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A MAPPING ASSOCIATED WITH JENSEN’S INEQUALITY
AND APPLICATIONS

S.S. DRAGOMIR AND T.M. RASSIAS

Abstract. In this paper we introduce a new mapping connected with the
classical inequality due to Jensen and point out its main properties. Some
applications related to well-known inequalities are also established.

1. Introduction

Let X be a real linear space and C a convex subset in X, where f : C → R is a
convex function. Suppose that xi ∈ C (i ∈ I), pi ≥ 0, with PI :=

∑

i∈I
pi > 0, where

I ⊂ N is a finite set of indices. The following inequality is well-known in literature
as Jensen’s discrete inequality:

f

(

1
PI

∑

i∈I

pixi

)

≤ 1
PI

∑

i∈I

pif (xi) .(1.1)

Note that some of the classical inequalities (the arithmetic mean-geometric mean
inequality, Levinson’s inequality, Ky Fan’s inequality, etc) are particular cases of
this inequality (see also [6] and [8] where further references are given). For some
results which give refinements, counterparts and inequalities related to Jensen’s
inequality (1.1), we refer the reader to the papers [1]–[5] and [7].

We introduce the following notations (see also [5]):

Pf (N) := {I ⊂ N|I is finite}
J+ (R) :=

{

p = (pi)i∈N |pi > 0 for all i ∈ N
}

J∗ (C) :=
{

x = (xi)i∈N |xi ∈ C for all i ∈ N
}

Conv (C,R) := the cone of all convex mappings defined on C.

In what follows, we consider the map H : Conv (C,R) × Pf (N) × J+ (R) ×
J∗ (C) → R+ and given by

H = H (f, I, p, x) :=

[

1
PI

∑

i∈I

pif (xi)− f

(

1
PI

∑

i∈I

pixi

)]PI

≥ 0.

Further on, we shall point out some properties for the mapping H which improve
inequality (1.1). Some particular examples are also examined.
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2. The Results

We will start with the following result.

Theorem 1. Suppose that f, p and x are as above. Then for all I, J finite sets of
indices with I ∩ J = ∅ one has the inequality

H (f, I ∪ J, p, x) ≥ H (f, I, p, x) ·H (f, J, p, x) ≥ 0(2.1)

i.e., the mapping H (f, ·, p, x) is supermultiplicative on Pf (N).

Proof. Consider the mapping L : Conv (C,R) × Pf (N) × J+ (R) × J∗ (C) → R+
given by

L (f, I, p, x) :=
1
PI

∑

i∈I

pif (xi)− f

(

1
PI

∑

i∈I

pixi

)

≥ 0.

For all I, J ∈ Pf (N) with I ∩ J = ∅ one has:

L (f, I ∪ J, p, x) =
1

PI + PJ





∑

i∈I

pif (xi) +
∑

j∈J

pjf (xj)





−f





1
PI + PJ





∑

i∈I

pixi +
∑

j∈J

pjxj







 .

By the convexity of f one has

f





PI

PI + PJ

(

1
PI

∑

i∈I

pixi

)

+
PJ

PI + PJ





1
PJ

∑

j∈J

pjxj









≤ PI

PI + PJ
f

(

1
PI

∑

i∈I

pixi

)

+
PJ

PI + PJ
f





1
PJ

∑

j∈J

pjxj





and thus

L (f, I ∪ J, p, x) ≥ 1
PI + PJ





∑

i∈I

pif (xi) +
∑

j∈J

pjf (xj)





−
PIf

(

1
PI

∑

i∈I
pixi

)

+ PJf

(

1
PJ

∑

j∈J
pjxj

)

PI + PJ

=
PIL (f, I, p, x) + PJL (f, J, p, x)

PI + PJ
.

Using the elementary arithmetic mean-geometric mean inequality:

αa + βb
α + β

≥ a

α
α + β b

β
α + β with a, b ≥ 0, α, β ≥ 0 with α + β > 0,

we obtain:

L (f, I ∪ J, p, x) ≥ [L (f, I, p, x)]
PI

PI∪J [L (f, J, p, x)]
PJ

PI∪J
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that is,

[L (f, I ∪ J, p, x)]PI∪J ≥ [L (f, I, p, x)]PI [L (f, J, p, x)]PJ(2.2)

and the inequality (2.1) is obtained.

