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COMPARING TWO INTEGRAL MEANS FOR ABSOLUTELY
CONTINUOUS MAPPINGS WHOSE DERIVATIVES ARE IN

L∞ [a, b] AND APPLICATIONS.

N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, AND A. M. FINK

Abstract. Estimates of the difference of two integral means on [a, b], [c, d]
with [c, d] ⊂ [a, b] in terms of the sup norm of the derivative and applications
for pdfs, special means, Jeffreys’ divergence and continuous streams are given.

1. Introduction

In 1938, A. Ostrowski proved the following integral inequality [1].

Theorem 1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b)
and assume that |f ′ (x)| ≤ M for all x ∈ (a, b). Then we have the inequality

∣

∣

∣

∣

∣

f (x)− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

≤





1
4

(

x− a+b
2

b− a

)2


 (b− a) M(1.1)

for all x ∈ [a, b]. The constant 1
4 is the best possible.

For some generalisations and related results, see the book [18, p. 468 - 484],
the papers [4]-[17] and the website http://rgmia.vu.edu.au/ where many papers
devoted to this inequality can be accessed on line.

We note that, if we use the easily verified identity [18, p. 585], which also holds
for absolutely continuous mappings f : [a, b] → R

f (x) =
1

b− a

∫ b

a
f (t) dt +

1
b− a

∫ b

a
p (x, t) f ′ (t) dt, x ∈ [a, b] ,(1.2)

where the kernel p : [a, b]2 → R is given by

p (x, t) :=







t− a if a ≤ t ≤ x ≤ b

t− b if a ≤ x < t ≤ b

and if we assume that f ′ ∈ L∞ [a, b] and ‖f ′‖∞ := ess sup
t∈[a,b]

|f ′ (t)|, then we can

replace M from (1.1) with ‖f ′‖∞.
For generalisations of (1.1) see [2] by A.M. Fink and [3] by G. Anastassiou as

well as the recent papers produced by the RGMIA members.
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In this paper, we compare the two integral means

1
b− a

∫ b

a
f (t) dt− 1

d− c

∫ d

c
f (u) du, [c, d] ⊂ [a, b] ,

where f is assumed to be absolutely continuous on [a, b] and f ′ ∈ L∞ [a, b]. Ap-
plications for pdfs in Probability Theory, for special means including identric and
logarithmic means, for Jeffreys’ divergence in Information Theory and for the sam-
pling of continuous streams are also given.

2. Some Analytic Inequalities

We start with the following identity which is of interest in itself.

Lemma 1. Let f : [a, b] → R be an absolutely continuous mapping and a ≤ c <
d ≤ b. Denote Kc,d : [a, b] → R the kernel given by

Kc,d (s) :=























a−s
b−a if s ∈ [a, c] ;

s−c
d−c + a−s

b−a if s ∈ (c, d) ;

b−s
b−a if s ∈ [d, b] .

(2.1)

Then we have the representation

1
b− a

∫ b

a
f (t) dt− 1

d− c

∫ d

c
f (u) du =

∫ b

a
Kc,d (s) f ′ (s) ds.(2.2)

Proof. Using the integration by parts formula, we have
∫ b

a
Kc,d (s) f ′ (s) ds

=
∫ c

a

(

a− s
b− a

)

f ′ (s) ds +
∫ d

c

(

s− c
d− c

+
a− s
b− a

)

f ′ (s) ds +
∫ b

d

(

b− s
b− a

)

f ′ (s) ds

=
a− c
b− a

f (c) +
1

b− a

∫ c

a
f (s) ds +

(

1 +
a− d
b− a

)

f (d)− a− c
b− a

f (c)

−
(

1
d− c

− 1
b− a

) ∫ d

c
f (s) ds− b− d

b− a
f (d) +

1
b− a

∫ b

d
f (s) ds

=
1

b− a

∫ c

a
f (s) ds +

1
b− a

∫ d

c
f (s) ds +

1
b− a

∫ b

d
f (s) ds− 1

d− c

∫ d

c
f (s) ds

=
1

b− a

∫ b

a
f (s) ds− 1

d− c

∫ d

c
f (s) ds

and the identity (2.2) is proved.

