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FURTHER INEQUALITIES FOR THE EXPECTATION AND
VARIANCE OF A RANDOM VARIABLE DEFINED ON A
FINITE INTERVAL

N.S. BARNETT, P. CERONE, AND S.S. DRAGOMIR

ABSTRACT. Some new elementary inequalities for the expectation and the vari-
ance of a continuous random variable defined on a finite interval are given.

1. INTRODUCTION

Let X be a continuous random variable having the probability density function
f:a,b] — (0,00) and the cumulative distribution function F' : [a,b] — [0, 1].

In a recent paper [10], the authors pointed out a number of inequalities for the
expectation, E (X) and the variance, o2 (X) from which we cite only the following:

(L1) 0< 0% (X) < b- BE(X)[E(X) ~a] < 5 (b— )
(1.2) 0 < [b-—EX)][EX)-ad—o*(X)
O£l
< { [Bl+La+1]7 0-a)* s,

provided f € L, [a,b], p > 1, %-1— % =1;
where B (-, -) is Euler’s Beta function, i.e., we recall it
1
B(a,B) :=/ e (1-t)"tdt, o8> 1.
0

Moreover, if m < f < M a.e. on [a, b], then

. 3
a3 "m0 B ) a2 (x) < LY
and

—a)? —a)®> (M —m
(1.4) [b—E(X)][E(X)—a]—Jz(X)—(b6) 7\/5(1) ()so(M :

In this current paper, we point out some additional results.
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2 N.S. BARNETT, P. CERONE, AND S.S. DRAGOMIR

2. THE RESULTS
Lemma 1. Let X be a continuous random variable having the cumulative distri-

bution function F : [a,b] — [0,1]. Then,

(2.1) (X)) = (b-E(X (X)—a)

)
b b
sy [ [ =@ - F @)

Proof. Using integration by parts, we have

(2.2) o2 (X) = /b(t—E(X))zdF(t)
b

(t— E(X)2F (1) —Z/b(t—E(X))F(t)dt

a

b
— (b—E(X))2—2/ (t—E (X)) F (t)dt.

Further, using Korkine’s identity,

bia/abh(ﬂg(t)dt = bia/abh(t)dt.b_la abg(t)dt
o [ 001D 60 - g
we have
(2.3) / "= B(O)F (1) dt
- o5 [ s [ Pow
*2(%@ /ab/ab (t—7)(F(t) = F (7)) drdt.
Since,
/ab(t—E(X))dt _ (b—E(X))zg(E(X)—a)2
= (b- )(b—ga—E(X))
and
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then, by (2.2) and (2.3),

o (X) = (b—E<X>>2—2[““‘2M-<b—E<X>>
b_a// (t—r) (T))det]
= (b-E(X)?—(b+a—2E(X))(b—E(X))

b—a// t—7) — F (7)) drdt
b b
- <b—E<X>><E<X>—a>—bia//<t—r><F<t>—F<r>>drdt

and the lemma is proved. i

Remark 1. Since the mapping F is monotonic nondecreasing on [a,b], then

(2.4) t—7)(F(r)=F(t)) <0 forall t,7 € [a,b];

which implies that

(25) 02 (X) < [b— B(X)] [E(X) - d],

an inequality that was proved in [10] and [11] using two different methods.
The inequality (2.5) can be improved as follows.

Theorem 1. With the assumptions in Lemma 1,

(2.6) (b= E (X)) (E(X) —a) - 0® (X)

b b
2/a|t|F(t)dt—ﬁ(b—E(X))/a 1t dt

Proof. In [12], S.S. Dragomir proved the following refinement of Chebychev’s in-
equality

(2.7) T (h,g) = max{|T (h, |lgD[, [T (|b], )|, [T (1A, 19D} = 0,

provided (h, g) are synchronous on [a, b], i.e

(h(t)—h(7))(g(t)—g(r)) >0 forall t,7 € a,b

P = 2 [ g [hoa 2 [0

If we define h (t) = ¢, t € [a, b], then from (2.1)

T(hF) = _a// (t—1) F (7)) drdt

= o[- BOO) (B(X) —a) - 0% (X)].

> 0.

and
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1 b b 1 b b
MLLItF(t)dt—W/a |t|dt/a F(t)dt
T(hv‘FD = (h F)

T(Ihl,|F]) = T(|nl, F).
Using the result (2.7), we get (2.6). 1

Now, from (2.7),

T(|hl, F)

Remark 2. Ifa <b <0 or0 < a<b, then the first inequality in (2.6) becomes
an identity and is of no special interest.