The following corollary also holds.

Corollary 1. Let H0 be a fixed set in Pf (N) with L (f,H0, p, x) > 0. Then for all
I, J ∈ Pf (N) with I ⊃ J and I\J = H0, one has the inequality

[

L (f, I, p, x)
L (f,H0, p, x)

]PI

≥
[

L (f, J, p, x)
L (f,H0, p, x)

]PJ

.(2.3)

Proof. Using the inequality (2.2), we can write

[L (f, I, p, x)]PI = [L (f, H0 ∪ J, p, x)]PH0∪J

≥ [L (f, H0, p, x)]PH0 [L (f, J, p, x)]PJ

= [L (f, H0, p, x)]PI−PJ [L (f, J, p, x)]PJ ,

whence we obtain the inequality (2.3).

Another result for the mapping H defined above is given in the following theorem.

Theorem 2. Suppose that f : C ⊆ X → R is a convex function on the convex set
C, I ∈ Pf (N) and x = (xi)i∈N ∈ J∗ (C). Then for all p, q ∈ J+ (R), one has the
inequality

H (f, I, p + q, x) ≥ H (f, I, p, x)H (f, I, q, x) ≥ 0(2.4)

that is, the mapping H (f, I, ·, x) is supermultiplicative on J+ (R).

Proof. As above, we have

L (f, I, p + q, x)

=
1

PI + QI

[

∑

i∈I

pif (xi) +
∑

i∈I

qif (xi)

]

− f

(

1
PI + QI

(

∑

i∈I

pixi +
∑

i∈I

qixi

))

≥ 1
PI + QI

[

∑

i∈I

pif (xi) +
∑

i∈I

qif (xi)

]

−
PIf

(

∑

i∈I
pixi�PI

)

+ QIf
(

∑

i∈I
qixi�QI

)

PI + QI

=
PIL (f, I, p, x) + QIL (f, I, q, x)

PI + QI

≥ [L (f, I, p, x)]

PI

PI + QI [L (f, I, q, x)]

QI

PI + QI

whence we obtain

[L (f, I, p + q, x)]PI+QI ≥ [L (f, I, p, x)]PI [L (f, I, q, x)]QI

and the inequality (2.4) is proved.
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The following corollary also holds.

Corollary 2. Suppose that f, I, x are as above and p, q ∈ J+ (R) such that p− q =
e ∈ J+ (R) with L (f, I, e, x) > 0. Then we have the inequality

[

L (f, I, p, x)
L (f, I, e, x)

]PI

≥
[

L (f, I, q, x)
L (f, I, e, x)

]QI

.(2.5)

Proof. One has

[L (f, I, p, x)]PI = [L (f, I, e + q, x)]EI+QI

≥ [L (f, I, e, x)]EI [L (f, I, q, x)]QI

= [L (f, I, e, x)]PI−QI [L (f, I, q, x)]QI ,

which proves the inequality (2.5).

Now, suppose that q, e ∈ J+ (R) and L (f, I, e, x) > 0. We shall consider the
mapping Q : [0,∞) → [0,∞) given by

Q (t) :=
[

L (f, I, te + q, x)
L (f, I, e, x)

](tEI+QI)

.

The main properties of this mapping are given in the following theorem.

Theorem 3. With the above assumptions, one has
(i) The mapping Q is logarithmically concave on [0,∞);

(ii) The mapping Q is monotonic increasing on [0,∞);
(iii) We have the bound

inf
t∈[0,∞)

Q (t) = Q (0) =
[

L (f, I, q, x)
L (f, I, e, x)

]QI

.(2.6)

Proof. The proof is as follows.
(i) Let t1, t2 ∈ [0,∞) and α, β ≥ 0 with α + β = 1. We have

Q (αt1 + βt2)

=
[

L (f, I, (αt1 + βt2) e + (α + β) q, x)
L (f, I, e, x)

