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AN INEQUALITY FOR LOGARITHMIC MAPPING AND
APPLICATIONS FOR THE RELATIVE ENTROPY

S.S. DRAGOMIR

ABSTRACT. Using the concavity property of the log mapping and the weighted
arithmetic mean - geometric mean inequality, we point out an analytic inequal-
ity for the logarithmic map and apply it for the Kullback-Leibler distance in
Information Theory. Some applications for Shannon’s entropy are given as
well.

1. INTRODUCTION

Let p(x),q(z),x € X, card (X) < 0o, be two probability mass functions. Define
the Kullback-Leibler distance (see [1] or [2]) by

(1.1) KL(p,q Zp log
reX .’E)

p(z)

the x?—distance (see for example [3]) by
p? ()
(1.2) =)
zeX
and the variation distance (see for example [3]) by

(1.3) Vip,g)=> Ip)—q).

zeX

The following theorem is of fundamental importance in Information Theory [4,
p. 26].

Theorem 1. (Information Inequality). Under the above assumptions for p and g,
we have

(1.4) KL(p.q) =0,
with equality iff p () = q () for all z € X.

As a matter of fact, the inequality (1.4) can be improved as follows (see [4, p.
300)):

Theorem 2. Let p,q be as above. Then

1
(1.5) KL(p,q) > 5V*(p.g) > 0,
with equality iff p (z) = q (x) for all z € X.
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2 S.S. DRAGOMIR

In [5] (see also [6]), the authors proved the following counterpart of (1.5).
Theorem 3. Let p(x),q(z) > 0,z € X be two probability mass functions. Then
(1.6) D,z (p,q) = KL(p,q) >0,
with equality iff p () = q(z), = € X.

In the same paper [6], the authors applied (1.6) for Shannon’s entropy, mutual
information, etc....

In the present paper, we point out an improvement of (1.6) and apply it in the
same manner as in [6].

2. AN ELEMENTARY INEQUALITY
The following analytic inequality for the logarithmic function holds.

Theorem 4. Let a € (0,1) and b € (0,00). Then we have the inequality
2 a b a
(2.1) %—az(%) —1>alna—alnb>1—<a> >a—0b.
The equality holds in each inequality iff a = b.
Proof. We know that for a differentiable strictly convex mapping f : I — R, we
have the double inequality

(2.2) [ @) (@ —y) > fx)—fly) > f () (x—y)

for all z,y € I, © <y. The equality holds in (2.2) iff x = y.
Now, if we apply this inequality to the strictly convex mapping —In(-) on the
interval (0, 00), we obtain

1 1
(2.3) ey zhe-myz(@-y)
y x
for all x > y > 0, with equality iff z = y.
Choose in (2.3) = a® and y = b* to get

a b a
(2) —1>alna—alnb>1—(> 3 a,b>0,
b a

with equality iff @« = b, and the second and third inequalities in (2.1) are proved.
Further, we are going to use the weighted arithmetic mean - geometric mean
inequality for two positive numbers, i.e., we recall

(2.4) at Bt < ta+ (1—-t)Bfora,>0and t e (0,1),

with equality iff a = 3.
Choose a =1, 3= 1 and t = a in (2.4) to obtain

0 () er boen

with equality iff @ = b, which is equivalent to

(2.5) (i)a (Z)l_a <1+ 1;“.




If we multiply (2.5) by b > 0, we have

b a
<> <1+4+b-a,
a

with equality iff a = b, and the last inequality in (2.1) is proved.

In addition, if we choose in (2.4) a =}, 8 =1 and t = a, we obtain

IO

with equality iff a = b.
If we multiply (2.6) by a > 0, then we get

1
+= -1,
a

(Sl s}

a a2
<
— b
with equality iff @ = b, which is the first inequality in (2.1). I

—a—+1

|5

3. INEQUALITIES FOR SEQUENCES OF POSITIVE NUMBERS
The following inequality for sequences of positive numbers holds.

Theorem 5. Leta; € (0,1) andb; >0 (i=1,...,n). Ifp; >0 (i =1,...,n) is such
that 3", p; = 1, then we have