If a < 0 < b, however, then,
0 b
—/ tF(t)dt+/ tF (t)dt;
a 0

b

/|t|F(t)dt

1 b 0 b
—/ It| dt —/ tdt+/ tdt| =
b—a a a 0

and by (2.6), we get

1 [a?+b?
—a 2

(2.8) (b—E(X))(E(X)—a)—o?(X)
b 0 a2+b2
> 2/0tF(t)dt—/a (1) it = s (b= B (X)) 20

Assume that f, f : [a,b] — (0,00) is the p.d.f. of X, then the following theorem
holds.

Theorem 2. With the assumptions in Lemma 1,

(29) 0 < (b-E(X))(E(X)-a)-0*(X)

C Ml i f € Lo [a,b];
1
< 2¢°(b—a)" "4 1l . 1.
— W ’Lf fELp[a,b],p>1,%+%—1,
(b=a)®,
3
where |||, (p > 1) on the usual Lebesgue norm.
Proof. Using (2.1),
(2.10) 0 < (b E(X))(E(X)—a)—0o*(X)
= — // (t—1) (/f du)dth
By the modulus property, we have
(2.11) 0 < (b E(X))(E(X) - a) - 0*(X)
= // (t—1) (/f du)dth
b—a
1
< bi/ / |t — 7| / f(w)du| dtdr =: M
—aJq Ja T
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If f € Ly [a,b], then we can write,

t
[ rwa
for all ¢,7 € [a,b], and so

1 b b
Mo g [ el ol dedr

b b 3
bh—
L[y o o v L (S
—Q Ja Ja
For the second part, we apply Holder’s integral inequality to write:

/th(u)du /Ttdu /thp(u)du;<|t—7|<11</abfp(u)du>;

1
= [t=7l"[Ifll,,
where p > 1, %—f—%:l.
In addition,

1 borb 1
M < m//|t—7’||t—7’|q||f”pdtd7'

_ ﬂf”z/: l/:(t—T)”édT+/tb(T—t)1+3dT] dt

1
I£1L, /b (t—a)>T 4+ (b—t)*te dt72|\f||p(b—a)2“
b—a /, N

1 1 1
(2+1) (2+1) (3+1)
and the second inequality in (2.9) is proved.

Finally,
1 b b b
M < —a //|t77| /f(u)du dtdt
—a Jq a a

1 {t—a)’+0b-1)7
b—a/a l 2 ]dt

1 [(b—a)?’ (b—a)3]:(b—a)2

<[t =7lIfll<

1
q

<

20-a)| 3 3 3
and the theorem is completely proved. i

Using the Cauchy-Buniakowsky-Schwartz inequality, we have the following in-
equality.

Theorem 3. If X and F are as in Lemma 1, then,

(2.12) 0 < (b—E(X)(E(X)-a)-0(X)
(b—a)Q 2 2 %
< S e-alF -6~ B )
(b—a)’

<

23
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Proof. Using the Cauchy-Buniakowsky-Schwartz integral inequality for double in-
tegrals,

b b
(2.13) / / (t—71)(F(r)— F(t))dtdr

< (/ab/ab(tT)thdT>é (/ab/ab(F(t)F(T))thdT>
However,

/ab/ab(tT)thdT = (b_6a)4,
b

/1/ (F(r)~ F () dtdr = 2|(b—a) /;F2 e (LbF(t)dt)Q

2[(b—a) IFI3 - (6 - E ()]

1

2

and, by (2.13),

N

(b—a)®
V3

b b
| [ e=n@ =@y < (06— a) IFIZ — (0~ B (x))’]

and the first inequality in (2.12) is proved.
To prove the last part of (2.12), we use the following Griiss type inequality:

b b 2
| 92<t>dt—(b_IG/g<t>dt> <16,

provided that g € Ls (a,b) and v < g (t) < ¢ a.e. for t € (a,b).

(2.14)

From (2.14),
b b >y
(b—a)/ F2 (1) dt — (/ F(t)dt) < ;(b—a)
since
sup F(t)=1 and inf F(¢)=0.
te(a,b) te[a,b]
|

If it is assumed that the mapping f is convex on [a, ], then the following result
can be obtained.

