Sn (s, x))
(
f (n) (t)− f (n) (s)

)
dtds

∣∣∣∣∣(2.4)

≤

(∫ b

a

∫ b

a

(Sn (t, x)− Sn (s, x))2
dtds

) 1
2

×

(∫ b

a

∫ b

a

(
f (n) (t)− f (n) (s)

)2
dtds

) 1
2

=
[
2 (b− a)2

T (Sn (·, x) , Sn (·, x))
] 1

2
[
2 (b− a)2

T
(
f (n), f (n)

)] 1
2

= 2 (b− a)2
K

[
1

b− a

∥∥∥f (n)
∥∥∥2

2
−
([
f (n); a, b

])2
] 1

2

.

Now, taking the modulus in (2.3) and using the estimate (2.4), we may deduce the
first inequality in (2.1).

If we assume that f (n) ∈ L∞ [a, b] (⊂ L2 [a, b] and the inclusion is strict), then
applying the Grüss inequality

0 ≤ 1
b− a

∫ b

a

∣∣∣f (n) (t)
∣∣∣2 dt−( 1

b− a

∫ b

a

f (n) (t) dt

)2

≤ 1
4

(Γn − γn)2
,

we deduce the last part in (2.1).

We are now able to improve the Corollaries 1-3 and Theorem 2 from [1] as follows.
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Corollary 1. Under the assumptions of Theorem 2, we have∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

(−1)k

k!

[
(b−B)k f (k−1) (b)(2.5)

+
(

(x−A)k − (x−B)k
)
f (k−1) (x)− (a−A)k f (k−1) (a)

]
− (−1)n

(n+ 1)!

[
(b−B)n+1 − (x− b)n+1

+ (x−A)n+1 − (a−A)n+1
] [
f (n−1); a, b

] ∣∣∣∣
≤ (b− a)K1

[
1

b− a

∥∥∥f (n)
∥∥∥2

2
−
([
f (n); a, b

])2
] 1

2

,

where K1 is, as defined in [1]

K1 : =
1
n!

[
(x−A)2n+1 − (a−A)2n+1 + (b−B)2n+1 − (x−B)2n+1

(2n+ 1) (b− a)

−

(
(b−B)n+1 − (x−B)n+1 + (x− a)n+1 − (a−A)n+1

(n+ 1) (b− a)

)2
 1

2

and x ∈ [a, b], A, B ∈ R.

The proof follows from Theorem 2 with the polynomial choices of Pn (t) = (t−A)n

n!

and Qn (t) = (t−B)n

n! (see also [1, Corollary 1]).

Corollary 2. Under the assumptions of Theorem 2, we have∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

(−1)k+1 (b− a)k

k! (p+ q)k
[
qk
(
f (k−1) (b)− (−1)k f (k−1) (a)

)]
(2.6)

+
(
p− q

2

)k [
1− (−1)k

]
f (k−1)

(
a+ b

2

)]

− (−1)n (b− a)n+1 (1 + (−1)n)
(n+ 1)! (p+ q)n+1

[
2n+1 +

(
p− q

2

)n+1
] [
f (n−1); a, b

]∣∣∣∣∣
≤ (b− a)K2

[
1

b− a

∥∥∥f (n)
∥∥∥2

2
−
([
f (n); a, b

])2
] 1

2

,

for p, q ∈ R (p, q > 0), where

K2 :=
(b− a)n

n! (p+ q)n

2
(
q2n+1 +

(
p−q

2

)2n+1
)

(p+ q) (2n+ 1)
− 2 [1 + (−1)n]

(
qn+1 +

(
p−q

2

)n+1
)2

(n+ 1)2 (p+ q)2


1
2

.

The proof follows by Corollary 1 with A = pa+qb
p+q , x = a+b

2 and B = qa+pb
p+q where

p, q ∈ R and p+ q > 0 (see also [1, Corollary 2]).
For x = b, Theorem 2 gives the following.
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Theorem 3. With the assumptions in Theorem 2, we have:∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

(−1)k+1
[
Pk (b) f (k−1) (b)− Pk (a) f (k−1) (a)

]
(2.7)

− (−1)n [Pn+1 (b)− Pn+1 (a)]
[
f (n−1); a, b

] ∣∣∣∣
≤ K3 (b− a)

[
1

b− a

∥∥∥f (n)
∥∥∥2

2
−
([
f (n); a, b

])2
] 1

2

,

where K3 is given by (see [1, Theorem 2])

K3 :=

[
1

b− a

∫ x

a

P 2
n (t) dt−

(
Pn+1 (b)− Pn+1 (a)

b− a

)2
] 1

2

.

The choice Pn (t) = 1
n!

(
t− a+b

2

)n
provides the following corollary.

Corollary 3. Under the assumptions of Theorem 2, we have:∣∣∣∣∣
∫ b

a

f (t) dt−
n∑
k=1

(−1)k+1

2kk!
(b− a)k

[
f (k−1) (b)− (−1)k f (k−1) (a)

]
(2.8)

− (−1)n (1 + (−1)n)
2n+1 (n+ 1)!

(b− a)n+1
[
f (n−1); a, b

] ∣∣∣∣
≤ K4 (b− a)

[
1

b− a

∥∥∥f (n)
∥∥∥2

2
−
([
f (n); a, b

])2
] 1

2

,

where K4 is given by (see [1, Corollary 3])

K4 :=
(b− a)n

n!2n

[
1

2n+ 1
− (1 + (−1)n)2

(n+ 1)2

] 1
2

.

Remark 1. All the other results from Sections 4 and 5 can be improved accordingly.
For example, if we assume that the derivative f (n) ∈ L2 [a, b] (n ∈ {1, 2, 3, 4}), then
we have the Simpson’s inequality (for n ∈ {1, 2, 3})∣∣∣∣∣

∫ b

a

f (t) dt− b− a
6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣(2.9)

≤ c̃n (b− a)n σ
(
f (n); a, b

)
where

c̃1 =
1
6
, c̃2 =

1
12
√

30
, c̃3 =

1
48
√

105

and

σ
(
f (n); a, b

)
:=
[

1
b− a

∥∥∥f (n)
∥∥∥2

2
−
([
f (n); a, b

])2
] 1

2

, n ∈ {1, 2, 3, 4} .
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For n = 4, we have the perturbed Simpson’s inequality:∣∣∣∣∣
∫ b

a

f (t) dt− b− a
6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
+

(b− a)5

2880

[
f (3); a, b

]∣∣∣∣∣(2.10)

≤ 1
2880

√
11
14

(b− a)4
σ
(
f (4); a, b

)
.
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