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ON NUMERICAL EVALUATION OF THE WINDING NUMBER
OF A PLANE VECTOR FIELD

I. FEDOTOV AND S. S. DRAGOMIR

Abstract. In this paper we prove a new inequality of Grüss type for the
Riemann-Stieltjes line integral, which gives the possibility of numerically eval-
uating line integrals of continuous Lipschitzian functions.

1. Introduction

The Grüss inequality may be stated as [2]
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(1.1)

≤ 1
4
(Φ− φ)(Γ− γ),

where f and g are two integrable functions on [a, b] satisfying the condition φ ≤
f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b]. This result provides us with a tool for
establishing a large number of new results in different domains of mathematics. In
particular, in applications of numerical quadrature methods theory, c.f., for example
[3].

The constant 1
4 in (1.1) is the best possible one and is achieved for

f(x) = g(x) = sgn
(

x− a + b
2

)

.

In this paper we point out a Grüss type inequality for the Riemann-Stieltjes
integral and apply it to the numerical evaluation of the Poincaré integral

I ≡ 1
2π

∫

AB

ϕ(x, y)dψ(x, y)− ψ(x, y)dϕ(x, y)
ϕ2(x, y) + ψ2(x, y)

,(1.2)

where ϕ(x, y) and ψ(x, y) are Lipschitz-continuous functions, AB is a smooth Jor-
dan curve on R2, and the integral (1.2) is taken as the Riemann-Stieltjes integral.

Consider on the plane a Lipschitz-continuous vector field

F(x, y) = {ϕ(x, y) , ψ(x, y)} .

Formula (1.2) allows us to evaluate the rotation of this field with respect to the
curve AB. Let us suppose that F has an isolated singularity point at the origin.
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2 I. FEDOTOV AND S. S. DRAGOMIR

This implies that ϕ(0, 0) = ψ(0, 0) = 0. Here, we can take as the curve AB, a circle
of sufficiently small radius. Without loss of generality it can be the circle of radius
1.

In this case the particularity of the problem is due to the fact that the Poincaré
integral is equal to an integer. Therefore the accuracy in the evaluation of integral
(1.2) is given by a number less than 1

2 . The value of integral (1.2) over the unit
circle is called winding number or index of the singular point and the value of this
number represents the most important property of the vector field F. For example,
the knowledge of the index is crucial in the investigation of a non-linear dynamic
system of the form

{ .
x = ϕ(x, y)
.
y = ψ(x, y) .

In general, the exact computation in the integral (1.2) is very complicated and
from this point of view, the Poincaré formula is only of theoretical interest [1].
The numerical integration can also be excessively complicated due to the following
reasons. In the case of even very simple fields, for example, for the linear fields

with the singularity of nodal type, the function
ϕ(x, y)

ϕ2(x, y) + ψ2(x, y)
can have a very

large value for the first derivative (of order 102 - 103), not to mention a derivative
of order 4. For these reasons, even application of the Simpson rule is impractical.

2. Grüss inequalities for the Riemann-Stieltjes Line Integral

Let f, u : AB → R be Lipschitzian on the curve AB with the Lipschitz constants
Lf and Lu respectively. That is,

|f(A1)− f(A2)| ≤ LfS(A1A2),(2.1)

|u(A1)− u(A2)| ≤ LuS(A1A2),(2.2)

for all A1(x1, y1) and A1(x2, y2) ∈ AB, where S(A1A2) is the length of arc A1A2.
It is easy to see that if f is an Lf -Lipschitzian mapping and u is Riemann

integrable on AB, then
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∫

AB

u(x, y)df(x, y)
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≤ Lf

∫

AB

|u(x, y)|ds.(2.3)

Indeed, if

∆n =
{

A =
(

x(n)
0 , y(n)

0

)

, ..., A(n)
i =

(

x(n)
i , y(n)

i

)

, ...,
(

x(n)
n , y(n)

n

)

= B
}

is a sequence of partitions of AB, corresponding to the positive direction introduced
on AB with λ(∆n) = max

i=1,n
∆S(n)

i → 0 (for n →∞) , M (n)
i

(

ξ(n)
i , η(n)

i

)

∈ A(n)
i A(n)

i−1
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and ∆S(n)
i = length of arc A(n)

i A(n)
i−1 then
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i
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∣u(M (n)
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∣ ∆S(n)
i = Lf

∫

AB

|u(x, y)|ds.