The following estimation result holds.

Theorem 2. Let f : [a, b] → R be an absolutely continuous mapping with the
property that f ′ ∈ L∞ [a, b], i.e.,

‖f ′‖∞ := ess sup
t∈[a,b]

|f ′ (t)| < ∞.
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Then for a ≤ c < d ≤ b, we have the inequality
∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt− 1

d− c

∫ d

c
f (u) du

∣

∣

∣

∣

∣

(2.3)

≤







1
4

+

[

a+b
2 − c+d

2

(b− a)− (d− c)

]2






[(b− a)− (d− c)] ‖f ′‖∞

≤ 1
2

[(b− a)− (d− c)] ‖f ′‖∞ .

The constant 1
4 is best possible in the first inequality and 1

2 is best in the second
one.

Proof. Taking the modulus in (2.2), we may write:
∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt− 1

d− c

∫ d

c
f (u) du

∣

∣

∣

∣

∣

(2.4)

≤
∫ b

a
|Kc,d (s)| |f ′ (s)| ds ≤ ‖f ′‖∞

∫ b

a
|Kc,d (s)| ds

= ‖f ′‖∞

[

1
b− a

∫ c

a
(s− a) ds +

∫ d

c

∣

∣

∣

∣

s− c
d− c

+
a− s
b− a

∣

∣

∣

∣

ds +
1

b− a

∫ d

c
(b− s) ds

]

: = K.

However,
∫ c

a
(s− a) ds =

(c− a)2

2
,

∫ b

d
(b− s) ds =

(b− d)2

2

and

L : =
∫ d

c

∣

∣

∣

∣

s− c
d− c

+
a− s
b− a

∣

∣

∣

∣

ds

=
1

(b− a) (d− c)

∫ d

c
|[(b− a)− (d− c)] s− cb + ad| ds.

Consider the affine mapping

g (s) := [(b− a)− (d− c)] s− cb + ad.

As b− a > d − c, we get g (s0) = 0 iff s0 = cb−ad
(b−a)−(d−c) . Simple calculation proves

that s0 ∈ [c, d] and then
∫ d

c
|[(b− a)− (d− c)] s− cd + ab| ds

= [(b− a)− (d− c)]
∫ d

c
|s− s0| ds

= [(b− a)− (d− c)]

[

∫ s0

c
(s0 − s) ds +

∫ d

s0

(s− s0) ds

]

= [(b− a)− (d− c)]

[

(s0 − c)2

2
+

(d− s0)
2

2

]

.
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However,

s0 − c =
(c− a) (d− c)

(b− a)− (d− c)

and

d− s0 =
(d− c) (b− d)

(b− a)− (d− c)

and so

L =
1

(b− a) (d− c)
· [(b− a)− (d− c)]

2

[

(c− a)2 (d− c)2

[(b− a)− (d− c)]2
+

(d− c)2 (b− d)2

[(b− a)− (d− c)]2

]

=
(d− c)

(b− a) [(b− a)− (d− c)]

[

(c− a)2

2
+

(d− c)2

2

]

.

Consequently,

K = ‖f ′‖∞

[

(c− a)2

2 (b− a)
+

(b− d)2

2 (b− a)
+

(d− c)
(b− a)

· 1
(b− a) (d− c)

[

(c− a)2

2
+

(b− d)2

2

]]

= ‖f ′‖∞
(c− a)2 + (b− d)2

2 (b− a)

[

1 +
d− c

[(b− a)− (d− c)]2

]

=
‖f ′‖∞
(b− a)

[

[(b− a)− (d− c)]2

4
+

(

a + b
2

− c + d
2

)2
]

(b− a)
[(b− a)− (d− c)]