'n 2 n
(3.1) exp ZPi% - Zpiaz’]
Li=1 v i=1

n N\ @i n O\ @iPi
= o[ (3) - = 1(3)
:i=1 v i=1 v
> exp|l-— Zpi <Zl> 1 > exp lZpiai — Zpibi] )
i—1 @ i=1 i=1

with equality iff a; = b; for alli € {1,...,n}.
Proof. Choose in (3.1) a =a;, b=1b; (i=1,...,n) to obtain

a? a; " b\ "
(32) #_aiz (bl> —1Zailnai—ailnbi21—<z) Zai—bi
i i a;

for alli € {1,...,n}.
Multiplying (3.2) by p; > 0 and summing over i from 1 up to n, we get

(3.3) Zpi% - Zpiai

Y%
(1
E
7N\
=8
N——
&
|
L
IV
-
3
E
=
7 N
=8
N————

i=1 =1
n b a; n n
> 1= PN ) > G — b,
> 130 () 2 ma-Yown

which is equivalent to (3.1).
The case of equality follows from the fact that in each of the inequalities (3.2),
we have an equality iff a; = b; for alli € {1,...,n}. 1
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The following corollary is obvious.

Corollary 1. With the above assumptions for a;, b; (i =1,...,n), we have the in-
equality

(3.4) exp <i Yoo ly )

\Y
e
i
e}

() | e (3w
- — — ex a; — — i

n <~ \a; P n
with equality iff a; = b; for all i € {1,...,n}.

Another result for sequences of positive numbers is the following one.

Theorem 6. Let a; € (0,1) (i=1,...,n) and b; > 0 (j=1,....m). If p; > 0
(i=1,..,n) is such that > p; = 1 and ¢; > 0 (j =1,...,m) is such that
Z;nzl g; = 1, then we have the inequality

(3.5) exp Zpia? Z Z—J — Zpiai

i=1 j=1 7 =1
a; \ % H;l Lal a;p;
> exp Zzpz% (b) -1 > - b‘l] Zl,lpiai
z 15=1 Hj:l ( 7 )

n m b, a; n m
> exp|1-— Z Zpiqj (al) > exp Zpiai - qu‘bj
i i=1 j=1

i=1 j=1

The equality holds in (3.5) iff a1 = ... = a, = by = ... = by,
Proof. Using the inequality (2.1), we can state that

af a; @i bj e
(3.6) = —a; > = —1>a;lna; —a;lnb; >1— | = >a; —b;
b; b; ! a; !
J J 7
foralli € {1,...,n} and j € {1,...,m}.
Multiplying (3.6) by p;g; > 0 and summing over ¢ from 1 to n and over j from
1 to m, we deduce

n

pia; z_: bi Zpiai

ZPz%( ) 1 Z ia; Ina; — szaZqulnb
i=1 j=1 i=1
> _piai =D 4;bj,
| =

n m b
> 1- Diq; (w)
i=1 j=1 v

which is clearly equivalent to (3.5).

>

v

\ \/
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The case of equality follows from the fact that in each of inequalities in (3.6),
we have an equality iff a; = b; for all ¢ € {1,...,n} and j € {1,...,m}, which is
equivalent toay = ... = a, =by1 = ... = by,

The following corollary holds.

Corollary 2. Under the above assumptions for a;, bj, we have the inequality

n

1
(3.7) exp | )

&
Il
-
<
Il
-
<
«
Il
-

a; ) n /1—‘[?:1 a?i

m
Qa;
> e |5 (F) 1| n
[ 1 n m b al_ 1 n 1 m
> e 1o LY (U)o | 23w > ).
L i j=1 @i ] nia m j=1
with equality iff a1 = ... = ap, =b1 = ... = by,

4. SOME INEQUALITIES FOR DISTANCE FUNCTIONS

In 1951, Kullback and Leibler introduced the following distance function in In-
formation Theory (see [2] or [3])

- Dbi
(4.1) KL(p,q) = pilog o
i=1 v

provided that p,q € R}, :={z = (21,...,2,) € R", 2; >0, i =1,...,n}.
Another useful distance function is the y2—distance given by (see [3])

" p? — g2
(4.2) D,z (p,q) := g - ” L,
i=1 v

where p,q € RY} .
In this section, we introduce the following two new distance functions

(4.3) Pr(a) = 3 KZ) ) 1]

and o
(4.4) P (p,q) = z: KZ)p - 1} ;

provided p,q € R% .
The following inequality connecting all the above four distance functions holds.

