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SOME BOUNDS IN TERMS OF A-SEMINORMS FOR
OSTROWSKI-GRUSS TYPE INEQUALITIES

P. CERONE AND S.S. DRAGOMIR

ABSTRACT. In this paper we point out some bounds for the remainder of a
generalised Ostrowski type formula by the use of A—seminorms.

1. INTRODUCTION

As in [1], let {P,}, .y and {Qn}, oy be two sequences of harmonic polynomials,
that is, polynomials satisfying

(1.1) P (t) = P,1(t), Po(t)=1, teR,
In [1], the authors proved the following result.
Lemma 1. Let {P,},cy and {Qn}, cy be two harmonic polynomials. Set

P,(t), tEe€la,x]
(1.3) S, (t,x) == . () € [a,b]*.
Qn(t), t€ (x,b]

Then we have the equality
b
(1.4) / f()dt

= YD Qe ) S 1) + (P () = Qe (@) F4 7 (2)

k=1
b
“P@ 7% @) + (1" [ S (k) £ (1)
provided that f : [a,b] — R is such that f*=) is absolutely continuous on [a,b].
Using the following “pre-Griiss” inequality

(15) T(f.0)l < SVT DT -,

where
b b b
1) = g [ @@ ot [ @ [ywa

is the Chebychev functional and f,g are such that the previous integrals exist
and v < g(x) < T for a.e. z € [a,b], the authors of [1] proved basically the
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2 P. CERONE AND S.S. DRAGOMIR

following inequality for estimating the integral f; f (t) dt in terms of the harmonic
polynomials {P,}, . and {Qn}, cn-

Theorem 1. Assume that f : [a,b] — R is such that f) is integrable and -y, <
f <T, forallt € [a,b]. Put

(16)  Un (@)= 57— Qusa () = Quyt (2) + Pays (@) = Paya (a)].

Then for all x € [a, b] we have the inequality

(1.7) / CLEDY ( DM Qi (0) £570 () + (P (@) = Qu (@) S50 (@)
~Pi(a) SV <a>} — (<) U (@) [£D (1) = £ (@) ]
< K@) T, (- a).
where

T b %
(1.8) K () ;:{bla/ Pﬁ(t)dt—i—/ Qi(t)dt—[Un(x)f} )

A number of particular cases that were obtained by an appropriate choice of
harmonic polynomials have also been presented in [1].
In the recent paper [2], Dragomir proved the following refinement of (1.7).

Theorem 2. Assume that the mapping f : [a,b] — R is such that F=1 s abso-
lutely continuous on [a,b] and f™ € Ly[a,b] (n >1). If we denote

[t 1] = £TLO =S ()

b—a ’
then we have the inequality

(19) 0t =3 (-0 [ 0) 747 0+ (Pe (o) = Qu @) 147 0
~Py(a) f4 <a>} = (=1)" [Qut1 (1) = Quia (@)
FPuss ()= Pasa (@) £ 5a0,8]
O] P A (G

(< FK (@) 0= 0) (T =) i € Lu(at))
for all z € [a,b] and K () as is given in (1.8).
2. SOME PRELIMINARY RESULTS INVOLVING LEBESGUE NORMS ON [a,b]2

For f € L, [a,b] (p € [1,00)), we can define the functional (see also [3])

1

(2.1) 1A = (/ / f |pdtds)p
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and for f € L [a,b], we can define

(2.2) IFIS ==ess sup |f ()~ f(s)].

(t,s)E[a,b])?

If we consider fa :[a,b]” — R

(2.3) fa(t,s)=f(t)—f(s),
then, obviously
(2.4) 11 = N £all, . p € [1,00],

where |[|-[|,, are the usual Lebesque p-norms on [a, b)°.
Using the properties of the Lebesque p—norms, we may deduce the following
semi-norm properties for ||H§
(i) £ >0 for f € L,[a,b] and [|f]|> = 0 implies that f = c (c is a constant)
a.e. in [a,b];
.. A A A
@) \If +gll, < WfI, + lgll, if £,9 € Ly [a, b ;
A A
(@i) [lecf [l = lal [ £1I;
We note that if p = 2, then,

([ [ uo )dtds)é
V2 (b—a)||f||§—</abf(t)dt>2

If f: [a,b] — Ris absolutely continuous on [a, b], then we can point out the following
bounds for ||f\|§ in terms of || f'[|,,.

[¥il5

Theorem 3. Assume that f : [a,b] — R is absolutely continuous on [a,b].

