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FURTHER REVERSE RESULTS FOR JENSEN’S DISCRETE
INEQUALITY AND APPLICATIONS IN INFORMATION

THEORY

I. BUDIMIR, S.S. DRAGOMIR, AND J. PEČARIĆ

Abstract. Some new inequalities which counterpart Jensen’s discrete in-
equality and improve the recent results from [20] and [22] are given. A related
result for generalized means is established. Applications in Information Theory
are also provided.

1. Introduction

Let f : X → R be a convex mapping defined on the linear space X and xi ∈ X,

pi ≥ 0 (i = 1, ..., m) with Pm :=
m
∑

i=1
pi > 0.

The following inequality is well known in the literature as Jensen’s inequality

f

(

1
Pm

m
∑

i=1

pixi

)

≤ 1
Pm

m
∑

i=1

pif (xi) .(1.1)

There are many well known inequalities which are particular cases of Jensen’s in-
equality, such as the weighted arithmetic mean-geometric mean-harmonic mean
inequality, the Ky-Fan inequality, the Hölder inequality, etc. For a comprehensive
list of recent results on Jensen’s inequality, see the book [1] and the papers [2]-[14]
where further references are given.

In 1994, Dragomir and Ionescu [13] proved the following inequality which coun-
terparts (1.1) for real mappings of a real variable.

Theorem 1. Let f : I ⊆ R→ R be a differentiable convex mapping on I̊ (̊I is

the interior of I), xi ∈̊I, pi ≥ 0 (i = 1, ..., n) and
n
∑

i=1
pi = 1. Then we have the

inequality

0 ≤
n

∑

i=1

pif (xi)− f

(

n
∑

i=1

pixi

)

(1.2)

≤
n

∑

i=1

pixif ′ (xi)−
n

∑

i=1

pixi

n
∑

i=1

pif ′ (xi) ,

where f ′ is the derivative of f on I̊.
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Using this result and the discrete version of the Grüss inequality for weighted
sums, S.S. Dragomir obtained the following simple counterpart of Jensen’s inequal-
ity [20]:

Theorem 2. With the above assumptions for f and if m,M ∈̊I and m ≤ xi ≤ M
(i = 1, ..., n), then we have

0 ≤
n

∑

i=1

pif (xi)− f

(

n
∑

i=1

pixi

)

≤ 1
4

(M −m) (f ′ (M)− f ′ (m)) ,(1.3)

and applied it in Information Theory for Shannon’s and Rényi’s entropy.
In this paper we point out some other counterparts of Jensen’s inequality that

are similar to (1.3), some of which are better than the above inequalities.

2. Some New Counterparts for Jensen’s Discrete Inequality

The following result holds.

Theorem 3. Let f : I ⊆ R→ R be a differentiable convex mapping on I̊ and xi ∈̊I

with x1 ≤ x2 ≤ ... ≤ xn and pi ≥ 0 (i = 1, ..., n) with
n
∑

i=1
pi = 1. Then we have

0 ≤
n

∑

i=1

pif (xi)− f

(

n
∑

i=1

pixi

)

(2.1)

≤ (xn − x1) (f ′ (xn)− f ′ (x1)) max
1≤k≤n−1

{

Pk P̄k+1
}

≤ 1
4

(xn − x1) (f ′ (xn)− f ′ (x1)) ,

where Pk :=
k
∑

i=1
pi and P̄k+1 := 1− Pk.

Proof. We use the following Grüss type inequality due to J. E. Pečarić (see for
example [1]):

∣

∣

∣

∣

∣

1
Qn

n
∑

i=1

qiaibi −
1

Qn

n
∑

i=1

qiai ·
1

Qn

n
∑

i=1

qibi

∣

∣

∣

∣

∣

(2.2)

≤ |an − a1| |bn − b1| max
1≤k≤n−1

[

Qk Q̄k+1

Q2
n

]

,

provided that a, b are two monotonic n−tuples, q is a positive one, Qn :=
n
∑

i=1
qi > 0,

Qk :=
k
∑

i=1
qi and Q̄k+1 = Qn −Qk+1.

