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ON SOME INEQUALITIES FOR THE EXPECTATION AND
VARIANCE

P. CERONE AND S.S. DRAGOMIR

Abstract. A variety of bounds are obtained for the variance and expectation
of a continuous random variable whose p.d.f. is defined over a finite interval.
Previous results are shown to be particular cases of the current more general
development.

1. Introduction

Let f : [a, b] → R be the p.d.f. of the random variable T and Mn be the moments
about the origin so that

Mn :=
∫ b

a
tnf (t) dt.(1.1)

Further, the expectation of the random variable T

E (T ) := M1(1.2)

and the variance σ2 (T ) is defined as the second moment about the expectation so
that

σ2 (T ) :=
∫ b

a
(t− E (T ))2 f (t) dt,(1.3)

giving, on simplification and using (1.1),

σ2 (T ) = M2 −M2
1 .(1.4)

Based on the identity

σ2 (T ) + [x− E (T )]2 =
∫ b

a
(x− t)2 f (t) dt,(1.5)

Barnett et al. [2] obtained a variety of bounds on the left hand side of (1.5).
Bounds involving higher order derivatives were obtained in [2], by substituting a
Taylor series expansion for f (t) in (1.5), in terms of the Lp [a, b] norms of the
resulting double integral.

Barnett and Dragomir [3] obtained further results for the variance based on the
identity

σ2 (T ) + (E (T )− b) (E (T )− a) =
∫ b

a
(t− a) (t− b) f (t) dt.(1.6)

The aim of this paper is to obtain a variety of bounds for the variance from an
identity which regains (1.5) and (1.6) as special cases. Premature Grüss, Chebychev
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and Lupaş results are also obtained. Further, substitution of a Taylor expansion
with integral remainder allows bounds to be obtained for the situation in which the
p.d.f. is n-time differentiable. Taking a convex combination of expansions about
two separate points allows for further generalisations and a number of novel results.

2. Integral Identities

Lemma 1. Let f : [a, b] → R be a p.d.f. of the random variable T . Then the
following integral identity holds, involving the variance and expectation

σ2 (T ) + (E (T )− α) (E (T )− β) =
∫ b

a
(t− α) (t− β) f (t) dt,(2.1)

where α, β ∈ [a, b] and α < β.

Proof. A simple expansion gives
∫ b

a
(t− α) (t− β) f (t) dt =

∫ b

a

[

t2 − (α + β) t + αβ
]

f (t) dt,

which, upon using (1.4) together with (1.1), (1.2) and the fact that f (·) is a p.d.f.
over [a, b] , gives

∫ b

a
(t− α) (t− β) f (t) dt = σ2 (T ) + M2

1 − (α + β)M1 + αβ(2.2)

= σ2 (T ) + (M1 − α) (M1 − β)

and hence (2.1) results on using (1.2).

Remark 1. If we take α = β = x, then identity (1.5) is recaptured from (2.1). If
further, x = E (T ), then (1.3) results. Taking α = a and β = b in (2.1) gives the
identity (1.6).

Lemma 2. Let T be a random variable whose p.d.f. f : [a, b] → R is n-time
differentiable and f (n) is absolutely continuous on [a, b]. Then the following identity
holds for z ∈ [a, b]

σ2 (T ) + (E (T )− α) (E (T )− β)(2.3)

=
n

∑

k=0

[Uk+3 (b− z)− Uk+3 (a− z)]
f (k) (z)

k!
+ Rn+1 (z) ,

where

Ur+1 (u)(2.4)

=
ur−1

r (r2 − 1)

{

r (r − 1)u2 + 2
(

r2 − 1
)

[

z − α + β
2

]

u + r (r + 1) αβ
}

and

Rn+1 (z) =
1
n!

∫ b

a
(t− α) (t− β) ρn (t, z) dt(2.5)

with

ρn (t, z) =
∫ t

z
(t− s)n f (n+1) (s) ds.(2.6)
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Proof. Using Taylor’s formula with integral remainder and expanding about t = z
gives

f (t) =
n

∑

k=0

(t− z)k

k!
f (k) (z) +

1
n!

ρn (t, z)(2.7)

for all t, z ∈ [a, b] with ρn (t, z) being given by (2.6).
Substitution of (2.7) into (2.1) gives

σ2 (T ) + (E (T )− α) (E (T )− β)(2.8)

=
∫ b

a
(t− α) (t− β)

{

n
∑

k=0

(t− z)k

k!
f (k) (z) +

1
n!

ρn (t, z)

}

dt

=
n

∑

k=0

[

∫ b

a
(t− α) (t− β) (t− z)k dt

]

f (k) (z)
k!

