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GAUSS–PÓLYA TYPE RESULTS AND THE HÖLDER
INEQUALITY

S. S. DRAGOMIR, C. E. M. PEARCE, AND J. ŠUNDE

Abstract. Some special Gauss–Pólya type inequalities are obtained by the
use of Hölder’s inequality.

1. Introduction

Hölder’s inequality is a basic tool in analysis. In its discrete form, it states the
following.

Theorem 1. Let a1, . . . , an, b1, . . . , bn be positive n–tuples and p, q nonzero real
numbers satisfying p−1 + q−1 = 1. If p, q > 0 we have

n
∑

k=1

akbk ≤

(

n
∑

k=1

ap
k

)1/p (

n
∑

k=1

bq
k

)1/q

.

If either p or q is negative, the inequality is reversed.

The integral form is similar.

Theorem 2. Suppose f and g are real functions defined on an interval [a, b] and
such that |f |p and |q|q are integrable on [a, b]. If p > 1 and p−1 + q−1 = 1, then

b
∫

a

|f(x)g(x)|dx ≤





b
∫

a

|f(x)|pdx





1/p 



b
∫

a

|g(x)|qdx





1/q

.

A number of extensions and generalizations of these results are given in [3]).
In their work “Problems and Theorems in Analysis” [6], Pólya and Szegö gave

two cognate theorems which were to become seminal. The first is similar to Hölder’s
inequality.

Theorem 3. Suppose f : [0,∞) → R is a nonnegative and nonincreasing function
and u, v nonnegative real numbers. Then provided the integrals exist,





∞
∫

0

xu+vf(x)dx





2

≤

(

1−
(

u− v
u + v + 1

)2
) ∞

∫

0

x2uf(x)dx

∞
∫

0

x2vf(x)dx.

The other, remarkably, proceeds in the opposite direction.
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Theorem 4. Suppose f : [0, 1] → R is a nonnegative and nondecreasing function
and u, v nonnegative real numbers. Then





1
∫

0

xu+vf(x)dx





2

≥

(

1−
(

u− v
u + v + 1

)2
) 1

∫

0

x2uf(x)dx

1
∫

0

x2vf(x)dx.

These and a number of related results have applications in probability, since by
scaling so that

∫

f(x)dx = 1, we can interpret f as a probability density. To give
their flavour, suppose X is a random variable with nondecreasing density f on [0, 1].
Theorem 4 provides

[

E
(

Xu+v)]2 ≥

[

1−
(

u− v
u + v + 1

)2
]

E(X2u)E(X2v).

Thus when u = 1 and v = 0, we have [E(X)]2 ≥ (3/4)E(X2). There is, of course,
also the standard inequality E(X2) ≥ [E(X)]2 for any random variable possessing a
second moment. Thus for a random variable on [0, 1] with a nondecreasing density
function, we have the two–sided inequality

E(X2) ≥ [E(X)]2 ≥ (3/4)E(X2).

For a comprehensive overview of results relating to Theorems 3 and 4 up to 1984
see Beesack [2].

In 1990, Alzer [1] discovered a surprising and elegant pathway to further gen-
eralizations, the so–called Gauss–Pólya inequalities. The ideas behind this break-
through are suggested by the reformulation of the result of Theorem 4 in terms of
derivatives as
[∫ 1

0

(

d
dx

xu+v+1
)

f(x)dx
]2

≥
∫ 1

0

(

d
dx

x2u+1
)

f(x)dx ·
∫ 1

0

(

d
dx

x2v+1
)

f(x)dx.

This has stimulated a variety of research, see, for example, Varošanec, Pečarić
and Šunde [7] and Pearce, Pečarić and Šunde [5], who have found a number of
extensions. The generality of these ideas is indicated by the fact that there exist
also operator versions of at least some of them, as found in further work with Mond
[4].

In this note we develop a general but simple theorem of this type based on the
discrete Hölder inequality. In Section 2 we derive our main result, which involves
sums, integrals, derivatives and a number of free functions and parameters. In
Section 3 we deduce some interesting special cases, first by making particular choices
of parameters and then by making particular choices of functions.

2. Results

Our general result is as follows.

Theorem 5. Let [a, b] be a finite interval, f : [a, b] → R a nonnegative and mono-
tone function and xi : [a, b] → R (i = 1, ..., n) functions with continuous first
derivatives. Suppose that p, q > 1 with p−1 + q−1 = 1 and pi (i = 1, ..., n) are
positive real numbers satisfying

∑n
i=1 pi = 1. For t ∈ [a, b], set

F (t) := f(t)





(

n
∑

i=1

|xi(t)|q
)1/q

−

(

n
∑

i=1

pp
i

)−1/p n
∑

j=1

pjxj(t)



 .
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Then




n
∑

i=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

i(t)f(t)dt

∣

∣

∣

∣

∣

∣

q



1/q

≥ ±







b
∫

a





[

n
∑

i=1

|xi(t)|q
]1/q





′

f(t)dt + F (a)− F (b)





 ,

the plus sign applying when f is nondecreasing and the minus when f is nonin-
creasing.