If in (2.2) we choose qi = pi, ai = xi, bi = f ′ (xi) (and ai, bi will be monotonic
nondecreasing), then we may state that

n
∑

i=1

pixif ′ (xi)−
n

∑

i=1

pixi

n
∑

i=1

pif ′ (xi)(2.3)

≤ (xn − x1) (f ′ (xn)− f ′ (x1)) max
1≤k≤n−1

{

Pk P̄k+1
}

.

Now, using (1.2) and (2.3) we obtain the first inequality in (2.1).
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For the second inequality, we observe that

Pk P̄k+1 = Pk (1− Pk) ≤ 1
4

(Pk + 1− Pk)2 =
1
4

for all k ∈ {1, ..., n− 1} and then

max
1≤k≤n−1

{

Pk P̄k+1
}

≤ 1
4
,

which proves the last part of (2.1).

Remark 1. It is obvious that the inequality (2.1) is an improvement of (1.3) if we
assume that the order for xi is as in the statement of Theorem 3.

Another result is embodied in the following theorem.

Theorem 4. Let f : I ⊆ R→ R be a differentiable convex mapping on I̊ and

m,M ∈̊I with m ≤ xi ≤ M (i = 1, ..., n) and pi ≥ 0 (i = 1, ..., n) with
n
∑

i=1
pi = 1. If

S is a subset of the set {1, ..., n} minimizing the expression
∣

∣

∣

∣

∣

∑

i∈S

pi −
1
2

∣

∣

∣

∣

∣

,(2.4)

then we have the inequality

0 ≤
n

∑

i=1

pif (xi)− f

(

n
∑

i=1

pixi

)

(2.5)

≤ Q (M −m) (f ′ (M)− f ′ (m)) ≤ 1
4

(M −m) (f ′ (M)− f ′ (m)) ,

where

Q =
∑

i∈S

pi

(

1−
∑

i∈S

pi

)

.

Proof. We use the following Grüss type inequality due the Andrica and Badea [21]:
∣

∣

∣

∣

∣

Qn

n
∑

i=1

qiaibi −
n

∑

i=1

qiai ·
n

∑

i=1

qibi

∣

∣

∣

∣

∣

(2.6)

≤ (M1 −m1) (M2 −m2)
∑

i∈S

qi

(

Qn −
∑

i∈S

qi

)

provided that m1 ≤ ai ≤ M1, m2 ≤ bi ≤ M2 for i = 1, ..., n, and S is the subset of
{1, ..., n} which minimises the expression

∣

∣

∣

∣

∣

∑

i∈S

qi −
1
2
Qn

∣

∣

∣

∣

∣

.

Choosing qi = pi, ai = xi, bi = f ′ (xi), then we may state that

0 ≤
n

∑

i=1

pixif ′ (xi)−
n

∑

i=1

pixi

n
∑

i=1

pif ′ (xi)(2.7)

≤ (M −m) (f ′ (M)− f ′ (m))
∑

i∈S

pi

(

1−
∑

i∈S

pi

)

.
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Now, using (1.2) and (2.7), we obtain the first inequality in (2.5).
For the last part, we observe that

Q ≤ 1
4

(

∑

i∈S

pi + 1−
∑

i∈S

pi

)2

=
1
4

and the theorem is thus proved.

The following inequality is well known in the literature as the arithmetic mean-
geometric mean-harmonic-mean inequality:

An (p, x) ≥ Gn (p, x) ≥ Hn (p, x) ,(2.8)

where

An (p, x) : =
n

∑

i=1

pixi - the arithmetic mean,

Gn (p, x) : =
n

∏

i=1

xpi
i - the geometric mean,

Hn (p, x) : =
1

n
∑

i=1

pi
xi

- the harmonic mean,

and
n
∑

i=1
pi = 1

(

pi ≥ 0, i = 1, n
)

.

Using the above two theorems, we are able to point out the following reverse of
the AGH - inequality.

Proposition 1. Let xi > 0 (i = 1, ..., n) and pi ≥ 0 with
n
∑

i=1
pi = 1.

(i) If x1 ≤ x2 ≤ ... ≤ xn−1 ≤ xn, then we have

1 ≤ An (p, x)
Gn (p, x)

≤ exp

[

(xn − x1)
2

x1xn
max

1≤k≤n−1

{

PkP̄k+1
}

]

(2.9)

≤ exp

[

1
4
· (xn − x1)

2

x1xn

]

.