Theorem 4. Assume that the p.d.f., f : [a,b] — (0,00) is convex. Then we have
the inequality

b b
(2.15) ﬁ/ / (tT)2f<t—;T>d7dt
[b—E(X)|[E(X)—a] -0 (X)

IA

(b—a)’
3

IN

+0*(X) - (b—E(X))(E(X)—a).
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Proof. Using the Hermite-Hadamard inequality,

e () < A twd_ f0 i

for all t,7 € [a,b], t # 7, we have

t+T1

217)  (t-1)7°f ( : FO+F) oy

2

)gu—ﬂuwﬂ—Fw»s

for all ¢t,7 € [a, b].
Integrating (2.17) on [a,b]> and using the representation (2.1), gives:-

(2.18) b—a/a/a (t—r (HT)dth
b*a/a/a (t—1) (1)) dtdr

= [b- E(X) - a] 2(X)

b—a/a /a f+f(r) Jrf t—T) dtdr.
Now

(2.19) /b /b (t —7)2 {W} dtdr
// t—1)2 f(t)drdt = /ablLb(t—T)szlf(t)dt

3

IN

IN

_ <b3>/ (602~ -0t —a)+ (¢ —a)?] f (1)t
_ b3 a (0~ 30— 1) (t— o) £ (1) d
(b—a)

3 b
_ T—(b—a)/a (b—1) (t—a) f (£) dt

(b— )3 >
= +(b—a) [0 (X) = (b— E (X)) (E(X) - a)]

3
on using an identity (see [10]).
Hence, from (2.19) and the above working,

b—aALL o [HOH aan

_ @;a +[0* (X) = (b= E (X)) (B(X) - a)],

and the second part of (2.15) is proved. I
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Remark 3. The second inequality in (2.15) is equivalent to:-
1
6 (b — a)2 .
Remark 4. For b—a < %, then the result of Theorem & is better than that of
1

Theorem 4. For b —a > 73 the opposite applies. It must be remembered that
Theorem 4 relies on f being convex whereas Theorem 3 does not.

(2.20) b E(XO)E(X) - a < 0®(X) +

The following representation for the absolutely continuous p.d.f., f : [a,b] — R
holds.

Lemma 2. Let X be a random variable having the p.d.f., [ : [a,b] — R absolutely
continuous on [a,b]. Then we have

Q) 0= 06— BX)EX) -0 - 7Y

+2(b1_a)/ab/ab(t—7) (/: (u—t—;T> f’(u)du) dtdr.

Proof. We use the following identity which holds for the absolutely continuous
mapping g : [a,b] — R

(2.22) /abg(u)dug(a);_g(b)(ba)/ab<ua—2'—b)g’(u)du,

can be easily proven by using the integration by parts formula.
We know that

(2.23) (B (X )(b— E (X)) —0?(X)

_ b_a// t—T/ (u) du dtdr
_ b_a// [ J;f()(t T)Lt(ut;T)f'(u)du}dth
_ bia// ( )—;f<))dtdr

,b_a/ / (t7)</ (ut;T)f'(u)du)dth.

However, observe that (see the proof of Theorem 4)

- e (103

02<X>+3[<E< ) =) = (B(X) —a) (b~ E (X)) + (B(X) - )]
Using (2.23), we have

(E(X) —a) (b E(X)) - 0®(X)

= ()43 [(BOO) -0~ (B(X) - ) (- B(X)) + (B (X) - o)?]

[ L] (157 o)

which is clearly equivalent to (2.21). 1
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Using Lemma 2, we are able to obtain the following bounds.

Theorem 5. Assume that f is as in Lemma 2. Then we have the inequality

b— a)?
(2.21) b= B (X)) [ (X) ~a] —o? (x) - 20
Ve (6~ )t i € Lulabl;
||| 341l
< L r(b—a)""7 if f'€Lyla,b],
2(3q+1)(4q+1)(q+1) ¢
p> 13 % + % = ]-v
||J;4||1 (b— a)3 )
Proof. Using the equality (2.21), we may write
b— a)?
o (X) ~ (b~ B (X)) (B (X) ~a) + =2
1 b b t ¢
a a T
Now, it may be easily shown that,
K t K t
[ (=50 rwal < [ -5l
2
_ / (t B T)
S e
for all ¢t,7 € [a, b].
Also, by Holder’s integral inequality, we may write
1 1
t " t st ; a |3
/ <u— —;T>f’(u)du < /|f’(u)|pdu / w—"TT1 gy
1
q 1+1
1, P g, e
- ?12¢(¢+1) P 2(q+1)

for all ¢,7 € [a,b], and further,

IN

sup |u —

t
S 1wl

t—7]
A

IN

N, Y2 i f e Lo [a, bl
£l = if f € Log [a,0];

R g
—
=
i
m
~
kS
B
S

o lt=rtt
<q 70,
q

£ 52 i ff e Lofa,b
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Using (2.26), we may write, for f’ belonging to the obvious Lebesgue space Ly, [a, ],
p=1

— 7|* dtdr,

el
4(a+1) 1 (b-a)

(2.27) N < J2 0=t dear,

b a) f f 2 dtdr.

