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AN INEQUALITY FOR LOGARITHMIC MAPPING AND
APPLICATIONS FOR THE RELATIVE ENTROPY

S.S. DRAGOMIR

Abstract. Using the concavity property of the log mapping and the weighted
arithmetic mean - geometric mean inequality, we point out an analytic inequal-
ity for the logarithmic map and apply it for the Kullback-Leibler distance in
Information Theory. Some applications for Shannon’s entropy are given as
well.

1. Introduction

Let p (x) , q (x) , x ∈ X, card (X) < ∞, be two probability mass functions. Define
the Kullback-Leibler distance (see [1] or [2]) by

KL (p, q) :=
∑

x∈X

p (x) log
p (x)
q (x)

,(1.1)

the χ2−distance (see for example [3]) by

Dχ2 (p, q) :=
∑

x∈X

p2 (x)− q2 (x)
q (x)

(1.2)

and the variation distance (see for example [3]) by

V (p, q) :=
∑

x∈X

|p (x)− q (x)| .(1.3)

The following theorem is of fundamental importance in Information Theory [4,
p. 26].

Theorem 1. (Information Inequality). Under the above assumptions for p and q,
we have

KL (p, q) ≥ 0,(1.4)

with equality iff p (x) = q (x) for all x ∈ X.

As a matter of fact, the inequality (1.4) can be improved as follows (see [4, p.
300]):

Theorem 2. Let p, q be as above. Then

KL (p, q) ≥ 1
2
V 2 (p, q) ≥ 0,(1.5)

with equality iff p (x) = q (x) for all x ∈ X.
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In [5] (see also [6]), the authors proved the following counterpart of (1.5).

Theorem 3. Let p (x) , q (x) > 0, x ∈ X be two probability mass functions. Then

Dχ2 (p, q) ≥ KL (p, q) ≥ 0,(1.6)

with equality iff p (x) = q (x) , x ∈ X.

In the same paper [6], the authors applied (1.6) for Shannon’s entropy, mutual
information, etc....

In the present paper, we point out an improvement of (1.6) and apply it in the
same manner as in [6].

2. An Elementary Inequality

The following analytic inequality for the logarithmic function holds.

Theorem 4. Let a ∈ (0, 1) and b ∈ (0,∞) . Then we have the inequality

a2

b
− a ≥

(a
b

)a
− 1 ≥ a ln a− a ln b ≥ 1−

(

b
a

)a

≥ a− b.(2.1)

The equality holds in each inequality iff a = b.

Proof. We know that for a differentiable strictly convex mapping f : I → R, we
have the double inequality

f ′ (x) (x− y) ≥ f (x)− f (y) ≥ f ′ (y) (x− y)(2.2)

for all x, y ∈ I, x ≤ y. The equality holds in (2.2) iff x = y.
Now, if we apply this inequality to the strictly convex mapping − ln (·) on the

interval (0,∞) , we obtain

1
y

(x− y) ≥ ln x− ln y ≥ 1
x

(x− y)(2.3)

for all x > y > 0, with equality iff x = y.
Choose in (2.3) x = aa and y = ba to get

(a
b

)a
− 1 ≥ a ln a− a ln b ≥ 1−

(

b
a

)a

; a, b > 0,

with equality iff a = b, and the second and third inequalities in (2.1) are proved.
Further, we are going to use the weighted arithmetic mean - geometric mean

inequality for two positive numbers, i.e., we recall

αtβ1−t ≤ tα + (1− t)β for α, β > 0 and t ∈ (0, 1) ,(2.4)

with equality iff α = β.
Choose α = 1

a , β = 1
b and t = a in (2.4) to obtain
(

1
a

)a (

1
b

)1−a

≤ a · 1
a

+ (1− a) · 1
b

with equality iff a = b, which is equivalent to
(

1
a

)a (

1
b

)1−a

≤ 1 +
1− a

b
.(2.5)
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If we multiply (2.5) by b > 0, we have
(

b
a

)a

≤ 1 + b− a,

with equality iff a = b, and the last inequality in (2.1) is proved.
In addition, if we choose in (2.4) α = 1

b , β = 1
a and t = a, we obtain

(

1
b

)a (

1
a

)1−a

≤ a
b

+
1
a
− 1,(2.6)

with equality iff a = b.
If we multiply (2.6) by a > 0, then we get

aa

ba ≤
a2

b
− a + 1

with equality iff a = b, which is the first inequality in (2.1).