Theorem 7. Let p,q € R}, with p; € (0,1). Then we have the inequality:
(45) Dy (p,q) +Qn—Po>Pa(p,q) > KL (p,q) > P (p,q) > P — Qn,

where Py, =" pi=1,Qn: =) 1| G-
The equality holds in (4.5) iff p; = q; for alli € {1,...,n}.
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Proof. Apply inequality (2.1) for a = p;, b = ¢; to get
2 . 2\ Pi
(4.6) p"—pi><pl>>pilnpi—pilnq¢>l—<ql> > pi — Gi
i qi b
for all i € {1,...,n}.
Summing over ¢ from 1 to n, we have

no2
p;
> L —P.>P(p,q) > KL(p,q) > Pi(p,q) > Po — Qn.
However, it is easy to see that
Zj_Qn"i'Qn_Pn:DXQ (paq)+Qn_Pn
i=1 **
and the inequality (4.5) is obtained.
The case of equality is also obvious by Theorem 4. i
Corollary 3. Let p,q be a probability distribution. Then we have the inequality:
(4.7) D,z (p,q) > P2 (p,q) > KL (p,q) > P1 (p,q) > 0.
The equality holds in (4.7) iff p = q.
The proof is obvious by Theorem 7, on observing that for p,q as probability
distributions we have P, = Q,, = 1.
5. APPLICATIONS FOR SHANNON’S ENTROPY

The entropy of a random variable is a measure of the uncertainty of the random
variable, it is a measure of the amount of information required on the average to
describe the random variable.

Let p(x), € X be a probability mass function. Define the Shannon’s entropy
f of a random variable X having the probability distribution p by

(5.1) Z p(z log

zeX

)

In the above definition we use the convention (based on continuity arguments)
that 0log (%) =0 and plog (§) = oo.

Now assume that |X| (card (X) = |X]) is finite and let u (z) = ﬁ be the uniform
probability mass function in X. It is well known that [4, p. 27]

(5.2) KL(p.9) = ) p() ( (if;)

reX
= log|X| - H(X).
The following result is important in Information Theory [4, p. 27]

Theorem 8. Let X,p and X be as above. Then
(5.3) H (X) < log|X],
with equality if and only if X has a uniform distribution over X.

In what follows, by the use of Corollary 3, we are able to point out the following
estimate for the difference log |X| — H (X).



Theorem 9. Let X, p and X be as above. Then

(5.4) XEX) -1 > Y [|X‘P(x) Ip (@)P@ — 1}
TEX
> In|X|-H(X)
> Z [|X‘*P(z) p (x)]*in(x) _ 1] >0,
reEX

where E (X) is the informational energy of X, i.e., E(X):=3_ ., p* ().
The equality holds in (5.4) iff p(x) = ﬁ forallx € X.

The proof is obvious by Corollary 3 by choosing u (x) = ‘Xil

6. APPLICATIONS FOR MUTUAL INFORMATION

We consider mutual information, which is a measure of the amount of informa-
tion that one random variable contains about another random variable. It is the
reduction of uncertainty of one random variable due to the knowledge of the other
[4, p. 18].

To be more precise, consider two random variables X and Y with a joint prob-
ability mass function r (z,y) and marginal probability mass functions p (z) and
q(y), z € X, y € Y. The mutual information is the relative entropy between the
joint distribution and the product distribution, that is,

> r(z,y)log (M)

reX,yey
= D(rpq).

The following result is well known [4, p. 27].

I(X;Y)

Theorem 10. (Non-negativity of mutual information) For any two random vari-

ables X,Y
(6.1) [(X,Y) >0,
with equality iff X and Y are independent.

In what follows, by the use of Corollary 3, we are able to point out the following
estimate for the mutual information.

Theorem 11. Let X and Y be as above. Then we have the inequality

r(z,y)
22 e "

reEX yey
r(ay) \"
- é%[(ﬂ@ﬂ@) 1]ZI(X’Y)
ey Y
- z};},ll (Garat) ]”'

The equality holds in all inequalities iff X and Y are independent.
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