=





1
4

+

(

a+b
2 − c+d

2

b− a− (d− c)

)2


 [(b− a)− (d− c)] ‖f ′‖∞

and the first part of the inequality (2.3) is proved.
To prove the last part of (2.3), we observe that, by a simple computation

(

a + b
2

− c + d
2

)2

≤ 1
4

[(b− a)− (d− c)]2

is equivalent with

(c− a) (b− d) ≥ 0

which is obvious by the selection of a, b, c, d.
Taking into account that Kc,d is negative on [a, s0] and positive on [s0, b], then

we can conclude that the functions f0 (s) := A |s− s0| (A > 0) are the extremals
in (2.3) and the constant 1

4 is the best possible in the first inequality in (2.3). The
fact that 1

2 is the best constant in the second inequality is obvious.

Remark 1. The above inequality (2.3) may be regarded as a generalisation of the
classical Ostrowski inequality.
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Indeed, if we assume that c = x ∈ (a, b) and d = x+ε, ε is such that x+ε ∈ (a, b),
then by (2.3) we get

∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt− 1

ε

∫ x+ε

x
f (u) du

∣

∣

∣

∣

∣

(2.5)

≤

[

1
4

+

(a+b
2 − x− ε

2

)2

(b− a− ε)2

]

[(b− a)− ε] ‖f ′‖∞ .

Now, letting ε → 0+ and taking into account, by the continuity of f at x, that we
have

lim
ε→0

1
ε

∫ x+ε

x
f (u) du = f (x) ,

then by (2.5) we may deduce that
∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt− f (x)

∣

∣

∣

∣

∣

≤

[

1
4

+

(

x− a+b
2

)2

(b− a)2

]

(b− a) ‖f ′‖∞ ,(2.6)

which is Ostrowski’s inequality.

Corollary 1. Assume that a, b, c, d are as in Theorem 2. Then, the best inequality
we can get from (2.3) is the one for a+b

2 = c+d
2 , i.e.,

∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt− 1

d− c

∫ d

c
f (u) du

∣

∣

∣

∣

∣

≤ 1
4

[(b− a)− (d− c)] ‖f ′‖∞ .(2.7)

The constant 1
4 is the best possible.

Now, for any x ∈ (a, b), we can find a δ > 0 such that the mapping F (x, ·) :
[−δ, δ] → R, defined by

F (x, t) :=
1
t

∫ x+ t
2

x− t
2

f (u) du(2.8)

is well defined.
We can prove the following corollary.

Corollary 2. Assume that the mapping f : [a, b] → R is absolutely continuous on
[a, b] and f ′ ∈ L∞ [a, b]. Then, for any x ∈ (a, b), the mapping F (x, ·) is locally
Lipschitzian and the Lipschitzian constant is 1

4 ‖f
′‖∞ and is independent of x.

Proof. As x ∈ (a, b), then there exists a δ > 0 such that x + t
2 , x− t

2 ∈ (a, b) for all
t ∈ [−δ, δ] and the mapping (2.8) is well defined.

Assume that t1, t2 ∈ [−δ, δ] and t2 > t1. Then
[

x + t2
2 , x− t2

2

]

⊃
[

x + t1
2 , x− t1

2

]

and if we apply Theorem 2 on these intervals, we obtain
∣

∣

∣

∣

∣

1
t2

∫ x+ t2
2

x− t2
2

f (u) du− 1
t1

∫ x+ t1
2

x− t1
2

f (u) du

∣

∣

∣

∣

∣

≤ 1
4

(t2 − t1) ‖f ′‖∞

which shows that

|F (x, t2)− F (x, t1)| ≤
1
4

(t2 − t1) ‖f ′‖∞ .
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If t2 < t1, a similar inequality applies, and then, we may conclude that for any
t1, t2 ∈ [−δ, δ] we have

|F (x, t2)− F (x, t1)| ≤
1
4
‖f ′‖∞ |t2 − t1|

which proves the corollary.