The following result of Grüss type holds:

Lemma 1. Let f, u : AB → R be such that f is Lf -Lipschitzian on AB and u is
Riemann integrable on the arc AB whose length is equal to S, and so that there
exist the real numbers m,M such that

m ≤ u(x, y) ≤ M, for all (x, y) ∈ AB.(2.4)

Then the following inequality holds
∣
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∫

AB

u(x, y)df(x, y)− f(B)− f(A)
S

∫

AB

u(x, y)ds
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≤ 1
2
Lf (M −m)S(2.5)

and the constant 1
2 is sharp, in the sense that it cannot be replaced by a smaller

one.

Proof. Let us denote
1
S

∫

AB

u(x, y)ds ≡ u and consider the difference

∫

AB

u(x, y)df(x, y)− [f(B)− f(A)]u.

Since
∫

AB

udf(x, y) = [f(B)− f(A)] u, then by (2.3)

∣
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∫
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u(x, y)df(x, y)− [f(B)− f(A)] u
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∣
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∣

∣

∣

∣

∫

AB

[u(x, y)− u] df(x, y)
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∣
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∣

≤ L ‖u(x, y)− u‖1 ,

where ‖·‖l =
[∫

AB
|·|l dt

] 1
l

, l ∈ [1,∞).

In addition, as for finite AB we have ‖·‖1 ≤
√

S ‖·‖2, we can write
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∫

AB

u(x, y)df(x, y)− [f(B)− f(A)] u
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≤ L ‖u(x, y)− u‖1(2.6)

≤ L
√

S ‖u(x, y)− u‖2
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and we have to evaluate the norm ‖u(x, y)− u‖2 . We have

1
S
‖u(x, y)− u‖22 =

1
S

∫

AB

[u(x, y)− u]2 ds =
1
S
‖u‖22 − u2.(2.7)

By the inequality (2.4), we obtain

0 ≤ (M − u(x, y))(u(x, y)−m)

= Mu(x, y)−Mm− u2(x, y) + mu(x, y).

After integration and division by S we obtain

Mu−Mm + mu ≥ 1
S
‖u‖2 ,

which implies that
1
S
‖u‖2 − u2 ≤ Mu−Mm + mu− u2 = (M − u)(u−m).

Using the elementary inequality

(M − u)(u−m) ≤ 1
4
[(M − u) + (u−m)]2 =

1
4
(M −m)2

which holds for u, m,M ∈ R, we arrive at
1
S
‖u‖2 − u2 ≤ (M − u)(u−m) ≤ 1

4
(M −m)2.(2.8)

Combining (2.6), (2.7) and (2.8), we obtain the desired inequality (2.5).
The proof of sharpness of the constant 1

2 is similar to the one in [3] after parametriza-
tion of AB and we omit the details.

The term
f(B)− f(A)

S

∫

AB

u(x, y)ds in (2.5) can be replaced by a simpler one,

as shown in the following Lemma 3. To do this, we use the next simpler result.

Lemma 2. Let u : AB → R be Lu-Lipschitzian on AB. Then the following in-
equality holds

∣

∣

∣

∣

∣

∣

∫

AB

u(x, y)ds− Su(ξ, η)

∣

∣

∣

∣

∣

∣

≤ Lu

4
S2,(2.9)

where the point (ξ, η) bisects the arc AB.

Proof. Let us introduce on AB the parametrization with the arc length s as a
parameter (0 ≤ s ≤ S). Let

p(s) = s− θ+(s− σ)S

be a function defined on AB. Consider the integral I =
∫

AB

p(s)du(s).

Integrating by parts, using

p′(s) = 1− Sδ(s− σ),

we obtain
∫

AB

p(s)du(s) = −
∫

AB

u(s)p′(s)ds = −
∫

AB

u(s)ds + Su(σ),
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which implies by (2.3) that
∣

∣
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∣
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∫

AB

u(s)ds− Su(σ)

∣

∣

∣

∣

∣

∣

≤ Lu

∫

AB

|p(s)| ds = Lu





∣

∣

∣

∣

∣

(

σ2

2
+

(σ − S)2

2

)∣

∣

∣

∣

∣

σ= 1
2 S





=
Lu

4
S2,

and the lemma is proved.