Proof. Since xi ∈ C1[a, b] (i = 1, . . . , n) and f is monotone, the integrals in the
enunciation exist. From integration by parts we have

n
∑

i=1

pi

b
∫

a

xi
′(t)f(t)dt = f(b)

n
∑

i=1

pixi(b)− f(a)
n

∑

i=1

pixi(a)

−
b

∫

a

(

n
∑

i=1

pixi(t)

)

df(t).(2.1)

Also, Hölder’s discrete inequality provides

±
n

∑

i=1

pi

b
∫

a

x
′

i(t)f(t)dt ≤
n

∑

i=1

pi

b
∫

a

|x
′

i(t)f(t)|dt

≤

(

n
∑

i=1

pp
i

)1/p




n
∑

j=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

j(t)f(t)dt

∣

∣

∣

∣

∣

∣

q



1/q

(2.2)

and

n
∑

i=1

pixi(t) ≤
n

∑

i=1

|pixi(t)| ≤

(

n
∑

i=1

pp
i

)1/p




n
∑

j=1

|xj(t)|q




1/q

for all t ∈ [a, b].

The latter inequality yields

∫ b

a

(

n
∑

i=1

pixi(t)

)

df(t) ≤

(

n
∑

i=1

pp
i

)1/p
∫ b

a





n
∑

j=1

|xj(t)|q




1/q

df(t)

when f is nondecreasing and the reverse inequality when f is nonincreasing.
From this result, (2.1) and (2.2) we derive





n
∑

i=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

i(t)f(t)dt

∣

∣

∣

∣

∣

∣

q



1/q

≥ ±





( p
∑

i=1

pp
i

)−1/p






f(b)
n

∑

j=1

pjxj(b)− f(a)
n

∑

j=1

pjxj(a)







−
b

∫

a

(

n
∑

i=1

|xi(t)|q
)1/q

df(t)



 .
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A further integration by parts gives that

b
∫

a





n
∑

j=1

|xj(t)|q




1/q

df(t) =





n
∑

j=1

|xj(b)|q




1/q

f(b)−





n
∑

j=1

|xj(a)|q




1/q

f(a)

−
b

∫

a











n
∑

j=1

|xj(t)|q




1/q






′

f(t)dt.

Combining this and the previous displayed relation and rearranging establishes the
desired result.

3. Special cases

For brevity we note only results applying with the case that f is nondecreasing.
First we address particular choices of parameter.

The choice p = q = 2 gives







n
∑

i=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

i(t)f(t)dt

∣

∣

∣

∣

∣

∣

2





1/2

+f(b)





(

n
∑

i=1

|xi(b)|2
)1/2

−

(

n
∑

i=1

p2
i

)−1/2 n
∑

j=1

pjxj(b)





≥
b

∫

a





√

√

√

√

n
∑

i=1

|xi(t)|2




′

f(t)dt

+f(a)





(

n
∑

i=1

|xi(a)|2
)1/2

−

(

n
∑

i=1

p2
i

)−1/2 n
∑

j=1

pjxj(a)



 ,

which is related to the Cauchy–Schwarz result.
Another natural choice is pi = 1/n (1 ≤ i ≤ n), for which





n
∑

i=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

i(t)f(t)dt

∣

∣

∣

∣

∣

∣





1
q

+ f(b)





(

n
∑

i=1

|xi(b)|q
) 1

q

− n−
1
p

n
∑

i=1

xi(b)





≥
b

∫

a





[

n
∑

i=1

|xi(t)|q
] 1

q




′

f(t)dt + f(a)





(

n
∑

i=1

|xi(a)|q
) 1

q

− n−
1
p

n
∑

i=1

xi(a)



 .
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In the context of recent work on Gauss–Pólya inequalities, a common assumption
is xi(a) = A, xi(b) = B (i = 1, . . . , n). In the event that this holds, we derive





n
∑

i=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

i(t)f(t)dt

∣

∣

∣

∣

∣

∣

q



1/q

+ f(b)



n
1
q |B| −

(

n
∑

i=1

pp
i

)−1/p

B





≥
b

∫

a





[

n
∑

i=1

|xi(t)|q
]1/q





′

f(t)dt + f(a)



n
1
q |A| −

(

n
∑

i=1

pp
i

)−1/p

A



 .

If we further set pi = 1/n in this inequality, there is a simplication to

n−(p−1)/p





n
∑

i=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

i(b)f(t)dt

∣

∣

∣

∣

∣

∣

q



1/q

+ f(b) [|B| −B]

≥ n−(p−1)/p

b
∫

a





(

n
∑

i=1

|xi(t)|q
)1/q





′

f(t)dt + f(a) [|A| −A] .

Finally, if the common endpoint values A, B are both nonnegative, then





n
∑

i=1

∣

∣

∣

∣

∣

∣

b
∫

a

x
′

i(t)f(t)dt

∣

∣

∣

∣

∣

∣

q



1/q

≥
b

∫

a





(

n
∑

i=1

|xi(t)|q
)1/q





′

f(t)dt,

which holds for all q > 1.
We now consider the particular choices a = 0, b = 1, n = 2, x1(t) = tu,

x2(t) = tv, where u, v > 0. This yields



uq





1
∫

0

tu−1f(t)dt





q

+ vq





1
∫

0

tv−1f(t)dt





q



1/q

+f(1)
[

21/q − (pp
1 + pp

2)
−1/p

]

≥
1

∫

0

(tuq + tvq)−1/p (

utuq−1 + vtvq−1) f(t)dt.

With the specific values p1 = p2 = 1/2, we get



uq





1
∫

0

tu−1f(t)dt





q

+ vq





1
∫

0

tv−1f(t)dt





q



1/q

≥
1

∫

0

utuq−1 + vtvq−1

(tuq + tvq)1/p f(t)dt.
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