3. Applications for PDFs

Assume that f : [a, b] → R+ is a p.d.f. of a certain random variable X and
F : [a, b] → R+, F (x) =

∫ x
a f (x) dx is its cumulative distribution function. Then

we can state the following proposition.

Proposition 1. With the previous assumptions for f and F , we have;
∣

∣

∣

∣

F (x)− x− a
b− a

∣

∣

∣

∣

≤ 1
2

(b− x) (x− a) ‖f ′‖∞ , x ∈ [a, b] ,(3.1)

provided that f ′ ∈ L∞ [a, b].

Proof. If we choose c = a and d = x in (2.3), we obtain the desired inequality.

Another inequality for the mapping F (·) is embodied in the following proposi-
tion.

Proposition 2. Let f and F be as above and f ∈ L∞ [a, b]. Then we have the
inequality

∣

∣

∣

∣

(b− E (X)) (x− a)
b− a

+ Ex (X)− xF (x)
∣

∣

∣

∣

≤ 1
2

(b− x) (x− a) ‖f‖∞(3.2)

for all x ∈ [a, b], where

Ex (X) :=
∫ x

a
uf (u) du, x ∈ [a, b] .

Proof. If we write the inequality (2.3) for F , we get
∣

∣

∣

∣

∣

1
b− a

∫ b

a
F (t) dt− 1

x− a

∫ x

a
F (u) du

∣

∣

∣

∣

∣

≤ 1
2

(b− x) ‖f‖∞ .(3.3)

However,
∫ b

a
F (t) dt = b− E (X)

and
∫ x

a
F (u) du = xF (x)−

∫ x

a
uf (u) du = xF (x)−Ex (X) .

Now, by (3.3) we deduce (3.2).

Let us consider the Euler Beta function

B (p, q) :=
∫ 1

0
tp−1 (1− t)q−1 dt, p, q > −1

and the incomplete Beta function

B (x; p, q) :=
∫ x

0
tp−1 (1− t)q−1 dt.
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If we define f (t) := tp−1 (1− t)q−1, we observe that for either p ∈ (0, 1) or q ∈ (0, 1),
we have

‖f‖∞ := sup
t∈(0,1)

f (t) = +∞.

Assume that p, q ≥ 1. Then

df (t)
dt

= tp−2 (1− t)q−1 [− (p + q − 2) t + (p− 1)] .

We observe that
df (t)

dt
= 0

iff t0 = p−1
p+q−2 ∈ (0, 1) (p, q > 1) and then df(t)

dt > 0 on (0, t0) and df(t)
dt < 0 on

(t0, 1). Consequently

‖f‖∞ =
(p− 1)p−1 (q − 1)q−1

(p + q − 2)p+q−2 .

Consider now the random variable X having the pdf ρ (t) := f(t)
B(p,q) , t ∈ (0, 1), then,

E (X) =
1

B (p, q)

∫ 1

0
tp (1− t)q−1 dt =

B (p + 1, q)
B (p, q)

=
p

p + q
.

Also, we have

Ex (X) =
∫ x

0

tf (t)
B (p, q)

dt =

∫ x
0 tp (1− t)q−1 dt

B (p, q)
=

B (x; p + 1, q)
B (p, q)

.

Using Proposition 2, we may state the following proposition.

Proposition 3. Let X be a Beta random variable with the parameters (p, q) , p, q ≥
1. Then we have the inequality

∣

∣

∣

∣

B (x; p + 1, q)− xB (x; p, q) +
qx

p + q
B (p, q)

∣

∣

∣

∣

≤ 1
2

(1− x) x · (p− 1)p−1 (q − 1)q−1

(p + q − 2)
·B (p, q)

for all x ∈ [0, 1].