(ii) If the set S ⊆ {1, ..., n} minimises the expression (2.4), and 0 < m ≤ xi ≤
M < ∞ (i = 1, ..., n), then

1 ≤ An (p, x)
Gn (p, x)

≤ exp

[

Q · (M −m)2

mM

]

(2.10)

≤ exp

[

1
4
· (M −m)2

mM

]

.

The proof goes by the inequalities (2.1) and (2.5), choosing f (x) = − ln x. A
similar result can be stated for Gn and An.

Proposition 2. Let p ≥ 1 and xi > 0, pi ≥ 0 (i = 1, ..., n) with
n
∑

i=1
pi = 1.
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(i) If x1 ≤ x2 ≤ ... ≤ xn−1 ≤ xn, then we have

0 ≤
n

∑

i=1

pix
p
i −

(

n
∑

i=1

pixi

)p

(2.11)

≤ p (xn − x1)
(

xp−1
n − xp−1

1

)

max
1≤k≤n−1

{

PkP̄k+1
}

≤ p
4

(xn − x1)
(

xp−1
n − xp−1

1

)

.

(ii) If the set S ⊆ {1, ..., n} minimises the expression (2.4), and 0 < m ≤ xi ≤
M < ∞ (i = 1, ..., n), then

0 ≤
n

∑

i=1

pix
p
i −

(

n
∑

i=1

pixi

)p

(2.12)

≤ pQ (M −m)
(

Mp−1 −mp−1)

≤ 1
4
p (M −m)

(

Mp−1 −mp−1) .

Remark 2. The above results are improvements of the corresponding inequalities
obtained in [20].

Remark 3. Similar inequalities can be stated if we choose other convex functions
such as: f (x) = x ln x, x > 0 or f (x) = exp (x), x ∈ R. We omit the details.

3. A Converse Inequality for Convex Mappings Defined on Rn

In 1996, Dragomir and Goh [14] proved the following converse of Jensen’s in-
equality for convex mappings on Rn.

Theorem 5. Let f : Rn → R be a differentiable convex mapping on Rn and

(∇f) (x) :=
(

∂f (x)
∂x1 , ...,

∂f (x)
∂xn

)

,

the vector of the partial derivatives, x =
(

x1, ..., xn
)

∈ Rn.

If xi ∈ Rm (i = 1, ..., m), pi ≥ 0, i = 1, ..., m, with Pm :=
m
∑

i=1
pi > 0, then

0 ≤ 1
Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

(3.1)

≤ 1
Pm

m
∑

i=1

pi 〈∇f (xi) , xi〉 −

〈

1
Pm

m
∑

i=1

pi∇f (xi) ,
1

Pm

m
∑

i=1

pixi

〉

;

and applied it for different problems in Information Theory, by providing differ-
ent counterpart inequalities for Shannon’s entropy, conditional entropy, mutual
information, conditional mutual information, etc.

For generalisations of (3.1) in Normed Spaces and other applications in Informa-
tion Theory, see Matić’s Ph.D dissertation [17].

Recently, Dragomir [22] provided an upper bound for Jensen’s difference

∆ (f, p, x) :=
1

Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

,(3.2)
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which, even though it is not as sharp as (3.1), provides a simpler way, and for
applications, a better way, of estimating the Jensen’s differences ∆.

His result is embodied in the following theorem.

Theorem 6. Let f : Rn → R be a differentiable convex mapping and xi ∈ Rn,
i = 1, ...,m. Suppose that there exists the vectors φ, Φ ∈ Rn such that

φ ≤ xi ≤ Φ (the order is considered on the co-ordinates)(3.3)

and m,M ∈ Rn are such that

m ≤ ∇f (xi) ≤ M(3.4)

for all i ∈ {1, ..., m}. Then for all pi ≥ 0 (i = 1, ...,m) with Pm > 0, we have the
inequality

0 ≤ 1
Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

≤ 1
4
‖Φ− φ‖ ‖M −m‖ ,(3.5)

where ‖·‖ is the usual Euclidean norm on Rn.

He applied this inequality to obtain different upper bounds for Shannon’s and
Rényi’s entropies.