(1) If p € [1,00), then we have the inequality

%an if f € Loolabl;
[(p+1)(p+2)]P

t\:

(262)7 (h—a)B ">

(2.5) 15 <9 oimamas e 1€ Laasb],
>1, o +5=1
(b=a)7 7], if 1€ Liat],

(i) If p = oo, then we have the inequality
b—a)lfll if f' €Loxlabl;

26) 115 <{ G-aF IFl. # FeLlalabl, a>1, Led=1;

11, -
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Proof. As f : [a,b] — R is absolutely continuous, then f (t) — f(s) = f: 1 (uw)du
for all ¢, s € [a,b], and then
27 1f @)= F(s)l

[t =sll[flloe 1 f" € Loo[a,b];

t
= /f’(u)du <S pt-slTf, i freLafab], a>1, S+ 4 =1
114 if f"€Lifa,b]
and so for p € [1,00), we may write
1f&) = ()
t=slPIf e if € Loo[a,b];
< Qlt=sFIFIL i feLalad], a>1, Erd =1
1£115 if f'€Lilab],

and then from (2.3), (2.4)

1le (S 16 = sl deds) it f" € Lo [a,]5

’ by, % b o reT
e3) R < e (21 sfF duds)” it g€ oo,

1114 (f;fabdtdS)E if f'e Li[a,b].

Further, since

(/ab/abﬁslpdtdS); _ [/b (/at(t5)pd5+/tb(s—t)”d5>dtr
([ [y

25 (b—a)' 5
[(p+1) (p+2)]7

([ [ st - et
a Ja [(p+8)(p+28)]”

(/ab/abdtds>;:(b—a) )

we obtain, from (2.8), the stated result (2.5).

)

giving

3=

and

ST
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Using (2.7) we have (for p = oo) that

[f'lcess sup [t — s
(t,5)€la,b]? (b—a)[|f'll
A 1 1
Iflls < ]|, ess . S)uli ) [t — 5|ﬁ1f =95 b=a)?|fl.
,8)€la,
T 1l
1

and the inequality (2.6) is also proved. I

3. SOME BOUNDS IN TERMS OF A—SEMINORMS

We start with the following result which obtains bounds for the left hand side of
(1.9) (or equivalently (1.7)) in terms of the A—seminorms of the previous section.

Theorem 4. Let {P,}, cy and {Qn}, oy be two harmonic polynomials. Set Sy, (-, )
as in Lemma 1 and assume that f : [a,b] — R is such that F=1 s absolutely

continuous on [a,b]. Then we have the inequality:

(3.1) Bt =3 (1) [Qx (1) S50 (1) + (P (@) = Qi () S5V ()
k=1

~Pi(a) f47 (@] = (1) [Qur1 () = Quis (2)

+Pot1 (%) — Pot1 (a)] [f(n_l); a, b} ‘
10 )| FNS if ™ € Lo [a,0];

1
< sima XY 1Sl IFOy i Eri=1p>1,
2(b-a) f(n) €L, [a, b];

15w ()12 ||f<">HA

and the A—seminorms ||H§ (p € [1,00]) are defined as in Section 2.

Proof. Recall Korkine’s identity

32 T = o / / (5)) (g (t) — g (s)) deds,

where T (-, -) is the Chebychev functional. That is, we recall that

b_a/ h(z d:c—(b_la)Q/abh(a:)dx~/abg(x)da:,

provided that all the involved integrals exist.

T (h,g) =
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Using (3.2) and the identity (1.4), gives (see also [1]):

(33) / f (0 d - < DM [Qu(0) 17D (6) + (Pe () — Qu () £ (2)

~Py (a) f(""” <a>] — (=1)" [Qut1 (0) = Quyi ()
P (2) = o (a)] [0 Da,0)

b b
- mi) / / (S (t:2) = S (5,2)) (F™) (8) = £ (5))dtds.

Using Hélder’s integral inequality for double integrals, we may write

= S (s,2)) (S (1) = f (s))dtds

(/b/bwn(t,x) <squtds> (//

I ol o]

1
3

IN

(n (s)‘p dtds)

where%+%:l,p>1.
If ¢ = 1, we have

B < IS ( Hf<">

and if p = 1, then

B < 5. a2 [

Further, using the identity (3.3) and the properties of modulus, we obtain (3.1). I

Remark 1. For p = q = 2, we recapture Theorem 2 and so Theorem /J represents
an Ostrowski-Griss result whose bounds are given in terms of the A—seminorms
whose properties are given in Section 2.

The following corollary holds.

Corollary 1. Let {Pn}, ey A@n}peny  and {Sn},cn be as in Theorem 4. If f :
[a,b] — R is such that ™) is absolutely continuous, then we have the inequality:

n

D=3 1 [k (0) 57D () + (Pi (@) = Qi (@) £47) (@)

(3.4)

~Pi (a) f(’“‘” (a)] — (=" [Qus1 (b) = Qui1 ()