4. Application for Special Means

Let us recall the following means for two positive numbers.
1. The Arithmetic mean

A = A (a, b) :=
a + b

2
, a, b > 0;

2. The Geometric mean

G = G (a, b) :=
√

ab, a, b > 0;

3. The Harmonic mean

H = H (a, b) :=
2ab

a + b
, a, b > 0;
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4. The Logarithmic mean

L = L (a, b) :=







a if a = b

b−a
ln b−ln a if a 6= b;

, a, b > 0,

5. The Identric mean

I = I (a, b) :=











a if a = b

1
e

(

bb

aa

) 1
b−a

if a 6= b
, a, b > 0;

6. The p-Logarithmic mean

Lp = Lp (a, b) :=











a if a = b

[

bp+1−ap+1

(p+1)(b−a)

] 1
p

if a 6= b
, a, b > 0.

The following inequality is well known in the literature:

H ≤ G ≤ L ≤ I ≤ A.(4.1)

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I
and L−1 = L. The following examples illustrate the bounds developed in Section 2
involving difference of integral means over different intervals.

1. Consider the mapping f : (0,∞) → (0,∞) , f (x) = xp, p ∈ R\ {−1, 0} .
Then for 0 < a ≤ c < d ≤ b < ∞, we have

1
b− a

∫ b

a
f (t) dt = Lp

p (a, b) ,
1

d− c

∫ d

c
f (t) dt = Lp

p (c, d)

and

‖f ′‖∞,[a,b] = δp (a, b) =







pbp−1 if p ≥ 1,

|p| ap−1 if p ∈ (−∞, 1)� {−1, 0} .

Using the inequality (2.3) we have
∣

∣Lp
p (a, b)− Lp

p (c, d)
∣

∣(4.2)

≤

[

1
4

+
(

A (a, b)−A (c, d)
(b− a)− (d− c)

)2
]

[(b− a)− (d− c)] δp (a, b)

2. Consider the mapping f : (0,∞) → (0,∞) , f (x) = 1
x and 0 < a ≤ c < d ≤

b < ∞. We have
1

b− a

∫ b

a
f (t) dt = L−1 (a, b) ,

1
d− c

∫ d

c
f (t) dt = L−1 (c, d)

and

‖f ′‖∞,[a,b] =
1
a2 .

Using the inequality (2.3) we may state that

|L (a, b)− L (c, d)|(4.3)

≤

[

1
4

+
(

A (a, b)−A (c, d)
(b− a)− (d− c)

)2
]

[(b− a)− (d− c)]
L (a, b)L (c, d)

a2 .
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3. Consider the mapping f : (0,∞) → R, f (x) = ln x and 0 < a ≤ c < d ≤ b <
∞. We have

1
b− a

∫ b

a
f (t) dt = ln I (a, b) ,

1
d− c

∫ d

c
f (t) dt = ln I (c, d)

and

‖f ′‖∞,[a,b] =
1
a
.

Using the inequality (2.3) we may write
∣

∣

∣

∣

ln
[

I (a, b)
I (c, d)

]∣

∣

∣

∣

≤

[

1
4

+
(

A (a, b)−A (c, d)
(b− a)− (d− c)

)2
]

[(b− a)− (d− c)]
a

.(4.4)

5. Applications to Jeffreys’ Divergence in Information Theory

Assume that a set χ and the σ−finite measure µ are given. Consider the set of all
probability densities on µ to be Ω :=

{

p|p : χ → R, p (x) ≥ 0 and
∫

χ p (x) dµ (x) = 1
}

.

The Jeffreys distance DJ [19], is well known among the information divergences
and is very useful in Information Theory. It is defined by:

DJ (p, q) :=
∫

χ
[p (x)− q (x)] ln

[

p (x)
q (x)

]

dµ (x) , p, q ∈ Ω.