In this section, we point out another counterpart for Jensen’s difference, assum-
ing that the ∇−operator is of Hölder’s type, as follows.

Theorem 7. Let f : Rn → R be a differentiable convex mapping and xi ∈ Rn,
pi ≥ 0 (i = 1, ...,m) with Pm > 0. Suppose that the ∇−operator satisfies a condition
of r −H−Hölder type, i.e.,

‖∇f (x)−∇f (y)‖ ≤ H ‖x− y‖r , for all x, y ∈ Rn,(3.6)

where H > 0, r ∈ (0, 1] and ‖·‖ is the Euclidean norm.
Then we have the inequality:

0 ≤ 1
Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

(3.7)

≤ H
P 2

m

∑

1≤i<j≤m

pipj ‖xi − xj‖r+1 .

Proof. Using Korkine’s identity, we may simply write that

1
Pm

m
∑

i=1

pi 〈∇f (xi) , xi〉 −

〈

1
Pm

m
∑

i=1

pi∇f (xi) ,
1

Pm

m
∑

i=1

pixi

〉

=
1

2P 2
m

n
∑

i,j=1

pipj 〈∇f (xi)−∇f (xj) , xi − xj〉 .
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Using (3.1) and the properties of modulus, we have

0 ≤ 1
Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

≤ 1
2P 2

m

m
∑

i,j=1

pipj |〈∇f (xi)−∇f (xj) , xi − xj〉|

≤ 1
2P 2

m

m
∑

i,j=1

pipj ‖∇f (xi)−∇f (xj)‖ ‖xi − xj‖

≤ H
P 2

m

m
∑

i,j=1

pipj ‖xi − xj‖r+1

and the inequality (3.7) is proved.

Corollary 1. With the assumptions of Theorem 7 and if ∆ = max
1≤i<j≤m

‖xi − xj‖,
then we have the inequality

0 ≤ 1
Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

(3.8)

≤ H∆r+1

2P 2
m

(

1−
m

∑

i=1

p2
i

)

.

Proof. Indeed, as
∑

1≤i<j≤m

pipj ‖xi − xj‖r+1 ≤ ∆r+1
∑

1≤i<j≤m

pipj .

However,

∑

1≤i<j≤m

pipj =
1
2





m
∑

i,j=1

pipj −
∑

i=j

pipj





=
1
2

(

1−
m

∑

i=1

p2
i

)

,

and the inequality (3.8) is proved.

The case of Lipschitzian mappings is embodied in the following corollary.

Corollary 2. Let f : Rn → R be a differentiable convex mapping and xi ∈ Rn,
pi ≥ 0 (i = 1, ..., n) with Pm > 0. Suppose that the ∇−operator is Lipschitzian with
the constant L > 0, i.e.,

‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ , for all x, y ∈ Rn,(3.9)

where ‖·‖ is the Euclidean norm. Then

0 ≤ 1
Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

(3.10)

≤ L





1
Pm

m
∑

i=1

pi ‖xi‖2 −

∥

∥

∥

∥

∥

1
Pm

m
∑

i=1

pixi

∥

∥

∥

∥

∥

2


 .
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Proof. The argument is obvious by Theorem 7, taking into account that for r = 1,

∑

1≤i<j≤m

pipj ‖xi − xj‖2 = Pm

m
∑

i=1

pi ‖xi‖2 −

∥

∥

∥

∥

∥

m
∑

i=1

pixi

∥

∥

∥

∥

∥

2

,

and ‖·‖ is the Euclidean norm.

Moreover, if we assume more about the vectors (xi)i=1,n, we can obtain a simpler
result that is similar to the one in [22].

Corollary 3. Assume that f is as in Corollary 2. If

φ ≤ xi ≤ Φ (on the co-ordinates), φ, Φ ∈ Rn (i = 1, .., m) ,(3.11)

then we have the inequality

0 ≤ 1
Pm

m
∑

i=1

pif (xi)− f

(

1
Pm

m
∑

i=1

pixi

)

(3.12)

≤ 1
4
· L · ‖Φ− φ‖2 .