3. Inequalities for Sequences of Positive Numbers

The following inequality for sequences of positive numbers holds.

Theorem 5. Let ai ∈ (0, 1) and bi > 0 (i = 1, ..., n) . If pi > 0 (i = 1, ..., n) is such
that

∑n
i=1 pi = 1, then we have

exp

[

n
∑

i=1

pi
a2

i

bi
−

n
∑

i=1

piai

]

(3.1)

≥ exp

[

n
∑

i=1

pi

(

ai

bi

)ai

− 1

]

≥
n

∏

i=1

(

ai

bi

)aipi

≥ exp

[

1−
n

∑

i=1

pi

(

bi

ai

)ai
]

≥ exp

[

n
∑

i=1

piai −
n

∑

i=1

pibi

]

,

with equality iff ai = bi for all i ∈ {1, ..., n} .

Proof. Choose in (3.1) a = ai, b = bi (i = 1, ..., n) to obtain

a2
i

bi
− ai ≥

(

ai

bi

)ai

− 1 ≥ ai ln ai − ai ln bi ≥ 1−
(

bi

ai

)ai

≥ ai − bi(3.2)

for all i ∈ {1, ..., n} .
Multiplying (3.2) by pi > 0 and summing over i from 1 up to n, we get

n
∑

i=1

pi
a2

i

bi
−

n
∑

i=1

piai(3.3)

≥
n

∑

i=1

pi

(

ai

bi

)ai

− 1 ≥
n

∑

i=1

piai ln
(

ai

bi

)

≥ 1−
n

∑

i=1

pi

(

bi

ai

)ai

≥
n

∑

i=1

piai −
n

∑

i=1

pibi,

which is equivalent to (3.1).
The case of equality follows from the fact that in each of the inequalities (3.2),

we have an equality iff ai = bi for all i ∈ {1, ..., n} .
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The following corollary is obvious.

Corollary 1. With the above assumptions for ai, bi (i = 1, ..., n) , we have the in-
equality

exp

(

1
n

n
∑

i=1

a2
i

bi
− 1

n

n
∑

i=1

ai

)

(3.4)

≥ exp

[

1
n

n
∑

i=1

(

ai

bi

)ai

− 1

]

≥ n

√

√

√

√

n
∏

i=1

(

ai

bi

)ai

≥ exp

[

1− 1
n

n
∑

i=1

(

bi

ai

)ai
]

≥ exp

(

1
n

n
∑

i=1

ai −
1
n

n
∑

i=1

bi

)

,

with equality iff ai = bi for all i ∈ {1, ..., n} .

Another result for sequences of positive numbers is the following one.

Theorem 6. Let ai ∈ (0, 1) (i = 1, ..., n) and bj > 0 (j = 1, ..., m) . If pi > 0
(i = 1, ..., n) is such that

∑n
i=1 pi = 1 and qj > 0 (j = 1, ..., m) is such that

∑m
j=1 qj = 1, then we have the inequality

exp





n
∑

i=1

pia2
i

m
∑

j=1

qj

bj
−

n
∑

i=1

piai



(3.5)

≥ exp





n
∑

i=1

m
∑

j=1

piqj

(

ai

bj

)ai

− 1



 ≥
∏n

i=1 aaipi
i

∏m
j=1

(

bqj
j

)

Pn
i=1 piai

≥ exp



1−
n

∑

i=1

m
∑

j=1

piqj

(

bi

ai

)ai



 ≥ exp





n
∑

i=1

piai −
m

∑

j=1

qjbj



 .