+ Rn+1 (z) ,

where Rn+1 (z) is as given by (2.5).
Now

∫ b

a
(t− α) (t− β) (t− z)k dt

=
∫ b−z

a−z
uk (u + z − α) (u + z − β) du

=
∫ b−z

a−z
uk

[

u2 − 2
[

z − α + β
2

]

u + αβ
]

du

=
uk+3

k + 3
− 2

[

z − α + β
2

]

uk+2

k + 2
+ αβ

uk+1

k + 1

]b−z

a−z
,

and therefore
∫ b

a
(t− α) (t− β) (t− z)k dt = Uk+3 (u)

]b−z

a−z

,(2.9)

where, after some simplification, Ur+1 (u) is as given in (2.4). Substitution of (2.9)
into (2.8) readily produces the result (2.3).

Remark 2. Taking α = β = z = x reproduces an identity obtained by Barnett
et al. [2]. Placing α = a and β = b with z = x gives an n-time differentiable
generalisation of identity (1.6) and is thus a generalisation of the result by Barnett
and Dragomir [3].

Lemma 3. Let T be a random variable with p.d.f. f : [a, b] → R being n-time
differentiable and f (n) absolutely continuous on [a, b]. Then the following identity
holds

σ2 (T ) + (E (T )− α) (E (T )− β)(2.10)

=
n

∑

k=0

{

λ [Vk+3 (b− α)− Vk+3 (a− α)] f (k) (α)

+ (1− λ) [Wk+3 (b− β)−Wk+3 (a− β)] f (k) (β)
}

+λRn+1 (α) + (1− λ) Rn+1 (β) ,
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where










Vk+3 (u) = uk+2

(k+3)(k+2) [(k + 2) u− (β − α) (k + 3)] ,

Wk+3 (u) = uk+2

(k+3)(k+2) [(k + 2) u + (β − α) (k + 3)] ,
(2.11)

and Rn+1 (·) is as given by (2.5).

Proof. From (2.6), on letting z = α, we obtain

f (t) =
n

∑

k=0

(t− α)k

k!
f (k) (α) +

1
n!

ρn (t, α) ,(2.12)

where ρn (t, ·) is as given in (2.6).
Additionally, taking z = β in (2.6) produces

f (t) =
n

∑

k=0

(t− β)k

k!
f (k) (β) +

1
n!

ρn (t, β) .(2.13)

If we let λ ∈ [0, 1] and evaluate λ · (2.12) + (1− λ) · (2.13), we obtain

f (t) =
n

∑

k=0

[

λpk (t− α) f (k) (α) + (1− λ) pk (t− β) f (k) (β)
]

(2.14)

+
λ
n!

ρn (t, α) +
1− λ

n!
ρn (t, β) ,

where

pk (u) =
uk

k!
(2.15)

and ρn (t, ·) is as given by (2.6).
Substitution of (2.14) into (2.1) gives

σ2 (T ) + (E (T )− α) (E (T )− β)

=
∫ b

a
(t− α) (t− β)

{

n
∑

k=0

[

λpk (t− α) f (k) (α) + (1− λ) pk (t− β) f (k) (β)
]

+
λ
n!

ρn (t, α) +
1− λ

n!
ρn (t, β)

}

=
n

∑

k=0

(k + 1)
∫ b

a

[

λ (t− β) pk+1 (t− α) f (k) (α)

+ (1− λ) (t− α) pk+1 (t− β) f (k) (β)
]

dt + λRn+1 (α) + (1− λ)Rn+1 (β) ,

with Rn+1 (·) as given by (2.5).
Now, using (2.15)

∫ b

a
(t− β) pk+1 (t− α) dt =

1
(k + 1)!

∫ b

a
(t− β) (t− α)k+1 dt

=
1

(k + 1)!

∫ b−α

a−α
uk+1 [u− (β − α)] du
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and so
∫ b

a
(t− β) pk+1 (t− α) dt = Vk+3 (u)

]b−α

a−α

,

where Vk+3 (u) is as given by (2.11).
Similarly, interchanging α and β,

∫ b

a
(t− α) pk+1 (t− β) dt =

1
(k + 1)!

∫ b−β

a−β
uk+1 [u + (β − α)] du,

giving
∫ b

a
(t− α) pk+1 (t− β) dt = Wk+3 (u)

]b−β

a−β

,

where Wk+3 (u) is as given by (2.11).
The lemma is thus completely proved.

Remark 3. It may be noted that identity (2.10) is a generalisation of (2.4) if
α = β = z.