Lemma 3. Let f, u : AB → R be such that f is Lf -Lipschitzian on AB and u is
Lu-Lipschitzian on AB. Then the following inequality holds

∣
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∣

∣

∣

∫

AB

u(x, y)df(x, y)− [f(B)− f(A)] u(ξ, η)

∣

∣

∣

∣

∣

∣

≤ 3LfLu

4
S2,(2.10)

where (ξ, η) is the point dividing the arc AB in two.

Proof. Let us denote by m,M the real numbers such that

m ≤ u(x, y) ≤ M, for all (x, y) ∈ AB,(2.11)

with the assumption that M = u(AM ) and m = u(Am).
It is clear that

M −m = u(AM )− u(Am) ≤ LuS(AMAm) ≤ LuS.(2.12)

Using the triangle inequality, Lemmas 1, 2 and (2.12), we obtain
∣

∣

∣

∣

∣

∣

∫

AB

u(x, y)df(x, y)− [f(B)− f(A)]u(ξ, η)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

AB

u(x, y)df(x, y)

− [f(B)− f(A)]





1
S

∫

AB

u(x, y)ds +



u(ξ, η)− 1
S

∫

AB

u(x, y)ds









∣

∣

∣
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∣

∣

≤

∣

∣
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∣

∣

∫

AB

u(x, y)df(x, y)− f(B)− f(A)
S

∫

AB

u(x, y)ds

∣

∣

∣

∣

∣

∣

+
|f(B)− f(A)|

S

∣

∣

∣

∣

∣

∣

Su(ξ)−
∫

AB

u(x, y)ds

∣

∣

∣

∣

∣

∣

≤ Lf

2
(M −m)S +

LfLu

4
S2 ≤ 3LfLu

4
S2.

Hence the lemma is proved.
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3. Application of the Grüss Inequalities to Adaptive Quadrature
Methods.

Consider the Riemann-Stieltjes line integral

I(u, f) =
∫

AB

u(x, y)df(x, y),(3.1)

where u(x, y) and f(x, y) are Lipschitz-continuous on the smooth Jordan curve
AB. Let the set of points {A = A0, A1, ..., An−1, An = B} belonging to AB represent
a subdivision of arc AB. Also, let (xi, yi) be coordinates of the point Ai. We con-
sider the following approximation of I(u, f) with the functional

In(u, f) =
n

∑

i=1

[f(xi, yi)− f(xi−1, yi−1)] u(ξi, ηi).

Therefore,
∫

AB

u(x, y)df(x, y) ∼=
n

∑

i=1

[f(xi, yi)− f(xi−1, yi−1)] u(ξi, ηi),

where (ξi, ηi) is the midpoint of the arc (Ai−1Ai) .
By analogy with the case of Riemann integrals, we call (3.1) a composite quad-

rature formula for Riemann-Stieltjes integral.

Theorem 1. Let AB be a smooth Jordan curve on the plane R2 and let f, u :
AB → R be Lipschitzian. Then

|I(u, f)− In(u, f)| ≤ 3
4
LfLu

n
∑

i=1

S2
i .(3.2)

Proof. Replacing the integral I by
∫

AB

u(x, y)df(x, y) =
n

∑

i=1

∫

Ai−1Ai

u(x, y)df(x, y)

we have

|I(u, f)− In(u, f)|

=

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1







∫

Ai−1Ai

u(x, y)df(x, y)− (f(xi, yi)− f(xi−1, yi−1)) u(ξi, ηi)







∣

∣

∣

∣

∣

∣

∣

≤
n

∑

i=1

∣

∣

∣

∣

∣

∣

∣

∫

Ai−1Ai

u(x, y)df(x, y)− (f(xi, yi)− f(xi−1, yi−1)) u(ξi, ηi)

∣

∣

∣

∣

∣

∣

∣

.

