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SOME NEW INEQUALITIES FOR JEFFREYS DIVERGENCE
MEASURE IN INFORMATION THEORY

S.S. DRAGOMIR, J. ŠUNDE, AND C. BUŞE

Abstract. Some new inequalities for the well-known Jeffreys divergence mea-
sure in Information Theory are given.

1. Introduction

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [22], Kullback and Leibler [31],
Rényi [42], Havrda and Charvat [20], Kapur [25], Sharma and Mittal [44], Burbea
and Rao [5], Rao [41], Lin [34], Csiszár [10], Ali and Silvey [1], Vajda [52], Shioya
and Da-te [45] and others (see for example [25] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [41],
genetics [37], finance, economics, and political science [43], [47], [48], biology [39],
the analysis of contingency tables [19], approximation of probability distributions
[9], [26], signal processing [23], [24] and pattern recognition [3], [8].

Assume that a set χ and the σ−finite measure µ are given. Consider the set of all
probability densities on µ to be Ω :=

{

p|p : χ → R, p (x) ≥ 0,
∫

χ p (x) dµ (x) = 1
}

.

The Kullback-Leibler divergence [31] is well known among the information diver-
gences. It is defined as:

DKL (p, q) :=
∫

χ
p (x) log

[

p (x)
q (x)

]

dµ (x) , p, q ∈ Ω,(1.1)

where log is to base 2.
In Information Theory and Statistics, various divergences are applied in addi-

tion to the Kullback-Leibler divergence. These are the: variation distance Dv,
Hellinger distance DH [21], χ2−divergence Dχ2 , α−divergence Dα, Bhattacharyya
distance DB [4] , Harmonic distance DHa, Jeffreys distance DJ [22], triangular
discrimination D∆ [49], etc... They are defined as follows:

Dv (p, q) :=
∫

χ
|p (x)− q (x)| dµ (x) , p, q ∈ Ω;(1.2)

DH (p, q) :=
∫

χ

[
√

p (x)−
√

q (x)
]2

dµ (x) , p, q ∈ Ω;(1.3)
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Dχ2 (p, q) :=
∫

χ
p (x)

[

(

q (x)
p (x)

)2

− 1

]

dµ (x) , p, q ∈ Ω;(1.4)

Dα (p, q) :=
4

1− α2

[

1−
∫

χ
[p (x)]

1−α
2 [q (x)]

1+α
2 dµ (x)

]

, p, q ∈ Ω;(1.5)

DB (p, q) :=
∫

χ

√

p (x) q (x)dµ (x) , p, q ∈ Ω;(1.6)

DHa (p, q) :=
∫

χ

2p (x) q (x)
p (x) + q (x)

dµ (x) , p, q ∈ Ω;(1.7)

DJ (p, q) :=
∫

χ
[p (x)− q (x)] ln

[

p (x)
q (x)

]

dµ (x) , p, q ∈ Ω;(1.8)

D∆ (p, q) :=
∫

χ

[p (x)− q (x)]2

p (x) + q (x)
dµ (x) , p, q ∈ Ω.(1.9)

For other divergence measures, see the paper [25] by Kapur or the book on line [46]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

In [35], Lin and Wong (see also [34]) introduced the following divergence

DLW (p, q) :=
∫

χ
p (x) log

[

p (x)
1
2p (x) + 1

2q (x)

]

dµ (x) , p, q ∈ Ω.(1.10)

In other words, Lin-Wong divergence is represented as follows, using the Kullback-
Leibler divergence:

DLW (p, q) = DKL

(

p,
1
2
p +

1
2
q
)

.(1.11)

Lin and Wong have shown various inequalities as follows

DLW (p, q) ≤ 1
2
DKL (p, q) ;(1.12)

DLW (p, q) + DLW (q, p) ≤ Dv (p, q) ≤ 2;(1.13)

DLW (p, q) ≤ 1.(1.14)

In [45], Shioya and Da-te improved (1.13)− (1.14) by showing that

DLW (p, q) ≤ 1
2
Dv (p, q) ≤ 1.(1.15)

For classical and new results in comparing different kinds of divergence measures,
see the papers [22]-[45] where further references are given.

In [18], Dragomir and Wang proved, amongst others, the following midpoint
inequality

∣

∣

∣

∣

∣

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

≤ 1
4

(b− a) (Γ− γ) ,(1.16)
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provided that f is absolutely continuous and the derivative f ′ : [a, b] → R satisfies
the condition

γ ≤ f ′ (t) ≤ Γ for a.e. t ∈ [a, b] .(1.17)

With the same assumptions for the mapping f , but using a finer argument based
in a “pre-Grüss” inequality, the authors of [38] improved (1.1) as follows

∣

∣

∣

∣

∣

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

≤ 1
4
√

3
(b− a) (Γ− γ) .(1.18)

For other results concerning the midpoint and trapezoid inequality, see the recent
papers [6]-[7] and the website http://rgmia.vu.edu.au/.