3. Bounds Involving Lebesgue Norms of a Function and Premature
Results

A number of bounds will now be derived using the identities developed in Section
2 in terms of a variety of norms. Here, ‖·‖p, 1 ≤ p ≤ ∞ are the usual Lebesgue

norms on [a, b]. Namely, ‖g‖∞ := ess sup
t∈[a,b]

|g (t)| and ‖g‖p :=
(

∫ b
a |g (t)|p dt

) 1
p
,

1 ≤ p < ∞.

Theorem 1. Let f : [a, b] → R+ be the p.d.f. of the random variable T . Then
∣

∣σ2 (T ) + (E (T )− α) (E (T )− β)
∣

∣(3.1)

≤































































{

1
3

[

(α− a)3 + (b− β)3
]

+ β−α
6

[

3 (α− a)2 + (b− β)2
]}

‖f‖∞ ,

for f ∈ L∞ [a, b] ;

[

ψq (α− a) + Bq (β − α) + ψq (b− β)
] 1

q ‖f‖p ,

if f ∈ Lp [a, b] , p > 1, 1
p + 1

q = 1;

θ (a, α, β, b) ‖f‖1 , f ∈ L1 [a, b] ,

where α, β ∈ [a, b] and α ≤ β,

ψq (X) =
∫ X

0
uq (u + β − α)q du, Bq (X) =

∫ X

0
uq (β − α− u)q du(3.2)

and

θ (a, α, β, b) = max

{

(α− a) (β − a) ,
(

β − α
2

)2

, (b− α) (b− β)

}

.(3.3)
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Proof. From identity (2.1), let

R0 (a, α, β, b) =
∫ b

a
(t− α) (t− β) f (t) dt(3.4)

and thus taking the modulus gives

|R0 (a, α, β, b)| ≤ ‖f‖∞
∫ b

a
|(t− α) (t− β)| dt.(3.5)

Now

∫ b

a
|(t− α) (t− β)| dt(3.6)

=
∫ α

a
(α− t) (β − t) dt +

∫ β

α
(t− α) (β − t) dt +

∫ b

β
(t− α) (t− β) dt

=
∫ α−a

0
u (u + β − α) du +

∫ β−α

0
u (β − α− u) du +

∫ b−β

0
u (u + β − α) du

=
1
3

[

(α− a)3 + (b− β)3
]

+
β − α

2

[

(α− a)2 + (b− β)2
]

+
(β − α)3

6
.

A simple rearrangement of (3.6) and using (3.5) and (2.1) readily produces the first
inequality in (3.1).

From (3.2), by Hölder’s integral inequality, we obtain

|R0 (a, α, β, b)| ≤ ‖f‖p

(

∫ b

a
|(t− α) (t− β)|q dt

) 1
q

(3.7)

: = ‖f‖p E
1
q
q (a, α, β, b) .

Then,

Eq (a, α, β, b)

=
∫ α

a
(α− t)q (β − t)q dt +

∫ β

α
(t− α)q (β − t)q dt +

∫ b

β
(t− α)q (t− β)q dt

=
∫ α−a

0
[u (u + β − α)]q du +

∫ β−α

0
[u (β − α− u)]q du

+
∫ b−β

0
[u (u + β − α)]q du.

Hence, from (3.7), the second inequality in (3.1) results, where ψq (·) and Bq (·) are
as defined in (3.2).

Now, for the last inequality in (3.1). From identity (2.1) and the inequality

|R0 (a, α, β, b)| ≤ sup
t∈[a,b]

|(t− α) (t− β)| ‖f‖1 ,
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we have

sup
t∈[a,b]

|(t− α) (t− β)|

= max

{

sup
t∈[a,α)

(α− t) (β − t) , sup
t∈(α,β)

(t− α) (β − t) , sup
t∈(β,b]

(t− α) (t− β)

}

= max

{

(α− a) (β − a) ,
(

β − α
2

)2

, (b− α) (b− β)

}

= θ (a, α, β, b)

as given by (3.4) and hence the theorem is completely proved.

Remark 4. If α = β = x is taken in (3.1), then the results of Barnett et al. [2]
based around the identity (1.5) are recaptured. In addition, if x = E (T ), then the
bounds are on the variance alone. Taking α = a and β = b, the results of Barnett
and Dragomir [3] are obtained. Some simplifications occur that have not as yet been
developed, such as the result obtained from taking α = a and β = x.

