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BETTER BOUNDS IN SOME OSTROWSKI-GRUSS TYPE
INEQUALITIES

S.S. DRAGOMIR

ABSTRACT. The main aim of this note is to point out some improvements of
the recent results in [1].

1. INTRODUCTION

As in [1], let {P,}, .y and {Qn}, oy be two sequences of harmonic polynomials,
that is, polynomials satisfying

(11) P =Pur(t), By(t) =1, t€R,
(1.2) Q,(t)=Qn-1(t), Qo(t)=1, teR.
In [1], the authors proved the following result.

Lemma 1. Let {P,}, .y and {Qn} be two harmonic polynomials. Set

neN
—— Pn(t)v te [avx]
(13) Sn (t,ﬂ?) T { Qn (t)7 t e ((E,b]
Then we have the equality
b
(1.4) / F () dt

= DM @0 (0 £ 0) + (B a) - Qe (@) £ (@)

k=1
b
“P@ 74 @]+ (1) [ S (k) £ 1)
provided that f : [a,b] — R is such that f*~V) is absolutely continuous on [a,b].
Using the following “pre-Griiss” inequality

(15) T(f.9)| < VTG T =),

where
b b b
() =y [ @e@ar— ot [ @ [ywa

is the Chebychev functional and f, ¢g are such that the previous integrals exist
and v < g(x) < T for a.e. x € [a,b], the authors of [1] proved basically the
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following inequality for estimating the integral f(f f (t) dt in terms of the harmonic
polynomials { P}, cn, {@n}pen

Theorem 1. Assume that f : [a,b] — R is such that f) is integrable and v, <
f@™ (t) <T, for allt € [a,b]. Put

Qnt1 () = Qni1 () + Pry1 () = Paya (@)

U, (z) := P
Then for all x € [a,b], we have the mequalzty
(16) [ roa-3 0 e
k=1
+ (P (@) = Qi (@) F57 (@) = P (@) 47 (@)
— VU (@) [0 ) - 4 @) |
< SE(Tw—7,)(-a),
where

:{bla/ij(t)dt—i—/ Qi(t)dt—[Un(w)]Q} :

A number of particular cases by choosing some appropriate harmonic polynomi-
als have been obtained in [1] as well.

The main aim of this note is to point out a sharper bound in (1.6) in terms of
the Euclidean norm of f(™ which is valid also for a larger class of mappings, i.e.,
for the mappings f for which f(™ is unbounded on (a,b) but f(™ € Ly [a,b]. Some
particular cases as in [1], are also considered.

2. THE RESULTS
The following theorem holds.

Theorem 2. Assume that the mapping f : [a,b] — R is such that f=1 s abso-
lutely continuous on [a,b] and f™ € Ly [a,b] (n >1). If we denote

{f(n—l); a,b] — SO () = f7Y (a)

b—a ’

then we have the inequality
b n

Ftyde =3 (=1 Q) 150 )

a k=1

+ (P (2) = Qi () S5 (2) = Pi (@) f*7) ()]
— (1) [Qut1 (1) = Qu (8) + Pag1 (w) = Pay1 (@)] £ Vs0,0] ]

(2.1)

OVE

L (prsed])’]

(s K b—a) =) i € Lo (a,b>>

IN

K (b-a) {b_

\}
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for all © € [a,b], where K is defined in Theorem 1 (and =,, 'y, are as in the
Introduction, i.e., v, < f) (t) <T,, for allt € [a,b].

Proof. Recall Korkine’s identity

b b
(2.2) T““‘”‘M / / (h(t) — h () (g (t) — g (s)) dtds,

where T (-, -) is the Chebychev functional defined in the Introduction. Using (2.2)
and the identity (1.4), we may write (see also [1])

b n
e3) [ foda-Y 0T Qw0 )
@ k=1
+ (P (2) = Qx (@) F* (2) = P (a) f0) ()]
= (=" [Qus1 () = Quit (@) + Pasa (&) = Paa (@) [ £ Vsa,0]

= (b—a)T (Sn (), f<n)>
- ﬁ /ab / b (Su (t,2) = S (5,2)) (£ (&) = £ (5)) dtds,

which is an identity that is interesting in itself as well.