Evaluating every term of the sum using Lemma 3, we have
∣

∣

∣

∣

∣

∣

∣

∫

Ai−1Ai

u(x, y)df(x, y)− (f(xi, yi)− f(xi−1, yi−1))u(ξi, ηi)

∣

∣

∣

∣

∣

∣

∣

(3.3)

≤ 3LfLu

4
S2

i ,
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and then

|I(u, f)− In(u, f)| ≤ 3LfLu

4

n
∑

i=1

S2
i ,

or

∣

∣

∣

∣

∣

∣

∫

AB

u(x, y)df(x, y)−
n

∑

i=1

[f(xi, yi)− f(xi−1, yi−1)] u(ξi, ηi)

∣

∣

∣

∣

∣

∣

≤ 3LfLu

4

n
∑

i=1

S2
i .

Hence the theorem is proved.

Remark 1. The constant in (3.2) can be decreased if we use Lemma 2 instead of
Lemma 3. In this case, we have

|I(u, f)− In(u, f)|(3.4)

≤

∣

∣

∣

∣

∣

∣

∣

∫

AB

u(x, y)df(x, y)−
n

∑

i=1

f(xi, yi)− f(xi−1, yi−1)
Si

∫

Ai−1Ai

u(x, y)ds

∣

∣

∣

∣

∣

∣

∣

≤ LfLu

2

n
∑

i=1

S2
i .

Remark 2. Since the fields with the larger values of Lu where u =
ϕ(x, y)

ϕ2(x, y) + ψ2(x, y)
are

frequently dealt with, it is helpful to replace in (3.2), Lu by the one that is consid-
erably less then Lu. Sometimes it is possible (it is clear from the end of the proof
of Lemma 3) if we write the right hand side of (2.10) as

Lf

2
(M −m)S +

LfLu

4
S2.

4. Application to the Index Problem

Consider the integral (1.2), taking AB as the unit circle C






x = cos t
y = sin t

0 ≤ t ≤ 2π
,

I ≡ 1
2π

∮

x2+y2=1

ϕ(x, y)dψ(x, y)− ψ(x, y)dϕ(x, y)
ϕ2(x, y) + ψ2(x, y)

.(4.1)

Integral (4.1) defines the winding number (index) of the vector field

F(x, y) = [ϕ(x, y), ψ(x, y)] ,

Since the winding number is an integer, we can evaluate integral (4.1) with an
accuracy less than 1

2 .
Consider this integral as the sum of two integrals:

I = I1 + I2,
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where

I1 =
1
2π

∮

C

ϕ(x, y)
ϕ2(x, y) + ψ2(x, y)

dψ(x, y)

and

I2 =
1
2π

∮

C

−ψ(x, y)
ϕ2(x, y) + ψ2(x, y)

dϕ(x, y).

If we compute each of these integrals with an accuracy less than 0.25, the resulting
precision will be less than 0.5.

Let us subdivide the circle C by n equal parts. We denote the points of such sub-
division by tk (k = 0, 1, 2, ..., n). The midpoint of the interval [tk−1, tk] corresponds
to the value of parameter τk = π(2k−1)

n . Thus we have

tk =
2πk
n

,

tk−1 =
2π (k − 1)

n
and

τk =
π (2k − 1)

n
.

The length of the arc Sk is equal to 2π
n so that

n
∑

i=1

S2
i =

n
∑

i=1

(

2π
n

)2

=
4π2

n
.

Thus, the error evaluation (3.4) can be written as follows:

|I(u, f)− In(u, f)| ≤ 3LfLuπ2

n
.(4.2)

The assumptions about the accuracy 0.25 of computation allow us to evaluate a
number of terms in the quadrature formula (4.2). The number n can be obtained
from the inequality

3LfLuπ2

n
<

1
4

implies n > 12LfLuπ2.

Taking into account the presence of the factor 1
2π in the Poincaré formula, we can

decrease 12LfLuπ2 to the value 6LfLuπ, but in this case, we use formula (4.2) and
set (for example in integral I1)

u(x, y) =
ϕ(x, y)

ϕ2(x, y) + ψ2(x, y)
, ψ(x, y) = ψ(x, y).

The number n must satisfy the condition

n > 6LfLuπ.
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