The following inequalities involving the Jeffreys divergence are known (see for ex-
ample the book on line by Taneja [20])

DHa (p, q) ≥ exp
[

−1
2
DJ (p, q)

]

, p, q ∈ Ω,(5.1)

DHa (p, q) ≥ 1− 1
4
Df (p, q) , p, q ∈ Ω,(5.2)

and

DJ (p, q) ≥ 4 [1−DB (p, q)] , p, q ∈ Ω,(5.3)

where DHa (·, ·) is the Harmonic distance, namely

DHa (p, q) :=
∫

χ

2p (x) q (x)
p (x) + q (x)

dµ (x) , p, q ∈ Ω,

and DB (·, ·) is the Bhattacharyya distance, which is given by

DB (p, q) :=
∫

χ

√

p (x) q (x)dµ (x) .

In the recent paper [21], the authors proved the following inequalities as well:

2D∆ (p, q) ≤ DJ (p, q) ≤ 1
2

[

Dχ2 (p, q) + Dχ2 (q, p)
]

, p, q ∈ Ω,(5.4)

0 ≤ DJ (p, q)− 2D∆ (p, q) ≤ 1
6
D∗ (p, q)(5.5)

and

0 ≤ 1
2

[

Dχ2 (p, q) + Dχ2 (q, p)
]

−DJ (p, q) ≤ 1
6
D∗ (p, q) ,(5.6)
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where Dχ2 (·, ·) is the chi-square divergence, given by

Dχ2 (p, q) :=
∫

χ
p (x)

[

(

q (x)
p (x)

)2

− 1

]

dµ (x) ,

D∆ (·, ·) is the triangular discrimination introduced by Topsoe in [22], namely,

D∆ (p, q) :=
∫

χ

[p (x)− q (x)]2

p (x) + q (x)
dµ (x) , p, q ∈ Ω

and D∗ (·, ·) was introduced in [21]:

D∗ (p, q) :=
∫

χ

(p (x)− q (x))4
√

p3 (x) q3 (x)
dµ (x) .

In this section we are going to point out other inequalities for Jeffreys’ divergence
by the use of inequality (4.3) written in the following equivalent form:

∣

∣

∣

∣

ln b− ln a
b− a

− ln d− ln c
d− c

∣

∣

∣

∣

(5.7)

≤





1
4

+

(

a+b
2 − c+d

2

(b− a)− |d− c|

)2


 [(b− a)− |d− c|] · 1
a2

for all c, d ∈ [a, b].
We may state the following proposition.

Proposition 4. Let p, q ∈ Ω with 0 < r ≤ q(x)
p(x) ≤ R < ∞ for a.e. x ∈ χ

(r ≤ 1 ≤ R). Then we have the inequality:
∣

∣

∣

∣

DJ (p, q)− 1
L (r,R)

Dχ2 (p, q)
∣

∣

∣

∣

(5.8)

≤
∫

χ





1
4

+

(

r+R
2 p (x)− p(x)+q(x)

2

(R− r) p (x)− |q (x)− p (x)|

)2




× [(R− r) p (x)− |q (x)− p (x)|] · (q (x)− p (x))2

r2p2 (x)
dµ (x)

≤ 1
2

∫

χ

[(R− r) p (x)− |q (x)− p (x)|] (p (x)− q (x))2

r2p2 (x)
dµ (x)

≤ 1
2

[(R− r)−Dv (p, q)] · (R− r)2

r2 ,

where Dv (p, q) is the variational distance, i.e., we recall that

Dv (p, q) :=
∫

χ
|p (x)− q (x)| dµ (x) ,

and L (·, ·) is the logarithmic mean.
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Proof. We multiply (5.7) by (d− c)2 ≥ 0 to obtain
∣

∣

∣

∣

∣

(ln d− ln c) (d− c)− (d− c)2

L (a, b)

∣

∣

∣

∣

∣

(5.9)

≤





1
4

+

(

a+b
2 − c+d

2

(b− a)− |d− c|

)2


 [(b− a)− |d− c|] · (d− c)2

a2

≤ 1
2

[(b− a)− |d− c|] · (d− c)2

a2

≤ 1
2

[(b− a)− |d− c|] · (b− a)2

a2 .