Using the Cauchy-Buniakowski-Schwartz integral inequality for double integrals,
we may write

(2.4) / ’ / b (S (t,2) — Sn (s, 7)) ( £ (1) — f0 (5)) dtds

S </b /“b (81 1,2) = S (5,2))" dtd8>
X </ab /“b (s 0 - (3))2dtd3>%

1

2(b= )’ T (Su (2), S (2))] " 2 (bfafT(f(")’f("))]%
1

= (roen]))

Now, taking the modulus in (2.3) and using the estimate (2.4), we may deduce the
first inequality in (2.1).

If we assume that f(™) € L., [a,b] (C La[a,b] and the inclusion is strict), then
applying the Griiss inequality

1 b
0 <
- b—a/a

1

2

= 2(ba)2K{

2
) (t)‘zdt - (b i > /bfm) (t) dt>

Tn—7,)>
4( ’Yn)v

we deduce the last part in (2.1). I

IN

We are now able to improve the Corollaries 1-3 and Theorem 2 from [1] as follows.
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Corollary 1. Under the assumptions of Theorem 2, we have

' - (-1)" b )
[ rwa-> S [o-mr e

k=1

(2.5)

+ (@@= = @ = B*) 15 @) = (a = A)F 750 (a)]

- (1(1_:)1)' [(b _ B — (p— byt

+wx—AWH-4a—AWH}UW*&m4’

- (e

1
b—a

where K1 is, as defined in [1]

Hf(n)

< oo

K. - 1 [(@= 42— (a— A2 4 (b= B! — (z — B2
oo (2n+1)(b—a)
3 (b _ B)n-‘rl _ (1‘ _ B)n+1 + (33 _ a)n-i-l . (a _ A)n+1 27 2
(n+1)(b—a)

and x € [a,b], A, B €R.
(t=A)"

n!

The proof follows from Theorem 2 with the polynomial choices of P, (t) =
and @, (t) = % (see also [1, Corollary 1]).

Corollary 2. Under the assumptions of Theorem 2, we have

b n o C)E (o)
a k=1 .

+ <p;q>k [1 - (=1)] st <a2+b)

D =" A4 (D) [ (2=a " (0.,
w0 | *(2) [/ s

Ll - (e

b —

(2.6)

< 0o

%
a

forp,qg €R (p,q > 0), where

1
2

(a0 + ™)

(n+1)°*(p+aq)°

 b—a)" 2 <q2n+1 i (%)mH) n
Ky = n!(p‘f‘Q)n (p+q) (2n+1) =21+ (=1)"]

; _ patqb _ atb __ qa+pd
The proof follows by Corollary 1 with A = e =5 and B = e where

p,q € R and p+ ¢ > 0 (see also [1, Corollary 2]).
For x = b, Theorem 2 gives the following.
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Theorem 3. With the assumptions in Theorem 2, we have:

n

=3 DM [B0) £ ) - Pia) £ (a)

k=1

(1) [Paa (6) — Paa (@)] [ a,0] ‘

()]

where K3 is given by (see [1, Theorem 2])

K; = [bia/jf’i (t)dt - (P"“ “2:5"“ (a))Q];.

The choice P, (t) = % (t - ‘%H’)n provides the following corollary.

2.7)

< Kz(b-a) {bia

Corollary 3. Under the assumptions of Theorem 2, we have:

k+1
2.3 / s (zk)k, (b= [ @) = (<1 £ (0)

(=" (1+( 1) )(bia)nJrl {f("*l);a,b} ‘

27+ (n + 1)!
~(asl) ]

where Ky 1s given by (see [1, Corollary 3])

< Ky(b—a) [bla

(b—a)"

K, =
4 nl2m

1 oy
2n+1 (n+1)° '

Remark 1. All the other results from Sections 4 and 5 can be improved accordingly.
For example, if we assume that the derivative f) € Ly [a,b] (n € {1,2,3,4}), then
we have the Simpson’s inequality (for n € {1,2,3})

(29) var-"5t @+ ar (“5) + 1)
én(b—a)" (f(”) a b)
where
1.1
DT 2T vBo T 1svIos
and

1

g(f<”>;a,b) — {blaHf(n) z_ ({fm);a,b})?]z, ne{1,2,3,4}.
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For n =4, we have the perturbed Simpson’s inequality:

(2.10) /abf(t)dt bfTa {f(a) +4f <a+b) +f(b)} + (b-ap [f(g);a,b}
1

2 2880

11 i (),
osz0V 12 09 "(f ’a’b)'
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