Now, since some straight forward algebra shows that

/ab/ab|t—73dtd7 /abV:(t—T)i”dmL/tb(T—t)?’dT]dt

lt—a)+(b-0" (b-a)
/G[ 4 dt = 0

b t . b 1
/ V (t—7)°ta dT+/ (r—t)*ts dT] dt
a a t
b _ \3+1 _\3+2
/ (t—a) : + Eb t) 1 "
2¢° (b— a)**a
(3¢+1)(4g+1)

/ab/ab(t—T)2dth = /abllt(t—T)sz+/tb(T—t)2dT‘|dt
/” l(t—a)g';(b—t)?’] o

(b—a)*
6 )
we obtain the desired inequality (2.24) from using (2.27) and (2.25). 1

b b 1
/ / it —7*Ta dtdr
a a

and

The following representation for the mappings whose derivatives are absolutely
continuous on [a, b] also holds.

Lemma 3. Let X be a random variable having the p.d.f. [ : [a,b] — R and with
the property that f': [a,b] — R is absolutely continuous on [a,b]. Then we have
(b—a)’

6

+4<b1_a>/ab/ab(t—r)/:(t—u)(u—T)f"(u)dudth.

(2.28) o* (X) = (b— E(X)) (E(X) —a) -
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Proof. We use the following identity which holds for the mappings g whose deriva-
tives are absolutely continuous:

b a b
(2.29) /g(u)duzw(b—a)—%/ (b—u) (u—a)g" (u)du

and can easily be proven by using the integration by parts formula twice.
We know that

b b T
(be(X))(E(X)fa)—orz(X):bi@//(7577)/1t f(u)dudtdr

and then, using the representation (2.29) writen for f instead of g, and proceeding
as in the proof of Lemma 2, we end up with the identity (2.28). I

Using the representation of Lemma 3, we are able to obtain the following bounds.

Theorem 6. Assume that f is as in Lemma 3. Then we have the inequality

b— a)?
(230)  |Ib— B (X)][E(X) —a] —o® (X) — . 6“)
TP ;e Dlab
se0- (b—a) if "€ Lola,b]
< 0 W g 06— i e Lyah
= 2(p+1)(5p+1) p+1,p+ )] ( a) if f'e q [a’ ],
sTi=Lp>1
171 g — g o
60 (b—a)",
where the p—norms are taken on the interval [a,b).
Proof. Using the equality (2.28), we may write
b— )2
o (X) ~ b B (X)) [E(X) —a) - L0
1 b b t
< 4(b—a)/a /a [t — 7] /T (t—u)(u—71)f" (u)du|dtdr = K.

First of all, let us observe that

N

1
< s

1" oo
6

/Tt(tu)(UT)du

/ (t—u)(u—7)f" (u)du

|t_7_|37

for all ¢, 7 € [a, b].
Further, by Holder’s integral inequality, we obtain

IN

1
t v
£, / [t —ul” |u— 7" du
T

1
L1l 1t = 7[**% [B (p+ Lp+ 1))

/ (t =) (u—7) " (u) du

=

for all ¢, 7 € [a,b], where B is the Beta function of Euler and % + % =1;p>1.
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Also, we have

t
[ w ) £ @da <7 max (- w (w7
jt —7I°
= =y,
for all ¢t,7 € [a, b].
Consequently, we may state the inequality
t
(2.31) / (t =) (u—7) " (u) du
170l 6”00 It —7|° if f" € Leo[a,b];
1 1,
< £, B+ 1L,p+ D)% [t=7[*T% it [ € Lyla,b],
ste=1Lp>1L
[t=71* | pr
=0
for all t,7 € [a, b].
Using (2.31) and the definition of K above, we may write
(2.32)
Q‘Lf(bﬂzo) f: fab (t - T)4 dtdr if f"€ Lo [a7 b] 5
K< JJ(’;JJ;) B+ 1,p+ D)7 [0 [Pt —rf P dtdr if 7€ Lylab],
1% + % =1,p>1
£ b b 3
ll(L(bJ|;) fa fa |t - 7—| dtdr.

Now, since some straight forward algebra shows that

b b 6
4 (b—a)
— dtdr = .
/a/a(t T) T 15
b b ) g
//|t—7'|3+5dtd7' .

b PR oyt
_ / (t—a) + Eb t) it
a 4 + 5

b—a)v  2p2(b—a)’F
5+%) (4p+1) (5p+1)

‘Abtlut—deT+l[aT—tfd4 dt

/b [(t— ) + (b— t)4] o b=a)’

Il
T~
o
| —— |
T~
~
=
A
k]
QU
\]
4
c\&
—~
\]
|
-+
SN~—
o
+
kel
ISH
\]
| I
Q
=

/~
=~
_|_

Sl

—

~/~

an

d
b b
//|t—7'\3dtd7'

4 10 7
then by (2.32), we deduce the desired inequality (2.30). I
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