The main aim of this paper is to point out some new midpoint and trapezoid
type inequalities and apply them for the Jeffreys divergence measure DJ .

2. Some Analytic Inequalities

The following result holds.

Lemma 1. Let f : [a, b] → R be an absolutely continuous mapping on [a, b] with
f ′ ∈ L2 [a, b]. Then we have the inequality:

∣

∣

∣

∣

∣

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

≤ b− a
2
√

3

[

1
b− a

‖f ′‖22 − ([f ; a, b])2
] 1

2

,(2.1)

where

[f ; a, b] :=
f (b)− f (a)

b− a
.

Proof. Start with the following identity which can be easily proved by the integra-
tion by parts formula

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt =

1
b− a

∫ b

a
m (t) f ′ (t) dt,(2.2)

where

m (t) :=







t− a if t ∈
[

a, a+b
2

]

t− b if t ∈
(a+b

2 , b
]

.

Using Korkine’s identity, i.e., we recall it

1
b− a

∫ b

a
u (t) v (t) dt− 1

b− a

∫ b

a
u (t) dt · 1

b− a

∫ b

a
v (t) dt(2.3)

=
1

2 (b− a)2

∫ b

a

∫ b

a
(u (t)− u (s)) (v (t)− v (s)) dtds,

and this identity can be proved by direct computation, we may write that

1
b− a

∫ b

a
m (t) f ′ (t) dt− 1

b− a

∫ b

a
m (t) dt · 1

b− a

∫ b

a
f ′ (t) dt(2.4)

=
1

2 (b− a)2

∫ b

a

∫ b

a
(m (t)−m (s)) (f ′ (t)− f ′ (s)) dtds.
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However,
∫ b

a
m (t) dt = 0

and then, by (2.2) and (2.4), we have the representation:

f
(

a + b
2

)

− 1
b− a

∫ b

a
f (t) dt(2.5)

=
1

2 (b− a)2

∫ b

a

∫ b

a
(m (t)−m (s)) (f ′ (t)− f ′ (s)) dtds.

Using the Cauchy-Buniakowski-Schwartz integral inequality for double integrals,
we have

1

2 (b− a)2

∫ b

a

∫ b

a
|(m (t)−m (s)) (f ′ (t)− f ′ (s))| dtds(2.6)

≤

[

1

2 (b− a)2

∫ b

a

∫ b

a
(m (t)−m (s))2 dtds

] 1
2

×

[

1

2 (b− a)2

∫ b

a

∫ b

a
(f ′ (t)− f ′ (s))2 dtds

] 1
2

and as

1

2 (b− a)2

∫ b

a

∫ b

a
(m (t)−m (s))2 dtds

=
1

b− a

∫ b

a
m2 (t) dt−

(

1
b− a

∫ b

a
m (t) dt

)2

=
(b− a)2

12

and

1

2 (b− a)2

∫ b

a

∫ b

a
(f ′ (t)− f ′ (s))2 dtds

=
1

b− a

∫ b

a
(f ′ (t))2 dt−

(

1
b− a

∫ b

a
f ′ (t) dt

)2

,

then, by (2.5) and (2.6), we deduce (2.1).

Remark 1. For another proof of this inequality, see [2].

Remark 2. Taking into account, by the Grüss inequality, we have that

0 ≤ 1
b− a

‖f ′‖22 − ([f ; a, b])2 ≤ 1
4

(Γ− γ) ,(2.7)

then (2.1) is an improvement of (1.18) in the case when f ′ ∈ L∞ [a, b] and satisfies
(1.17).

Corollary 1. For any a, b > 0, we have the inequality

0 ≤ (b− a) (ln b− ln a)− 2 · (b− a)2

a + b
≤ (b− a)4

6
√

a3b3
.(2.8)
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Proof. Choose f : (0,∞) → R, f (x) = 1
x . Then

f
(

a + b
2

)

=
2

a + b
,

1
b− a

∫ b

a
f (t) dt =

ln b− ln a
b− a

,

1
b− a

‖f ′‖22 − ([f ; a, b])2 =
(b− a)2

3a3b3 ,

and then, by (2.1), we get (by the convexity of f) that

0 ≤ ln b− ln a
b− a

− 2
a + b

≤ (b− a)2

6
√

a3b3
,

which is clearly equivalent to (2.8).

The following lemma also holds.

Lemma 2. Let f : [a, b] → R be an absolutely continuous mapping on [a, b] with
f ′ ∈ L2 [a, b]. Then we have the inequality:

∣

∣

∣

∣

∣

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

≤ b− a
2
√

3

[

1
b− a

‖f ′‖22 − ([f ; a, b])2
] 1

2

.(2.9)

Proof. In the recent paper [17], Dragomir and Mabizela proved the following iden-
tity which can be easily verified by direct computation:

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (t) dt(2.10)

=
1

2 (b− a)2

∫ b

a

∫ b

a
(f ′ (t)− f ′ (s)) (t− s) dtds.