The equality holds in (3.5) iff a1 = ... = an = b1 = ... = bm.

Proof. Using the inequality (2.1), we can state that

a2
i

bj
− ai ≥

(

ai

bj

)ai

− 1 ≥ ai ln ai − ai ln bj ≥ 1−
(

bj

ai

)ai

≥ ai − bj(3.6)

for all i ∈ {1, ..., n} and j ∈ {1, ..., m} .
Multiplying (3.6) by piqj > 0 and summing over i from 1 to n and over j from

1 to m, we deduce
n

∑

i=1

pia2
i

m
∑

j=1

qj

bj
−

n
∑

i=1

piai

≥
n

∑

i=1

m
∑

j=1

piqj

(

ai

bj

)ai

− 1 ≥
n

∑

i=1

piai ln ai −
n

∑

i=1

piai

m
∑

j=1

qj ln bj

≥ 1−
n

∑

i=1

m
∑

j=1

piqj

(

bi

ai

)ai

≥
n

∑

i=1

piai −
m

∑

j=1

qjbj ,

which is clearly equivalent to (3.5).



5

The case of equality follows from the fact that in each of inequalities in (3.6),
we have an equality iff ai = bj for all i ∈ {1, ..., n} and j ∈ {1, ..., m} , which is
equivalent to a1 = ... = an = b1 = ... = bm.

The following corollary holds.

Corollary 2. Under the above assumptions for ai, bj , we have the inequality

exp





1
n

n
∑

i=1

a2
i

1
m

m
∑

j=1

1
bj
− 1

n

n
∑

i=1

ai



(3.7)

≥ exp





1
nm

n
∑

i=1

m
∑

j=1

(

ai

bj

)ai

− 1



 ≥
n
√

∏n
i=1 aai

i

nm

√

∏m
j=1 b

Pn
i=1 ai

j

≥ exp



1− 1
nm

n
∑

i=1

m
∑

j=1

(

bj

ai

)ai



 ≥ exp





1
n

n
∑

i=1

ai −
1
m

m
∑

j=1

bj



 ,

with equality iff a1 = ... = an = b1 = ... = bm.

4. Some Inequalities for Distance Functions

In 1951, Kullback and Leibler introduced the following distance function in In-
formation Theory (see [2] or [3])

KL (p, q) :=
n

∑

i=1

pi log
pi

qi
,(4.1)

provided that p, q ∈ Rn
++ := {x = (x1, ..., xn) ∈ Rn, xi > 0, i = 1, ..., n} .

Another useful distance function is the χ2−distance given by (see [3])

Dχ2 (p, q) :=
n

∑

i=1

p2
i − q2

i

qi
,(4.2)

where p, q ∈ Rn
++.

In this section, we introduce the following two new distance functions

P2 (p, q) :=
n

∑

i=1

[(

pi

qi

)pi

− 1
]

(4.3)

and

P1 (p, q) :=
n

∑

i=1

[(

qi

pi

)pi

− 1
]

,(4.4)

provided p, q ∈ Rn
++.

The following inequality connecting all the above four distance functions holds.

Theorem 7. Let p, q ∈ Rn
++ with pi ∈ (0, 1) . Then we have the inequality:

Dχ2 (p, q) + Qn − Pn ≥ P2 (p, q) ≥ KL (p, q) ≥ P1 (p, q) ≥ Pn −Qn,(4.5)

where Pn :=
∑n

i=1 pi = 1, Qn :=
∑n

i=1 qi.
The equality holds in (4.5) iff pi = qi for all i ∈ {1, ..., n} .
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Proof. Apply inequality (2.1) for a = pi, b = qi to get

p2
i

qi
− pi ≥

(

pi

qi

)

≥ pi ln pi − pi ln qi ≥ 1−
(

qi

pi

)pi

≥ pi − qi(4.6)

for all i ∈ {1, ..., n} .
Summing over i from 1 to n, we have

n
∑

i=1

p2
i

qi
− Pn ≥ P2 (p, q) ≥ KL (p, q) ≥ P1 (p, q) ≥ Pn −Qn.