Py ()= Paa (@) 150,
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218w )T (10| if fD € Lo [a,b];
%(bgf) IS o) | £ if ftY € Lo a,b],
a>1, é + % =1;
2(b a) ”S Hl Hf(n+1 H
#IIS G2 | i lel=1ps1,
[(p+1)(p+2)] P e poa
f(n+1) cl [ b]
11/ .0\ 1ly24
2p p2)P(b—a)P P n i n
< )P0’ 2 g, ()2 £, i 0 € Lala, b]
= [(p+B8)(p+28)] P L .
a>1, =4+ %=
a Jé]
21 A %4—%
3 (b=a)? 1Sn Cya)llg [l £V if %+5=1,p>1
—a)? .
L |18 ()l [ £ if fD € Lo [a,b];
B (b— a)ﬁ n . _
208+1)(B+2) ”S Hf( +1) ” if a>1, é'*' % =1,

f(n+1) € Lo [a,b] 5

Lo—a)|Sn ()3 |7, -

The proof follows by Theorem 4 and by Theorem 3 (Section 2) applied for the
A—seminorm of the mapping f(™. We omit the details.
Remark 2. If we choose
Pn(t)v tE[CL,ZL'],
(3.5) Sy (t,x) =
kH, (t —z)+ P, (t), te (0]
with P, (-) and H, (- — ) harmonic polynomials satifying (1.1) and H, (0) = 0
for all n € N then, S, (-,x) is absolutely continuous on [a,b]. Hence, the bounds
obtained in Theorem 3 will hold for ||S, (-,2)[,, ¢ = 1 in terms of |5}, (-, z)|,
v > 1. Here,
P,_1(t), tela ],
(3.6) Sy (t@) =
kH, 1(t—z)+ P,—1(t), te (],
where the differentiation is with respect to t within each of the two subintervals.
With the above development, we have from Theorem 3:
(i) Forq € [l1,0),

25 (b—a)' "0 (IS (@) |y Sh € Luola,b];

B.7) IS o) <

(252)%(1;—(1)%*%
q - I
q

St(ao).,, S, € Lyla,bl,
e LACEIR o

v>1 s+5=1
2
b—a)® IS, (o), Sy € Lu[a,b],
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(i)
(b—a) IS, (@)l Si € Loo [a, 0]
(3-8) 150 (@)l < § (b=a)? [IS) (5a)ll, s Sh € Ly [ab],
v>1, % + % =1
157 G )l Sy € Ly a, 0],

and so substitution into the right hand side of Corollary 1 would give bounds
involving 27 branches.

Corollary 2. Let {P,}, oy be as in Theorem 4. Then for f : [a,b] — R and )
absolutely continuous, we have

s |[ 1w LIS ( DH B ) 570 () - P (@) £ (a)

U Patt ) = P (@] 150,

LIPS I F 0| if fO) € Lo [a,b];

Lo—a)? P2 £ i O e Ly [a,8],
a>1, é + % =1;
A sl

2(b a)

1_

200 s || if pi=Lp>1,
[(p+D)(p+2)]»

ftY e L, [a,b];
2%’1(52)%(1;7(1)%*%*1 Al p(nt1) ) (n+1)
[(p+8)(p+26)] P 1Pally [ £+ £50 € Lalad]

IN

1 1 _
Oz>1,1g+13—1
p>1,;+g=l

Lo—a)r PRI £ if 1+l=1p>1

et 1A V[ if fO) € Lo [a,];

2 a n .

e A N el B if a>1, t+d=1,
f(n+l) c L [ ,b];

5 (b= a) [Pall% [ £+
where for q € [1,00)

21 (b—a) "0 |Poall,  Pa€ Laolab];
A E 1,2
(3.10) 1Pally <9 (26%)7 (b= a)* "% |Pacall,, Pu€ Ly[a,b],

v > 1, %4—%:1;
2
(b—a)7 || Prlly, P, € Lya, 0],
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and
(b—a)[[Pialls  Pn€ Loo[a;b];
(3.11) 1Pl <3 =) IPacslly. Pu€ Ly o],
v>1, % +3=1
| Pn-1ll, P, € Ly[a,b].
Proof. Taking k = 0 in (3.5) or equivalently @, (t) = P, (t) in (1.3) gives from

Corollary 1 the stated results where we have used (3.6) — (3.8). I

Remark 3. As an example, take

(3.12) Py (t) =
with
O=(1—-Na+xb, Ael0,1],

then,
. . bh—a)” N
(3.13) ‘ P, = sup |P, (t)‘ = ( 'a) max {A\", (1 —X)"}
0 t€la,b] n:
RGN
n! 2 2
Further,
. b 2 g
|2 = ([|mod)  Genoo
v a
LT ; 3
= — O—t)""dt+ [ (t—0)"dt
Tl' a 0
B l (0 N a)n'y+1 + (b B 0)n7+1 ~
~nl ny+1 ’
giving
_ b ot [ ym]
(3.14) ‘ B = a') l +(1-A) .
v n! ny+1

Thus, from (3.9) with P, (t) as given by (3.12) gives

b n —a k
(315) 7» : = / Fyde=y (-t %
a k=1 '

(b _ a)n+1
(n+1)!

= a7 @) - @] [70Ysa,0)|

< B(\ A>7

x[@=0F 50 @) = N0 (@] = (1)

n
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A

where B (HPHHA) is the right hand side of (3.9) with HP" given by

(8.10), (3.11) on using (3.13) and (3.14).
For \ = § the left hand side of (3.15) simplifies to

1 B 1P 2= b —a\” (h—1).
A m/a f(t)dt_kzl K (2> i)
)TL

A -
|2
q

(50 e )

where [g; a,b] = %Z(a).
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