Remark 5. The Euclidean norm is of special interest so that if p = 2 and f ∈
L2 [a, b], then from (3.1),

∣

∣σ2 (T ) + (E (T )− α) (E (T )− β)
∣

∣

≤ ‖f‖2 [ψ2 (α− a) + B2 (β − α) + ψ2 (b− β)]
1
2 ,

where, from (3.2),

ψ2 (X) =
X3

30

[

6X2 + 15 (β − α)X + 10 (β − α)2
]

and

B2 (X) =
X3

30

[

6X2 − 15 (β − α) X + 10 (β − α)2
]

.

In addition, if we take α = β = x, we obtain
∣

∣

∣σ2 (T ) + (E (T )− x)2
∣

∣

∣ ≤
1√
5

[

(x− a)5 + (b− x)5
] 1

2 ‖f‖2

and, for x = E (T ) ,

σ2 (T ) ≤ 1√
5

[

(E (T )− a)5 + (b− E (T ))5
] 1

2 ‖f‖2 .

Taking α = a, β = b gives

∣

∣σ2 (T ) + (E (T )− a) (b− E (T ))
∣

∣ ≤ (b− a)
5
2

√
30

‖f‖2 .

A premature Grüss inequality is embodied in the following theorem. It provides
a sharper bound than the Grüss inequality (see [5] for a statement of the Grüss
inequality).

The term premature is used to denote the fact that the result is obtained from
not completing the proof of the Grüss inequality if one of the functions is known
explicitly. The following theorem was proven in [1].
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Theorem 2. Let h, g be integrable functions defined on [a, b] and let m ≤ g (t) ≤
M . Then

|T (h, g)| ≤ M −m
2

[T (h, h)]
1
2 ,(3.8)

where the Chebychev functional,

T (h, g) = M (hg)−M (h)M (g)(3.9)

with

M (f) =
1

b− a

∫ b

a
f (x) dx.(3.10)

Theorem 3. Let f : [a, b] → R+ be a p.d.f. of the random variable T be such that
for m ≤ f ≤ M , then

|Tp| : =
∣

∣

∣

∣

σ2 (T ) + (E (T )− α) (E (T )− β)(3.11)

−

[

(b− a)2

3
−

(

α + β
2

− a
)

(b− a) + (α− a) (β − a)

]∣

∣

∣

∣

∣

≤ M −m
2

I (a, α, β, b) ,

where

I (a, α, β, b)(3.12)

=
(b− a)2√

3

[

4
15

(b− a)2 −
(

α + β
2

− a
) (

b− α + β
2

)] 1
2

.

Proof. Applying the premature Grüss result (3.8) by associating f (t) with g (t) and
taking

h (t) = (t− α) (t− β)(3.13)

gives, on noting that M (f) = 1
b−a since f is a p.d.f.,

∣

∣

∣

∣

∣

∫ b

a
(t− α) (t− β) f (t) dt−M (h)

∣

∣

∣

∣

∣

(3.14)

≤ (b− a)
M −m

2
[T (h, h)]

1
2 ,

where, from (3.9),

T (h, h) = M
(

h2)− [M (h)]2 .(3.15)

Now, from (3.13) and (3.15)

M (h) = 1
b−a

∫ b
a (t− α) (t− β) dt

= 1
D

∫ D
0 (u−A) (u−B) du,

where u = t− a, D = b− a, A = α− a, B = β − a.

(3.16)

That is,

M (h) =
D2

3
− A + B

2
D + AB.(3.17)
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Further, following a similar argument to the above,

M
(

h2) =
1
D

∫ D

0
(u−A)2 (u−B)2 du(3.18)

=
1
D

∫ D

0

[

u2 − (A + B)u + AB
]2

du

=
1
D

∫ D

0

{

u4 + (A + B)2 u2 + (AB)2

+2
[

ABu2 −AB (A + B)u− (A + B)u3] }

du

=
1
D

∫ D

0

{

u4 − 2 (A + B) u3 +
[

(A + B)2 + 2AB
]

u2

−AB (A + B)u + (AB)2
}

du

=
D4

5
− (A + B)

2
D3 +

[

(A + B)2 + 2AB
] D2

3

−AB
(A + B)

2
D + (AB)2 .

Thus, from (3.14), (3.16) and (3.17), we have, after some algebra

T (h, h) =
D2

3

[

4
15

D2 − A + B
2

D +
(

A + B
2

)2
]

.

Using the definitions (3.15), the inequality (3.13) and the identity (2.1), gives the
result (3.11) and, after some algebra, the theorem is thus proved.

Remark 6. Taking α = a, β = b in (3.11)-(3.12) recaptures the results obtained
by Barnett and Dragomir [3] while allowing α = β = x reproduces the results in
Barnett et al. [2]. Note from (3.12) that I (a, α, β, b) ≤ 2(b−a)3

3
√

5
. In addition, note

that if α+β
2 = a+b

2 in (3.12), then

I (a, α, β, b) =
(b− a)3

6
√

3
,

which is 4 times better.