Proof. It follows by the fact that in Rn, we have the following Grüss type inequality
(as proved in [22])

1
Pm

m
∑

i=1

pi ‖xi‖2 −

∥

∥

∥

∥

∥

1
Pm

m
∑

i=1

pixi

∥

∥

∥

∥

∥

2

≤ 1
4
‖Φ− φ‖2 ,(3.13)

provided that (3.11) holds.

Remark 4. For some Grüss type inequalities in Inner Product Spaces, see [23].

4. Some Related Results

Start with the following definitions from [24].

Definition 1. Let −∞ < a < b < ∞. Then CM [a, b] denotes the set of all
functions with domain [a, b] that are continuous and strictly monotonic there.

Definition 2. Let −∞ < a < b < ∞, and let f ∈ CM [a, b]. Then, for each
positive integer n, each n−tuple x = (x1, ..., xn) , where a ≤ xj ≤ b (j = 1, 2, ..., n),

and each n-tuple p = (p1, p2, ..., pn) , where pj > 0 (j = 1, 2, ..., n) and
n
∑

j=1
pj = 1,

let Mf (x, y) denote the (weighted) mean f−1

{

n
∑

j=1
pjf (xj)

}

.

We may state now the following result.

Theorem 8. Let S be the subset of {1, ..., n} which minimises the expression
∣

∣

∣

∣

∑

i∈S
pi − 1

2

∣

∣

∣

∣

.

If f, g ∈ CM [a, b], then

sup
x
{|Mf (x, p)−Mg (x, p)|}

≤ Q ·
∥

∥

∥

(

f−1)′
∥

∥

∥

∞
·
∥

∥

∥

(

f ◦ g−1)′′
∥

∥

∥

∞
· |g (b)− g (a)|2 ,
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provided that the right-hand side of the inequality is finite, where, as above,

Q =

(

∑

i∈S

pi

)(

1−
∑

i∈S

pi

)

,

and ‖·‖∞ is the usual sup-norm.

Proof. Let, as in [24], h = f ◦ g−1, n > 1,

x = (x1, x2, ..., xn) and p = (p1, p2, ..., pn)

be as in the Definition 2, and yj = g (xj) (j = 1, 2, ..., n). By the mean-value
theorem, for some α in the open interval joining f (a) to f (b), we have

Mf (x, p)−Mg (x, p) = f−1







n
∑

j=1

pjf (xj)







− f−1



h







n
∑

j=1

pjg (xj)











=
(

f−1)′ (α)





n
∑

j=1

pjf (xj)− h







n
∑

j=1

pjg (xj)











=
(

f−1)′ (α)





n
∑

j=1

pjh (yj)− h







n
∑

j=1

pjyj











=
(

f−1)′ (α)





n
∑

j=1

pj

{

h (yj)− h

(

n
∑

k=1

pkyk

)}



 .

Using the mean-value theorem a second time, we conclude that there exists points
z1, z2, ..., zn in the open interval joining g (a) to g (b), such that

Mf (x, p)−Mg (x, p)

=
(

f−1)′ (α)
[

p1 {(1− p1) y1 − p2y2 − ...− pnyn}h′ (z1)

+p2 {−p1y1 + (1− p2) y2 − ...− pnyn}h′ (z2)

+...

+pn {−p1y1 − p2y2 − ... + (1− pn) yn}h′ (zn)
]

=
(

f−1)′ (α)
[

p1 {p2 (y1 − y2) + ... + pn (y1 − yn)}h′ (z1)

+p2 {p1 (y2 − y1) + ... + pn (y2 − yn)}h′ (z2)

+...
+pn {p1 (yn − y1) + ... + pn−1 (yn − yn−1)}h′ (zn)

]

=
(

f−1)′ (α)
∑

1≤i<j≤n

pipj (yi − yj) {h′ (zi)− h′ (zj)} .