However, it is easy to see that
n

∑

i=1

p2
i

qi
−Qn + Qn − Pn = Dχ2 (p, q) + Qn − Pn

and the inequality (4.5) is obtained.
The case of equality is also obvious by Theorem 4.

Corollary 3. Let p, q be a probability distribution. Then we have the inequality:

Dχ2 (p, q) ≥ P2 (p, q) ≥ KL (p, q) ≥ P1 (p, q) ≥ 0.(4.7)

The equality holds in (4.7) iff p = q.

The proof is obvious by Theorem 7, on observing that for p, q as probability
distributions we have Pn = Qn = 1.

5. Applications for Shannon’s Entropy

The entropy of a random variable is a measure of the uncertainty of the random
variable, it is a measure of the amount of information required on the average to
describe the random variable.

Let p (x) , x ∈ X be a probability mass function. Define the Shannon’s entropy
f of a random variable X having the probability distribution p by

H (X) :=
∑

x∈X
p (x) log

1
p (x)

.(5.1)

In the above definition we use the convention (based on continuity arguments)

that 0 log
(

0
q

)

= 0 and p log
(p

0

)

= ∞.

Now assume that |X | (card (X ) = |X |) is finite and let u (x) = 1
|X | be the uniform

probability mass function in X . It is well known that [4, p. 27]

KL (p, q) =
∑

x∈X

p (x) log
(

p (x)
q (x)

)

(5.2)

= log |X | −H (X) .

The following result is important in Information Theory [4, p. 27]

Theorem 8. Let X, p and X be as above. Then

H (X) ≤ log |X | ,(5.3)

with equality if and only if X has a uniform distribution over X .

In what follows, by the use of Corollary 3, we are able to point out the following
estimate for the difference log |X | −H (X) .
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Theorem 9. Let X, p and X be as above. Then

|X |E (X)− 1 ≥
∑

x∈X

[

|X |p(x) [p (x)]p(x) − 1
]

(5.4)

≥ ln |X | −H (X)

≥
∑

x∈X

[

|X |−p(x) [p (x)]−p(x) − 1
]

≥ 0,

where E (X) is the informational energy of X, i.e., E (X) :=
∑

x∈X p2 (x) .
The equality holds in (5.4) iff p (x) = 1

|X | for all x ∈ X .

The proof is obvious by Corollary 3 by choosing u (x) = 1
|X | .

6. Applications for Mutual Information

We consider mutual information, which is a measure of the amount of informa-
tion that one random variable contains about another random variable. It is the
reduction of uncertainty of one random variable due to the knowledge of the other
[4, p. 18].

To be more precise, consider two random variables X and Y with a joint prob-
ability mass function r (x, y) and marginal probability mass functions p (x) and
q (y) , x ∈ X , y ∈ Y. The mutual information is the relative entropy between the
joint distribution and the product distribution, that is,

I (X;Y ) =
∑

x∈X ,y∈Y

r (x, y) log
(

r (x, y)
p (x) q (y)

)

= D (r, pq) .

The following result is well known [4, p. 27].

Theorem 10. (Non-negativity of mutual information) For any two random vari-
ables X, Y

I (X, Y ) ≥ 0,(6.1)

with equality iff X and Y are independent.

In what follows, by the use of Corollary 3, we are able to point out the following
estimate for the mutual information.

Theorem 11. Let X and Y be as above. Then we have the inequality

∑

x∈X

∑

y∈Y

r2 (x, y)
p (x) q (y)

− 1

≥
∑

x∈X

∑

y∈Y

[

(

r (x, y)
p (x) q (y)

)r(x,y)

− 1

]

≥ I (X, Y )

≥
∑

x∈X

∑

y∈Y

[

1−
(

r (x, y)
p (x) q (y)

)r(x,y)
]

≥ 0.

The equality holds in all inequalities iff X and Y are independent.
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