Theorem 4. Let f : [a, b] → R and suppose that f (·) is differentiable and is such
that

‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| < ∞.

Then

|Tp| ≤
b− a√

12
‖f ′‖∞ I (a, α, β, b) ,(3.19)

where Tp is the perturbed result given by the left hand side of (3.11) and I (a, α, β, b)
is as given by (3.12).

Proof. Let h, g : [a, b] → R be absolutely continuous and h′, g′ be bounded. Then
Chebychev’s inequality holds (see [5])

|T (h, g)| ≤ (b− a)2√
12

sup
t∈[a,b]

|h′ (t)| · sup
t∈[a,b]

|g′ (t)| .
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Matić et al. [1], using a premature Grüss type argument proved that

|T (h, g)| ≤ b− a√
12

sup
t∈[a,b]

|g′ (t)|
√

T (h, h).

Thus, associating f (·) with g (·) and h (·) with (3.13) produces (3.19) where I (a, α, β, b)
is as given by (3.12).

Theorem 5. Let f : [a, b] → R and suppose [α, β] ⊆ [a, b]. Further, suppose that f
is locally absolutely continuous on (a, b) and let f ′ ∈ L2 (a, b). Then

|Tp| ≤
b− a

π
‖f ′‖2 I (a, α, β, b) ,(3.20)

where Tp is the perturbed result given by the left hand side of (3.11) and I (a, α, β, b)
is as given by (3.12).

Proof. The following result was obtained by Lupaş (see [5]). For h, g : (a, b) → R
locally absolutely continuous on (a, b) and h′, g′ ∈ L2 (a, b), then,

|T (h, g)| ≤ (b− a)2

π2 ‖h′‖2 ‖g
′‖2 ,

where

‖k‖2 :=

(

1
b− a

∫ b

a
|k (t)|2 dt

) 1
2

for k ∈ L2 (a, b) .

Moreover, Matić et al. [1] showed that

|T (h, g)| ≤ b− a
π

‖g′‖2
√

T (h, h).

Now, associating f (·) with g (·) and h (·) as given by (3.13) produces (3.20) where
I (a, α, β, b) is as found in (3.12).

4. Bounds Involving Lebesgue Norms of the n−th Derivative of a
Function

In this section, bounds are obtained for f (n) ∈ Lp [a, b], p ≥ 1 and n a non-
negative integer.

Theorem 6. Let T be a random variable whose p.d.f. f : [a, b] → R is n-time
differentiable and f (n) is absolutely continuous on [a, b]. The following inequalities



SOME INEQUALITIES 11

hold for z ∈ [a, b],

Tn : =
∣

∣

∣

∣

σ2 (T ) + (E (T )− α) (E (T )− β)(4.1)

−
n

∑

k=0

[Uk+3 (b− z)− Uk+3 (a− z)]
f (k) (z)

k!

∣

∣

∣

∣

≤ |Rn+1 (z)|

≤























































































[

φn+1 (a, α, z)− φn+1 (α, β, z) + φn+1 (β, b, z)
] ‖f(n+1)‖∞

(n+1)! ,

f (n+1) ∈ L∞ [a, b] ;

[

φn+ 1
q

(a, α, z)− φn+ 1
q

(α, β, z) + φn+ 1
q

(β, b, z)
] ‖f(n+1)‖

p

n!(nq+1)
1
q
,

f (n+1) ∈ Lp [a, b] , p > 1, 1
p + 1

q = 1;

[φn (a, α, z)− φn (α, β, z) + φn (β, b, z)]
‖f(n+1)‖1

n! ,

f (n+1) ∈ L1 [a, b] ,

where Uk+3 (·) are as defined by (2.4),

φn+γ (x1, x2, z) =
∫ x2−z

x1−z
|u|n+γ (u + z − α) (u + z − β) du, x1 ≤ x2.(4.2)

Proof. From identity (2.3), on taking the modulus, we have

Tn = |Rn+1 (z)| ,(4.3)

where Rn+1 (z) is as given by (2.5) and (2.6).
Now

|Rn+1 (z)|(4.4)

≤ 1
n!

∫ b

a
|(t− α) (t− β) ρn (t, z)| dt

≤ 1
n!

