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SOME INEQUALITIES FOR RANDOM VARIABLES WHOSE
PROBABILITY DENSITY FUNCTIONS ARE ABSOLUTELY
CONTINUOUS USING A PRE-CHEBYCHEV INEQUALITY

N.S. BARNETT AND S.S. DRAGOMIR

Abstract. Using the pre-Chebychev inequality considered by Matić, Pečarić
and Ujević in [2], some inequalities are obtained for random variables whose
p.d.f.s are absolutely continuous and whose derivatives are in L∞ [a, b].

1. Introduction

The following inequality is well known in the literature as Chebychev’s inequality
(see for example [1, p. 297]).

Theorem 1. Let f, g : [a, b] → R be two absolutely continuous mappings on [a, b]
whose derivatives f ′, g′ : [a, b] → R belong to the Lebesgue space L∞ [a, b]. Then,
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∣

1
b− a

∫ b

a
f (x) g (x) dx− 1

b− a

∫ b

a
f (x) dx · 1

b− a

∫ b

a
g (x) dx

∣

∣

∣

∣

∣

(1.1)

≤ 1
12

(b− a)2 ‖f ′‖∞ ‖g
′‖∞ .

The constant 1
12 is the best possible.

In [2], Matić, Pečarić and Ujević proved the following refinement of (1.1) which
we call the “pre-Chebychev” inequality
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∫ b

a
f (x) g (x) dx− 1

b− a

∫ b

a
f (x) dx · 1

b− a

∫ b

a
g (x) dx
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∣

∣

∣

∣

(1.2)

≤ 1
2
√

3
(b− a) ‖f ′‖∞





1
b− a

∫ b

a
g2 (x) dx−

(

1
b− a

∫ b

a
g (x) dx

)2




1
2

,

provided that f is as in Theorem 1 and all the integrals in (1.2) exist and are finite.
Matić, Pečarić and Ujević observed that: if a factor is known, say g (t) , t ∈ [a, b],

then instead of using (1.1) to estimate the difference

1
b− a

∫ b

a
f (t) g (t) dt− 1

b− a

∫ b

a
f (t) dt · 1

b− a

∫ b

a
g (t) dt,

it is better to use (1.2). They demonstrated this by improving some results of the
second author in [6] related to Taylor’s formula with integral remainder.
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Using the same approach here, we obtain some inequalities for the expectation,
E (X), and cumulative distribution function F (x) of a random variable having
the probability density function f : [a, b] → R which is assumed to be absolutely
continuous and whose derivative f ′ ∈ L∞ [a, b].

2. Some Inequalities

We start with the following result for expectation.

Theorem 2. Let X be a random variable having the probability density function
f : [a, b] → R. Assume that f is absolutely continuous on [a, b] and f ′ ∈ L∞ [a, b] .
Then,

∣

∣

∣

∣

E (X)− a + b
2

∣

∣

∣

∣

≤ 1
12

(b− a)2 ‖f ′‖∞ ,(2.1)

where E (X) is the expectation of the random variable X.

Proof. If we put g (t) = t in (1.2),
∣

∣

∣

∣

∣

1
b− a

∫ b

a
tf (t) dt− 1

b− a

∫ b

a
f (t) dt · 1

b− a

∫ b

a
tdt

∣

∣

∣

∣

∣

(2.2)

≤ 1
2
√

3
(b− a) ‖f ′‖∞





1
b− a

∫ b

a
t2dt−

(

1
b− a

∫ b

a
tdt

)2




1
2

.

However,

1
b− a

∫ b

a
t2dt−

(

1
b− a

∫ b

a
tdt

)2

=
(b− a)2

12

and so (2.1) is true.

Remark 1. We could obtain the same inequality by applying Chebychev’s inequal-
ity (1.1). Note, however, that for further results, the pre-Chebychev inequality
provides a better estimate than would be obtained using the classical result (1.1).