Using (2.10) and the Cauchy-Buniakowski-Schwartz integral inequality for double
integrals, we have

∣

∣

∣

∣

∣

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

(2.11)

≤ 1

2 (b− a)2

∫ b

a

∫ b

a
|(f ′ (t)− f ′ (s)) (t− s)| dtds

≤

[

1

2 (b− a)2

∫ b

a

∫ b

a
(f ′ (t)− f ′ (s))2 dtds

] 1
2

×

[

1

2 (b− a)2

∫ b

a

∫ b

a
(t− s)2 dtds

] 1
2

and as

1

2 (b− a)2

∫ b

a

∫ b

a
(f ′ (t)− f ′ (s))2 dtds

=
1

b− a

∫ b

a
(f ′ (t))2 dt−

(

1
b− a

∫ b

a
f ′ (t) dt

)2

,
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and

1

2 (b− a)2

∫ b

a

∫ b

a
(t− s)2 dtds =

1
b− a

∫ b

a
t2dt−

(

1
b− a

∫ b

a
tdt

)2

=
(b− a)2

12
,

then, from (2.11), we deduce the desired inequality (2.9).

Remark 3. If we assume that f ′ satisfies (1.17), then by (2.7), we can deduce the
inequality

∣

∣

∣

∣

∣

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (t) dt

∣

∣

∣

∣

∣

≤ 1
4
√

3
(b− a) (Γ− γ) ,(2.12)

which improves a similar result from [38] with the constant 1
4 .

The following corollary also holds.

Corollary 2. For any a, b > 0, we have the inequality

0 ≤ a + b
2ab

(b− a)2 − (ln b− ln a) (b− a) ≤ (b− a)4

6
√

a3b3
.(2.13)

3. Some New Inequalities for Jeffreys Divergence

The following inequalities involving the Jeffreys divergence are known (see for
example the book on line by Taneja [46])

DHa (p, q) ≥ exp
[

−1
2
DJ (p, q)

]

, p, q ∈ Ω,(3.1)

DHa (p, q) ≥ 1− 1
4
DJ (p, q) , p, q ∈ Ω(3.2)

and

DJ (p, q) ≥ 4 [1−DB (p, q)] , p, q ∈ Ω,(3.3)

where DHa (·, ·) is the Harmonic distance and DB (·, ·) is the Bhattacharyya dis-
tance.

The following result holds.

Theorem 1. We have the inequality

2D∆ (p, q) ≤ DJ (p, q) ≤ 1
2

[

Dχ2 (p, q) + Dχ2 (q, p)
]

, p, q ∈ Ω,(3.4)

where Dχ2 is the chi-square distance and D∆ is the triangular discrimination.

Proof. We use the celebrated Hermite-Hadamard inequality for convex functions

f
(

a + b
2

)

≤ 1
b− a

∫ b

a
f (t) dt ≤ f (a) + f (b)

2
(3.5)

and choose f (t) = 1
t to get

2
a + b

≤ ln b− ln a
b− a

≤ a + b
2ab

,

which is equivalent to

2 (b− a)2

a + b
≤ (b− a) (ln b− ln a) ≤ a + b

2ab
(b− a)2 .(3.6)
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If we choose in (3.6) b = q (x), a = q (x), x ∈ χ, then we get

2 (q (x)− p (x))2

p (x) + q (x)
≤ (q (x)− p (x)) (ln q (x)− ln p (x))

≤ p (x) + q (x)
2p (x) q (x)

(q (x)− p (x))2

and integrating over x on χ, we deduce

2D∆ (p, q) ≤ DJ (p, q)

≤ 1
2

[

∫

χ

(q (x)− p (x))2

q (x)
dµ (x) +

∫

χ

(q (x)− p (x))2

p (x)
dµ (x)

]

=
1
2

[∫

χ

q2 (x)− 2p (x) q (x) + p2 (x)
q (x)

dµ (x)

+
∫

χ

q2 (x)− 2p (x) q (x) + p2 (x)
p (x)

dµ (x)
]

=
1
2

[∫

χ

p2 (x)
q (x)

dµ (x)− 1 +
∫

χ

q2 (x)
p (x)

dµ (x)− 1
]

=
1
2

[

Dχ2 (q, p) + Dχ2 (p, q)
]

and the inequality (3.4) is deduced.

Using the analytic inequalities established in Section 2, we can prove the following
counterpart results as well.

Theorem 2. For all p, q ∈ Ω, we have

0 ≤ DJ (p, q)− 2D∆ (p, q) ≤ 1
6
D∗ (p, q) ,(3.7)

where

D∗ (p, q) :=
∫

χ

(p (x)− q (x))4
√

p3 (x) q3 (x)
dµ (x) .

The proof follows by the inequality (2.8) by a similar procedure as in the proof
of Theorem 1 and we omit the details.

By the use of the analytic inequality (2.13), we may state the following theorem.

Theorem 3. For each p, q ∈ Ω, we have

0 ≤ 1
2

[

Dχ2 (p, q) + Dχ2 (q, p)
]

−DJ (p, q) ≤ 1
6
D∗ (p, q) .(3.8)
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