Using the mean value theorem a third time, we conclude that there exists points
ωij (1 ≤ i < j ≤ n) in the open interval joining g (a) to g (b), such that

(

f−1)′ (α)
∑

1≤i<j≤n

pipj (yi − yj) {h′ (zi)− h′ (zj)}

=
(

f−1)′ (α)
∑

1≤i<j≤n

pipj (yi − yj) (zi − zj)h′′ (ωij) .
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Consequently,

|Mf (x, p)−Mg (x, p)|

≤
∣

∣

∣

(

f−1)′ (α)
∣

∣

∣

∑

1≤i<j≤n

pipj |yi − yj | · |zi − zj | · |h′′ (ωij)|

≤
∥

∥

∥

(

f−1)′
∥

∥

∥

∞
· ‖h′′‖∞ ·

∑

1≤i<j≤n

pipj |yi − yj | · |zi − zj |

≤ (by the Cauchy-Buniakowski-Schwartz inequality)

≤
∥

∥

∥

(

f−1)′
∥

∥

∥

∞
·
∥

∥

∥

(

f ◦ g−1)′′
∥

∥

∥

∞
·
√

∑

1≤i<j≤n

pipj |yi − yj |2 ·
√

∑

1≤i<j≤n

pipj |zi − zj |2

≤ (by Andrica and Badea result)

≤
∥

∥

∥

(

f−1)′
∥

∥

∥

∞
·
∥

∥

∥

(

f ◦ g−1)′′
∥

∥

∥

∞
·

√

√

√

√

(

∑

i∈S

pi

)(

1−
∑

i∈S

pi

)

|g (b)− g (a)|2

·

√

√

√

√

(

∑

i∈S

pi

)(

1−
∑

i∈S

pi

)

|g (b)− g (a)|2

= Q
∥

∥

∥

(

f−1)′
∥

∥

∥

∞
·
∥

∥

∥

(

f ◦ g−1)′′
∥

∥

∥

∞
· |g (b)− g (a)|2 ,

and the theorem is proved.

Corollary 4. If f, g ∈ CM [a, b], then

sup
x
{|Mf (x, p)−Mg (x, p)|}

≤ Q ·
∥

∥

∥

∥

1
f ′

∥

∥

∥

∥

∞
·

∥

∥

∥

∥

∥

1
g′

(

f ′

g′

)′
∥

∥

∥

∥

∥

∞

· |g (b)− g (a)|2 ,

provided that the right hand side of the inequality exists.

Proof. This follows at once from the fact that

(

f−1)′ =
1

f ′ ◦ f−1

and

(

f ◦ g−1)′′ =

(

g′ ◦ g−1
) (

f ′′ ◦ g−1
)

−
(

f ′ ◦ g−1
) (

g′′ ◦ g−1
)

(g′ ◦ g−1)3

=

[

1
g′

(

f ′

g′

)′
]

◦ g−1.

Remark 5. This establishes Theorem 4.3 from [24] and replaces the multiplicative
factor 1

4 by Q. In Corollary 4, we also replaced the multiplicative factor 1
4 by Q.
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5. Applications in Information Theory

We give some new applications for Shannon’s entropy

Hb (X) :=
r

∑

i=1

pi log
1
pi

,

where X is a random variable with the probability distribution (pi)i=1,r.

Theorem 9. Let X be as above and assume that p1 ≥ p2 ≥ ... ≥ pr or p1 ≤ p2 ≤
... ≤ pr. Then we have the inequality

0 ≤ logb r −Hb (X) ≤ (p1 − pr)
2

p1pr
max

1≤k≤r

{

PkP̄k+1
}

.(5.1)

Proof. We choose in Theorem 3, f (x) = − logb x, x > 0, xi = 1
pi

(i = 1, ..., r).
Then we have x1 ≤ x2 ≤ ... ≤ xn and by (2.1) we obtain

0 ≤ logb r −Hb (X) ≤
(

1
pr
− 1

p1

)

(

1
− 1

pr

+
1
1
p1

)

max
1≤k≤r

{

PkP̄k+1
}

,

which is equivalent to (5.1).
The same inequality is obtained if p1 ≤ p2 ≤ ... ≤ pr.

Theorem 10. Let X be as above and suppose that

pM : = max {pi|i = 1, ..., r} ,

pm : = min {pi|i = 1, ..., r} .

If S is a subset of the set {1, ..., r} minimizing the expression
∣

∣

∣

∣

∑

i∈S
pi − 1

2

∣

∣

∣

∣

, then we

have the estimation

0 ≤ logb r −Hb (X) ≤ Q · (pM − pm)2

ln b · pMpm
.(5.2)

Proof. We shall choose in Theorem 4,

f (x) = − logb x, x > 0, xi =
1
pi

(

i = 1, r
)

.