Theorem 3. Let X and f be as above. If

σµ (X) :=

[

∫ b

a
(t− µ)2 f (t) dt

] 1
2

, µ ∈ [a, b] ,

then,
∣

∣

∣

∣

∣

σ2
µ (X)−

(

µ− a + b
2

)2

− 1
12

(b− a)2
∣

∣

∣

∣

∣

(2.3)

≤ 1
2
√

3
(b− a)2

[

1
3

(

µ− a + b
2

)2

+
1

180
(b− a)2

]

‖f ′‖∞

≤ 1
3
√

15
(b− a)3 ‖f ′‖∞ ,

for all µ ∈ [a, b].
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Proof. If g (t) = (t− µ)2 in (1.2), then,
∣

∣

∣

∣

∣

1
b− a

∫ b

a
(t− µ)2 f (t) dt− 1

b− a

∫ b

a
f (t) dt · 1

b− a

∫ b

a
(t− µ)2 dt

∣

∣

∣

∣

∣

(2.4)

≤ 1
2
√

3
‖f ′‖∞





1
b− a

∫ b

a
(t− µ)4 dt−

(

1
b− a

∫ b

a
(t− µ)2 dt

)2




1
2

.

However,

1
b− a

∫ b

a
(t− µ)2 dt =

(

µ− a + b
2

)2

+
1
12

(b− a)2

and

1
b− a

∫ b

a
(t− µ)4 dt−

(

1
b− a

∫ b

a
(t− µ)2 dt

)2

=
1
5
· (b− µ)5 + (µ− a)5

b− a
−

[

(b− µ)3 + (µ− a)3

3 (b− a)

]2

=
1
45

[

4
[

(b− µ)2 − (µ− a)2
]2

+ 2 (b− µ)2 (µ− a)2

+(µ− a) (b− µ)
[

(b− µ)2 + (µ− a)2
]]

:= A,

which simplifies further to give:-

A =
(b− a)2

45

[

15
(

µ− a + b
2

)2

+
1
4

(b− a)2
]

= (b− a)2
[

1
3

(

µ− a + b
2

)2

+
1

180
(b− a)2

]

.

Using (2.4), we deduce the desired inequality (2.3).

The best inequality we can obtain from (2.3) is that for which µ = a+b
2 , giving

the following corollary.

Corollary 1. With the above assumptions and denoting σ0 (X) := σ a+b
2

(X),
∣

∣

∣

∣

∣

σ2
0 (X)− (b− a)2

12

∣

∣

∣

∣

∣

≤ 1
12
√

15
(b− a)3 ‖f ′‖∞ .(2.5)

The following theorem provides an inequality that connects the expectation
E (X) and the cumulative distribution function F (x) :=

∫ x
a f (t) dt of a random

variable X having the p.d.f. f : [a, b] → R.

Theorem 4. Let X be a random variable whose p.d.f., f : [a, b] → R is absolutely
continuous on [a, b] and f ′ ∈ L∞ [a, b]. Then,

∣

∣

∣

∣

E (X) + (b− a)F (x)− x− b− a
2

∣

∣

∣

∣

≤ 1
12

(b− a)3 ‖f ′‖∞(2.6)

for all x ∈ [a, b].
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Proof. We use the following equality established by Barnett and Dragomir in [4]

(b− a)F (x) + E (X)− b =
∫ b

a
p (x, t) dF (t) =

∫ b

a
p (x, t) f (t) dt,(2.7)

where

p (x, t) :=







t− a if a ≤ t ≤ x ≤ b

t− b if a ≤ x < t ≤ b
.

Now, if we apply the inequality (1.2) for g (t) = p (x, t), we obtain
∣

∣

∣

∣

∣

1
b− a

∫ b

a
p (x, t) f (t) dt− 1

b− a

∫ b

a
p (x, t) dt · 1

b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

(2.8)

≤ 1
2
√

3
(b− a) ‖f ′‖∞





1
b− a

∫ b

a
p2 (x, t) dt−

(

1
b− a

∫ b

a
p (x, t) dt

)2




1
2

.