We choose in (5.9) a = r, b = R, c = 1 and d = q(x)
p(x) to get:

∣

∣

∣

∣

∣

(ln q (x)− ln p (x)) (q (x)− p (x))− (q (x)− p (x))2

p (x)L (r,R)

∣

∣

∣

∣

∣

≤





1
4

+

(

r+R
2 p (x)− p(x)+q(x)

2

(R− r) p (x)− |q (x)− p (x)|

)2




× [(R− r) p (x)− |q (x)− p (x)|] · (q (x)− p (x))2

r2p2 (x)

≤ 1
2

[(R− r) p (x)− |q (x)− p (x)|] · (p (x)− q (x))2

r2p2 (x)

≤ 1
2

[(R− r) p (x)− |q (x)− p (x)|] · (R− r)2

r2 .

Integrating over x on χ and taking into account the facts that
∫

χ

(q (x)− p (x))2

p (x)
dµ (x) = Dχ2 (p, q)

and
∫

χ

|p (x)− q (x)| dµ (x) = Dv (p, q) ,

we deduce (5.8).

6. Application to the Sampling of Continuous Streams

In monitoring the quality of continuous streams which are common in major
sections of the chemical industry, samples of product are collected regularly and
analysed. On the basis of these results the process is allowed to continue operating
under existing parameter values or is adjusted in some way.

These results also, when accumulated over a particular production run, can be
used to assess the mean quality of the product for the duration of production. If
x (t) represents the quality of the stream at time t then the mean quality for the
production time [0, T ] is given by 1

T

∫ T
0 x (t) dt.

If the product is a liquid or a gas it can invariably be sampled instantaneously and
so, over the duration of the production period, ‘n’ test values (say) are available to



12 N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, AND A. M. FINK

estimate the mean quality of the stream. These are x1, x2, ..., xn. It is logical then
to use the mean of these values, x̄n, to estimate 1

T

∫ T
0 x (t) dt, giving the estimation

error as
∣

∣

∣

1
T

∫ T
0 x (t) dt− x̄n

∣

∣

∣.
In some continuous stream processes, however, the product, rather than being

purely liquid or gaseous, consists of fine grains of product suspended in a fast
moving hot gas stream. Whilst the product is eventually accumulated separate of
the carrier gas stream and further processed for ease of handling, it is frequently
desired to sample the product whilst it is being manufactured in its suspended
state. Under such circumstances the sample collection time cannot be considered
to be instantaneous and, if sampling is being conducted at regular intervals, the
collection time may well occupy a significant proportion of the time between the
commencement of the collection of consecutive samples.

Suppose that the collection of a sample takes a time p and that the sample thus
obtained represents the mean quality of the stream over the time taken for collec-
tion. From the perspective of using this single sample to estimate the mean flow
over a longer time period which includes this interval, we are led to consideration
of the estimation error

∣

∣

∣

∣

∣

1
d

∫ d

0
x (t) dt− 1

p

∫ h+p

h
x (u) du

∣

∣

∣

∣

∣

,

where (h, h + p) ⊂ (0, d).
Using the inequality (2.3), we may state that

∣

∣

∣

∣

∣

1
d

∫ d

0
x (t) dt− 1

p

∫ h+p

h
x (u) du

∣

∣

∣

∣

∣

(6.1)

≤

[

1
4

+
(

1
2
− h

d− p

)2
]

(d− p) ‖x′‖∞ ≤ 1
2

(d− p) ‖x′‖∞ ,

provided that x (·) is absolutely continuous on [0, d].
From (6.1), we observe that the best estimate we can get from (6.1) is for h =

d−p
2 , obtaining

∣

∣

∣

∣

∣

1
d

∫ d

0
x (t) dt− 1

p

∫ d+p
2

d−p
2

x (u) du

∣

∣

∣

∣

∣

≤ 1
4

(d− p) ‖x′‖∞ .(6.2)
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