Then m = 1
pM

, M = 1
pm

, f ′ (x) = − 1
x ln b and the inequality (2.3) becomes:

0 ≤ logb r −
r

∑

i=1

pi logb
1
pi

≤ Q
1

ln b

(

1
pm

− 1
pM

)

(

− 1
1

pm

+
1
1

pM

)

= Q · 1
ln b

· (pM − pm)2

pMpm
,

hence the estimation (5.2) is proved.

Consider the Shannon entropy

H (X) :=
r

∑

i=1

pi ln
1
pi

(5.3)
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and Rényi’s entropy of order α (α ∈ (0,∞) \ {1})

Hα (X) :=
1

1− α
ln

(

r
∑

i=1

pα
i

)

.(5.4)

Using the classical Jensen’s discrete inequality for convex mappings, i.e.,

f

(

r
∑

i=1

pixi

)

≤
r

∑

i=1

pif (xi) ,(5.5)

where f : I ⊆ R→ R is a convex mapping on I, xi ∈ I (i = 1, ..., r) and (pi)i=1,r
is a probability distribution, for the convex mapping f (x) = − ln x, we have

ln

(

r
∑

i=1

pixi

)

≥
r

∑

i=1

pi ln xi.(5.6)

Choose xi = pα−1
i (i = 1, ..., r) in (5.6) to obtain

ln

(

r
∑

i=1

pα
i

)

≥ (α− 1)
r

∑

i=1

pi ln pi,

which is equivalent to

(1− α) [Hα (X)−H (X)] ≥ 0.

Now, if α ∈ (0, 1) , then Hα (X) ≤ H (X) , and if α > 1 then Hα (X) ≥ H (X) .
Equality holds iff (pi)i=1,r is a uniform distribution and this fact follows by the
strict convexity of − ln (·) .

Theorem 11. Under the above assumptions, given that pm = min
i=1,r

pi, pM =

max
i=1,r

pi, then we have the inequality

0 ≤ (1− α) [Hα (X)−H (X)] ≤ Q ·
(

pα−1
M − pα−1

m

)2

pα−1
M pα−1

m
,(5.7)

for all α ∈ (0, 1) ∪ (1,∞).

Proof. If α ∈ (0, 1), then

xi := pα−1
i ∈

[

pα−1
M , pα−1

m

]

and if α ∈ (1,∞), then

xi = pα−1
i ∈

[

pα−1
m , pα−1

M

]

, for i ∈ {1, ..., n} .



REVERSE RESULTS FOR JENSEN’S DISCRETE INEQUALITY 13

Applying Theorem 4 for xi := pα−1
i and f (x) = − ln x, and taking into account

that f ′ (x) = − 1
x , we obtain

(1− α) [Hα (X)−H (X)]

≤















Q
(

pα−1
m − pα−1

M

)

(

− 1
pα−1

m
+ 1

pα−1
M

)

if α ∈ (0, 1) ,

Q
(

pα−1
M − pα−1

m

)

(

− 1
pα−1

M
+ 1

pα−1
m

)

if α ∈ (1,∞)

=



















Q · (pα−1
m −pα−1

M )2

pα−1
m pα−1

M
if α ∈ (0, 1) ,

Q · (pα−1
M −pα−1

m )2

pα−1
M pα−1

m
if α ∈ (1,∞)

= Q ·
(

pα−1
M − pα−1

m

)2

pα−1
M pα−1

m

for all α ∈ (0, 1) ∪ (1,∞) and the theorem is proved.

Using a similar argument to the one in Theorem 11, we can state the following
direct application of Theorem 4.

Theorem 12. Let (pi)i=1,r be as in Theorem 11. Then we have the inequality

0 ≤ (1− α)Hα (X)− ln r − α ln Gr (p)(5.8)

≤ Q ·
(

pα−1
M − pα−1

m

)2

Pα−1
M pα−1

m
,

for all α ∈ (0, 1) ∪ (1,∞).

Remark 6. The above results improve the corresponding results from [20] and [22]
with the constant Q which is less than 1

4 .
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