Observe that
1

b− a

∫ b

a
p (x, t) dt = x− a + b

2
,

and

D : =
1

b− a

∫ b

a
p2 (x, t) dt−

(

1
b− a

∫ b

a
p (x, t) dt

)2

=
1

b− a

[

(b− x)3 + (x− a)3

3

]

−
(

x− a + b
2

)2

=
1
12

(b− a)2 .

Using (2.8), we deduce (2.6).

Remark 2. If in (2.6) either x = a or x = b,
∣

∣

∣

∣

E (X)− a + b
2

∣

∣

∣

∣

≤ 1
12

(b− a)3 ‖f ′‖∞ ,

which is inequality (2.1).

Remark 3. If in (2.6) x = a+b
2 , then

∣

∣

∣

∣

E (X) + (b− a) Pr
(

X ≤ a + b
2

)

− b
∣

∣

∣

∣

≤ 1
12

(b− a)3 ‖f ′‖∞ .(2.9)

Theorem 5. Let X, F and f be as above. Then,
∣

∣

∣

∣

E (X) +
b− a

2
F (x)− x + b

2

∣

∣

∣

∣

(2.10)

≤ 1
4

(b− a) ‖f ′‖∞

[

(

x− a + b
2

)2

+
1
12

(b− a)2
]

≤ 1
12

(b− a)3 ‖f ′‖∞
for all x ∈ [a, b].
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Proof. Using the same identity of Barnett and Dragomir [4] as in Theorem 4 and
applying the pre-Chebychev inequality (1.2), for x ∈ [a, b] we get:-

∣

∣

∣

∣

1
x− a

∫ x

a
(t− a) f (t) dt− 1

x− a

∫ x

a
(t− a) dt · 1

x− a

∫ x

a
f (t) dt

∣

∣

∣

∣

(2.11)

≤ 1
2
√

3
(x− a) ‖f ′‖∞

[

1
x− a

∫ x

a
(t− a)2 dt−

(

1
x− a

∫ x

a
(t− a) dt

)2
] 1

2

=
1
12

(x− a)2 ‖f ′‖∞

and, similarly,
∣

∣

∣

∣

∣

1
b− x

∫ b

x
(t− b) f (t) dt− 1

b− x

∫ b

x
(t− b) dt · 1

b− x

∫ b

x
f (t) dt

∣

∣

∣

∣

∣

(2.12)

≤ 1
12

(b− x)2 ‖f ′‖∞ ,

for all x ∈ [a, b).
From (2.11) and (2.12) we can write

∣

∣

∣

∣

∫ x

a
(t− a) f (t) dt− x− a

2
F (x)

∣

∣

∣

∣

≤ 1
12

(x− a)3 ‖f ′‖∞(2.13)

and
∣

∣

∣

∣

∣

∫ b

x
(t− b) f (t) dt +

b− x
2

(1− F (x))

∣

∣

∣

∣

∣

≤ 1
12

(b− x)3 ‖f ′‖∞ ,(2.14)

for all x ∈ [a, b].
Summing (2.13) and (2.14) and using the triangle inequality, we deduce

∣

∣

∣

∣

∣

∫ x

a
(t− a) f (t) dt +

∫ b

x
(t− b) f (t) dt− b− a

2
F (x) +

b− x
2

∣

∣

∣

∣

∣

≤ 1
12
‖f ′‖∞

[

(x− a)3 + (b− x)3
]

=
1
12

(b− a) ‖f ′‖∞

[

3
(

x− a + b
2

)2

+
1
4

(b− a)2
]

=
1
4

(b− a) ‖f ′‖∞

[

(

x− a + b
2

)2

+
1
12

(b− a)2
]

.

Using the identity (2.7), the desired result (2.10) is obtained.

Remark 4. If in (2.10) either x = a or x = b, the inequality (2.1) is recaptured.

Remark 5. If in (2.10), x = a+b
2 , then the best inequality that can be obtained is:-

∣

∣

∣

∣

E (X) +
b− a

2
Pr

(

X ≤ a + b
2

)

− a + 3b
4

∣

∣

∣

∣

≤ 1
48

(b− a)3 ‖f ′‖∞ .
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