](αt1+βt2)EI+(α+β)QI

=
H (f, I, α (t1e + q) + β (t2e + q) , x)

[L (f, I, e, x)]α(t1EI+QI)+β(t2EI+QI)

≥ H (f, I, α (t1e + q) , x)H (f, I, β (t2e + q) , x)

[L (f, I, e, x)]α(t1EI+QI) [L (f, I, e, x)]β(t2EI+QI)

=
[

L (f, I, α (t1e + q) , x)
[L (f, I, e, x)]

]α(t1EI+QI) [

L (f, I, β (t2e + q) , x)
[L (f, I, e, x)]

]β(t2EI+QI)

=

{

[

L (f, I, t1e + q, x)
[L (f, I, e, x)]

](t1EI+QI)
}α {

[

L (f, I, t2e + q, x)
[L (f, I, e, x)]

](t2EI+QI)
}β

= [Q (t1)]
α [Q (t2)]

β

as for all δ > 0, s ∈ J+ (R), L (f, I, δs, x) = L (f, I, s, x) , and the logarithmic
concavity of Q is proved.
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(ii) Let 0 ≤ t1 < t2 < ∞. Then

Q (t2) =
[

L (f, I, (t2 − t1) e + t1e + q, x)
L (f, I, e, x)

](t2−t1)EI+t1EI+QI

=
H (f, I, (t2 − t1) e + t1e + q, x)

[L (f, I, e, x)]((t2−t1)EI+t1EI+QI)

≥ H (f, I, (t2 − t1) e, x)H (f, I, t1e + q, x)

[L (f, I, e, x)](t2−t1)EI [L (f, I, e, x)]t1EI+QI

=
[

L (f, I, (t2 − t1) e, x)
L (f, I, e, x)

](t2−t1)EI
[

L (f, I, t1e + q, x)
L (f, I, e, x)

]t1EI+QI

=
[

L (f, I, t1e + q, x)
L (f, I, e, x)

]t1EI+QI

= Q (t1)

as L (f, I, (t1 − t2) e, x) = L (f, I, e, x) ; and the monotonicity of Q is proved.
(iii) Now, since Q (t) ≥ Q (0) for all t ∈ [0,∞), the bound (2.6) is obtained.

3. Applications

1. Let f : C ⊆ X → R be a convex mapping on the convex set C and pi ≥ 0,

i = 1, 2n with
2n
∑

i=1
pi > 0,

n
∑

i=1
p2i > 0,

n
∑

i=1
p2i−1 > 0 and xi ∈ C

(

i = 1, 2n
)

.

Then we have the inequality:

1
P2n

2n
∑

i=1

pif (xi)− f

(

1
P2n

2n
∑

i=1

pixi

)

≥









1
n
∑

i=1
p2i

n
∑

i=1

p2if (x2i)− f









1
n
∑

i=1
p2i

n
∑

i=1

p2ix2i

















nP
i=1

p2i�P2n

×









1
n
∑

i=1
p2i−1

n
∑

i=1

p2i−1f (x2i−1)− f









1
n
∑

i=1
p2i−1

n
∑

i=1

p2i−1x2i−1

















nP
i=1

p2i−1�P2n

≥ 0.

2. With the above assumptions and assuming that pi ≥ 0
(

i = 1, 2n− 1
)

, with
2n
∑

i=1
pi > 0,

n
∑

i=1
p2i > 0,

n
∑

i=1
p2i−1 > 0 and xi ∈ C

(

i = 1, 2n− 1
)

, one has the
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inequality

1
P2n−1

2n−1
∑

i=1

pif (xi)− f

(

1
P2n−1

2n−1
∑

i=1

pixi

)

≥









1
n
∑

i=1
p2i−1

n
∑

i=1

p2i−1f (x2i−1)− f









1
n
∑

i=1
p2i−1

n
∑

i=1

p2i−1x2i−1

















nP
i=1

p2i−1�P2n−1

×









1
n
∑

i=1
p2i

n
∑

i=1

p2if (x2i)− f









1
n
∑

i=1
p2i

n
∑

i=1

p2ix2i

















nP
i=1

p2i�P2n−2

.

