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ON INEQUALITIES IN NORMED
LINEAR SPACES AND APPLICATIONS

S. S. DRAGOMIR, J. J. KOLIHA AND Y. J. CHO

ABSTRACT. In this paper we obtain inequalities involving the norms of finite se-
quences of vectors in normed linear spaces, which are new even for complex num-
bers.

I. Introduction
Let (X, -]|) be a normed linear space. The following inequality is well known
in the literature as the polygonal inequality, which is a generalization of the
triangle inequality:
<Dl
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(P) | >
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I is a finite set of indices and z; (i € I) are vectors in X.
In papers [1-3], authors explored relations between the following refinements
and generalizations of (P):

Theorem A. Let (X,| -||) be a normed linear space and I be a finite set of
indices, x; € X,1 €1 andp € R, p > 1. Then we have the following inequalities:
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where k € N, k > 1.
The following result is a refinement of (P) for weighted mean:

Theorem B. With the above assumptions, if g; (j =1,2,3,...,k) are nonneg-
ative weights such that 2521 g; > 0, then we have the following inequality:
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Note that both the above inequalities were obtained from more general results
for convex mappings defined on convex subsets in normed linear spaces.

In this paper, using only techniques from normed linear spaces, we obtain new
inequalities for the norms of finite sequences.

II. The Results
We start with the following theorem:

Theorem 2.1. Let (X, | - ||) be a normed linear space, x; € X with i € I (I is
finite) and x =3, _; x;. Then we have the following inequalities:
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Proof. For a fixed i € I, we have
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which implies that, for all ¢ € I,
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Multiplying by ||z;|| > 0 and summing over i € I, we deduce

> lal < 3 (llall + D lasll) 3l

iel jel iel
and so the second inequality in (1) is proved. Also, for a fixed i € I, we have
ol = Il = @ill = o @i — 2] = [l % i)~ Jjo]l|
Multiplying by ||z;|| > 0, we have
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for all 7 € I. Summing over ¢ € I, we have
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and so the theorem is proved.
Corollary 2.2. With the above assumptions, if Y .., x; = 0, then

2
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The following result generalizes Theorem 2.1. In its proof we need the formula
(5) Z (i +- -+ mx,) = k[card([)]k_lzxi,
il,...,ikel €1

which can be proved by induction on k.

Theorem 2.3. With the above assumptions, we have the following inequalities:
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where k > 1 and card(l) = n.

Proof. For fixed i1, ...,i; € I, we have
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from which it follows
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Multiplying by ||z;, + -+ + x;, || > 0 and summing over iy, ...,4; in I, we have
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and so the third inequality in (6) follows. By the triangle inequality
iy + -+ @i || < 5z + o+ za L+ i [+ + )

Multiplying by ||z;, + - - + z;, || and summing over i1, ...,d in the index set I,
we derive
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and so the second inequality in (6) is also proved.
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Finally, we prove the first inequality in (6). Since
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Summing over i1, ..., 4 in the index set I, we use (5) to obtain
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and thus the theorem is proved.

Corollary 2.4. With the above assumptions, if Y .., x; = 0, then
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ITI. Applications to Complex Numbers
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The inequalities obtained in Section II can be restated to obtain new inequal-

ities for complex numbers:
1. Let z; € C, i € I (I is finite) and let z =), _; 2;. Then
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In particular, if z = 0, then
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2. With the above assumptions, we have
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where k € N, k > 1 and card(]) = n.
In particular, if z = 0, we have
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