{

∫ α

a
(α− t) (β − t) |ρn (t, z)| dt +

∫ β

α
(t− α) (β − t) |ρn (t, z)| dt

+
∫ b

β
(t− α) (t− β) |ρn (t, z)| dt

}

.
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Further, using properties relating to the modulus and integral, and Hölder’s integral
inequality, gives

|ρn (t, z)| ≤







































sup
s∈[z,t]

∣

∣f (n+1) (s)
∣

∣

∣

∣

∣

∫ t
z |t− s|n ds

∣

∣

∣ ,

∣

∣

∣

∫ t
z

∣

∣f (n+1) (s)
∣

∣

p
ds

∣

∣

∣

1
p

∣

∣

∣

∫ t
z |t− s|nq ds

∣

∣

∣

1
q

,

|t− z|n
∣

∣

∣

∫ t
z

∣

∣f (n+1) (s)
∣

∣ ds
∣

∣

∣

and hence

|ρn (t, z)| ≤







































sup
s∈[z,t]

∣

∣f (n+1) (s)
∣

∣
|t−z|n+1

n+1

∣

∣

∣

∫ t
z

∣

∣f (n+1) (s)
∣

∣

p
ds

∣

∣

∣

1
p

(

|t−z|nq+1

nq+1

) 1
q

,

∣

∣

∣

∫ t
z

∣

∣f (n+1) (s)
∣

∣ ds
∣

∣

∣ |t− z|n .

(4.5)

For f (n+1) ∈ L∞ [a, b] using (4.5) and (4.4) gives

|Rn+1 (z)| ≤
∥

∥f (n+1)
∥

∥

∞
(n + 1)!

[

φn+3 (a, α, z)− φn+3 (α, β, z) + φn+3 (β, b, z)
]

,

where

φn+1 (x1, x2, z) =
∫ x2

x1

(t− α) (t− β) |t− z|n+1 dt,

which, on substitution of u = t − z, produces (4.2) with γ = 1 and so the first
inequality in (4.1) is obtained.

Now, for the second inequality in (4.1). Substitution of the second inequality
from (4.5) into (4.4) gives, after substitution of u = t− z,

|Rn+1 (z)| ≤

∥

∥f (n+1)
∥

∥

p

n! (nq + 1)
1
q

[

φn+ 1
q

(a, α, z)− φn+ 1
q

(α, β, z) + φn+ 1
q

(β, b, z)
]

,

where φ is as defined in (4.2).
Finally, the third inequality in (4.1) is obtained by placing the third inequality

in (4.5) into (4.4). In the above, we have used the fact that the respective norms
over any subinterval, as represented in (4.5), is less than or equal to the equivalent
norm over [a, b].

Remark 7. Result (4.1) is very general, containing three parameters α, β and z to
be specified besides the degree of differentiability of the p.d.f. f .

Perturbed results on Tn as defined by (4.1) will now be obtained.



SOME INEQUALITIES 13

Theorem 7. Let f : [a, b] → R+, a p.d.f. of the random variable T , be such that
dn+1 ≤ f (n+1) (t) ≤ Dn+1 for t ∈ [a, b]. Then

∣

∣

∣

∣

σ2 (T ) + (E (T )− α) (E (T )− β)

−
n

∑

k=0

[Uk+3 (b− z)− Uk+3 (a− z)]
f (k) (z)

k!

+ (−1)nM (h)

[

1−
n

∑

k=0

(b− z)k+1 + (−1)k (x− a)k+1

(k + 1)!

]

f (k) (z)
∣

∣

∣

∣

≤ θn (z)
2

· I (a, α, β, b) ,(4.6)

where

M (h) = (b−a)2

3 −
(

α+β
2 − a

)

(b− a) + (α− a) (β − a) ,

Uk+3 (·) are as defined in (2.4),

I (a, α, β, b) is as given by (3.12),
and

θn (z) =















Dn+1
(n+1)!

[

(z − a)n+1 + (b− z)n+1
]

, n even

1
(n+1)! max

{

(z − a)n+1 dn+1, (b− z)n+1 Dn+1

}

, n odd

.

(4.7)

Proof. Applying the premature Grüss result (3.8) and associating 1
n!ρn (t, z) as

given by (2.6) with g (t) and taking h (t) as defined in (3.13), gives
∣

∣

∣

∣

∣

∫ b

a
(t− α) (t− β)

ρn (t, z)
n!

dt−M (h) · 1
n!
M (ρn (·, z))

∣

∣

∣

∣

∣

≤ Γ (z)− γ (z)
2

(b− a) [T (h, h)]
1
2 ,(4.8)

where T (h, h) is as defined in (3.15) and

γ (z) ≤ ρn (t, z)
n!

≤ Γ (z) for t ∈ [a, b] .(4.9)

Further, M (h) is as given by (3.17) with A = α− a, B = β − a and D = b− a.
Now,

(b− a)
n!