3. Let f : C ⊆ X → R be a convex mapping on C, xi ∈ C
(

i = 1, n
)

and
αi ∈

(

0, π
2

)

, i = 1, n. Then we have the inequality

1
n

n
∑

i=1

f (xi)− f

(

1
n

n
∑

i=1

xi

)

≥









1
n
∑

i=1
sin2 αi

n
∑

i=1

sin2 αif (xi)− f









n
∑

i=1
sin2 αi · xi

n
∑

i=1
sin2 αi

















nP
i=1

sin2 αi�n

×









1
n
∑

i=1
cos 2αi

n
∑

i=1

cos2 αif (xi)− f









n
∑

i=1
cos2 αi · xi

n
∑

i=1
cos 2αi

















nP
i=1

cos 2αi�n

≥ 0.

4. Let X be a normed linear space and p ≥ 1. Then for all I, J ∈ Pf (N), where
I ∩ J = ∅, and pi ≥ 0 with PI , PJ > 0, one has the inequality:

P p−1
I∪J

∑

i∈I∪J

pi ‖xi‖p −

∥

∥

∥

∥

∥

∑

i∈I∪J

pixi

∥

∥

∥

∥

∥

p

≥
P p

I∪J

P
p· PI

PI∪J
I P

p· PJ
PI∪J

J

(

P p−1
I

∑

i∈I

pi ‖xi‖p −

∥

∥

∥

∥

∥

∑

i∈I

pixi

∥

∥

∥

∥

∥

p)
PI

PI∪J

×



P p−1
J

∑

j∈J

pj ‖xj‖p −

∥

∥

∥

∥

∥

∥

∑

j∈J

pjxj

∥

∥

∥

∥

∥

∥

p



PJ
PI∪J

≥ 0

for all xi ∈ X, i ∈ I ∪ J .
If we assume that pi, qi ≥ 0 so that PI , QI > 0, I ∈ Pf (N), then one has the
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inequality:

(PI + QI)
p−1

∑

i∈I

(pi + qi) ‖xi‖p −

∥

∥

∥

∥

∥

∑

i∈I

(pi + qi) xi

∥

∥

∥

∥

∥

p

≥ (PI + QI)
p

P
p· PI

PI+QI
I ·Q

q· QI
PI+QI

I

(

P p−1
I

∑

i∈I

pi ‖xi‖p −

∥

∥

∥

∥

∥

∑

i∈I

pixi

∥

∥

∥

∥

∥

p)
PI

PI+QI

×

(

Qp−1
I

∑

i∈I

qi ‖xi‖p −

∥

∥

∥

∥

∥

∑

i∈I

qixi

∥

∥

∥

∥

∥

p)
QI

PI+QI

for all xi ∈ X (i ∈ I).
5. Now, let xi > 0 and pi ≥ 0 (i ∈ N) so that PI , PJ > 0, I, J ∈ Pf (N),

I ∩ J = ∅. Denote

A (I, p, x) :=
1
PI

∑

i∈I

pixi

and

G (I, p, x) :=

(

∏

i∈I

xpi
i

)1�PI

.

The following inequality is well-known in the literature as the arithmetic
mean-geometric mean inequality:

A (I, p, x) ≥ G (I, p, x) .(3.1)

By Theorem 1 applied for the mapping f : (0,∞) → R, f (x) = − ln x, we
have:

A (I ∪ J, p, x)
G (I ∪ J, p, x)

≥ exp







[

ln
(

A (I, p, x)
G (I, p, x)

)]
PI

PI∪J
[

ln
(

A (J, p, x)
G (J, p, x)

)]
PJ

PI∪J







≥ 1,

which gives a refinement of the well-known inequality (3.1).
If pi, qi ≥ 0 such that PI , QI > 0 and xi > 0 (i ∈ I), then by Theorem 2 we
have:

A (I, p + q, x)
G (I, p + q, x)

≥ exp







[

ln
(

A (I, p, x)
G (I, p, x)

)]
PI

PI+QI
[

ln
(

A (I, q, x)
G (I, q, x)

)]
QI

PI+QI







≥ 1,

which also gives a refinement of (3.1).
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