M (ρn (·, z))

=
1
n!

∫ b

a

∫ t

z
(t− s)n f (n+1) (s) dsdt

=
1
n!

[

∫ z

a

∫ t

z
(t− s)n f (n+1) (s) dsdt +

∫ b

z

∫ t

z
(t− s)n f (n+1) (s) dsdt

]

=
1
n!

[

−
∫ z

a

∫ s

a
(t− s)n f (n+1) (s) dtds +

∫ b

z

∫ b

s
(t− s)n f (n+1) (s) dtds

]
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=
1
n!

[

(−1)n+1
∫ z

a

(s− a)n+1

n + 1
f (n+1) (s) ds +

∫ b

z

(b− s)n+1

n + 1
f (n+1) (s) ds

]

= (−1)n+1

[

∫ b

a
f (t) dt−

n
∑

k=0

(b− z)k+1 + (−1)k (x− a)k+1

(k + 1)!

]

f (k) (z) ,(4.10)

where, to obtain the last result, we have used an identity obtained in Cerone et al.
[6] (Lemma 2.1, equation (2.1)) involving an Ostrowski result for n-time differen-
tiable functions.

We need to obtain the bounds on ρn (t, z) for all t ∈ [a, b]. We are given that

dn+1 ≤ f (n+1) (t) ≤ Dn+1.(4.11)

For the case t ≥ z, from (4.11) we have

dn+1

∫ t

z

(t− s)n

n!
ds ≤ ρn (t, z)

n!
≤ Dn+1

∫ t

z

(t− s)n

n!
ds.

That is,

(t− z)n+1

(n + 1)!
dn+1 ≤

ρn (t, z)
n!

≤ Dn+1
(t− z)n+1

(n + 1)!
, t ∈ [z, b]

and so for t ≥ z,

0 ≤ ρn (t, z)
n!

≤ Dn+1
(b− z)n+1

(n + 1)!
.(4.12)

For the situation t < z, two separate cases need to be considered. Namely, whether
n is even or odd.

From (4.11) we have

dn+1

∫ z

t

(t− s)n

n!
ds ≤ −ρn (t, z)

n!
≤ Dn+1

∫ z

t

(t− s)n

n!
ds,(4.13)

and so for n even

(z − t)n+1

(n + 1)!
dn+1 ≤ −ρn (t, z)

n!
≤ (z − t)n+1

(n + 1)!
Dn+1,

− (z − t)n+1

(n + 1)!
Dn+1 ≤ ρn (t, z)

n!
≤ − (z − t)n+1

(n + 1)!
dn+1, t ∈ [a, z]

giving for any t ≤ z and n even

− (z − a)n+1

(n + 1)!
Dn+1 ≤

ρn (t, z)
n!

≤ 0.(4.14)

If n is odd, then from (4.13)

− (z − t)n+1

(n + 1)!
dn+1 ≤ −ρn (t, z)

n!
≤ − (z − t)n+1

(n + 1)!
Dn+1,

giving

(z − t)n+1

(n + 1)!
Dn+1 ≤

ρn (t, z)
n!

≤ (z − t)n+1

(n + 1)!
dn+1, t ∈ [a, z]
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and so for t < z and n odd

0 ≤ ρn (t, z)
n!

≤ (z − a)n+1

(n + 1)!
dn+1.(4.15)

Thus, for n even, from (4.12) and (4.14) for all t ∈ [a, b]

− (z − a)n+1

(n + 1)!
Dn+1 ≤

ρn (t, z)
n!

≤ (b− z)n+1

(n + 1)!
Dn+1.(4.16)

For n odd, from (4.12) and (4.15) for all t ∈ [a, b]

0 ≤ ρn (t, z)
n!

≤ 1
(n + 1)!

max
{

(z − a)n+1 dn+1, (b− z)n+1 Dn+1

}

.(4.17)

Using (4.16) and (4.17) gives, from (4.8) and (4.9), θn (z) = Γ (z)−γ (z) as defined in
(4.7). Substitution of identity (2.3) into (4.8) and using the fact that I (a, α, β, b) =
(b− a) [T (h, h)]

1
2 , where h is as defined by (3.15), produces (4.6). We have further,

in (4.10), used the fact that f is a p.d.f.

Remark 8. Chebychev and Lupaş of Theorems 3 and 4 could be obtained here in a
straight forward fashion for the expressions on the left of (4.6). The bound would be
different and involve the behaviour of f (n+2) (·) instead of f (n+1) (·). This however
will not be pursued further.

Theorem 8. Let T be a random variable with p.d.f. f : [a, b] → R being n−time
differentiable and f (n) is absolutely continuous on [a, b]. The following inequality
holds

κn :=
∣

∣

∣

∣

σ2 (T ) + (E (T )− α) (E (T )− β)(4.18)

−
n

∑

k=0

{

λ [Vk+3 (b− α)− Vk+3 (a− α)] f (k) (α)

+ (1− λ) [Wk+3 (b− β)−Wk+3 (a− β)] f (k) (β)
}∣

∣

∣

∣

≤ λ |Rn+1 (α)|+ (1− λ) |Rn+1 (β)|

≤























































































[

λYn+1 (α) + (1− λ) Yn+1 (β) + ζn+1 (β − α)
] ‖f(n+1)‖∞

(n+1)! ,

f (n+1) ∈ L∞ [a, b] ;

[

λYn+ 1
q

(α) + (1− λ)Yn+ 1
q

(β) + ζn+ 1
q

(β − α)
] ‖f(n+1)‖

p

n!(nq+1)
1
q
,

f (n+1) ∈ Lp [a, b] , p > 1, 1
p + 1

q = 1;

[λYn (α) + (1− λ) Yn (β) + ζn (β − α)]
‖f(n+1)‖

1
n! ,

f (n+1) ∈ L1 [a, b] ;

(4.19)
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where Vk+3 (·), Wk+3 (·) are as defined in (2.11) and

Yn+γ (·) = A (· − a) + B (b− ·)(4.20)

with






























A (u) = un+γ+2

(n+γ+3)(n+γ+2) [(n + γ + 2) u + (β − α) (n + γ + 3)] ,

B (u) = un+γ+2

(n+γ+3)(n+γ+2) [(n + γ + 2) u− (β − α) (n + γ + 3)] ,
and

ζn+γ (β − α) = −2B (β − α) = −2(β−α)n+γ+2

(n+γ+3)(n+γ+2) .

(4.21)

Proof. Rearranging identity (2.10) and using the triangle inequality produces in-
equality (4.18).

Now, from the right hand side of (4.1), let

Xn+γ (α) = χn+γ (a, α, β, b, α)(4.22)

= φn+γ (a, α, α)− φn+γ (α, β, α) + φn+γ (β, b, α) .

From (4.2),

φn+γ (a, α, α) =
∫ 0

a−α
|u|n+γ u (u− (β − α)) du

=
∫ a−α

0
un+γ+1 (u + β − α) du = A (α− a) ,

φn+γ (α, β, α) =
∫ β−α

0
un+γ+1 (u− (β − α)) du = B (β − α) ,

and

φn+γ (β, b, α) =
∫ b−α

β−α
un+γ+1 (u− (β − α)) du = B (b− α)−B (β − α) .

Hence, substitution into (4.22) gives

Xn+γ (α) = A (α− a)− 2B (β − α) + B (b− α)

and so

Xn+γ (α) = Yn+γ (α) + ζn+γ (β − α) ,(4.23)

as defined in (4.20) and (4.21).
Again, from the right hand side of (4.1) and (4.20), let

Xn+γ (β) = χn+γ (a, α, β, b, β)(4.24)

= φn+γ (a, α, β)− φn+γ (α, β, β) + φn+γ (β, b, β) .

From (4.2)

φn+γ (a, α, β) =
∫ α−β

a−β

∣

∣un+γ
∣

∣ u (u + β − α) du

=
∫ β−α

β−a
un+γ+1 (β − α− u) du

=
∫ β−a

β−α
un+γ+1 (u− (β − α)) du

= B (β − a)−B (β − α) ,
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φn+γ (α, β, β) =
∫ 0

α−β

∣

∣un+γ
∣

∣ u (u + β − α) du

=
∫ β−α

0
un+γ+1 (u− (β − α)) du = B (β − α)

and

φn+γ (β, b, β) =
∫ b−β

0
|u|n+γ+1 (u + β − α) du = A (b− β) .

Hence, substitution into (4.24) gives

Xn+γ (β) = B (β − a)− 2B (β − α) + A (b− β)

and so

Xn+γ (β) = Yn+γ (β) + ζn+γ (β − α) .(4.25)

On using (4.1) and (4.18), we have, from (4.23) and (4.25),

λXn+γ (α) + (1− λ)Xn+γ (β)

= λYn+γ (α) + (1− λ)Yn+γ (β) + ζn+γ (β − α)

and so (4.19) is obtained for γ = 1, 1
q and 0 respectively.

Remark 9. Perturbed results on κn as defined in (4.19) may be obtained here in
a similar fashion to those of Theorem 7. This, however will not be pursued further
here.
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