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SOME BOUNDS IN TERMS OF ∆−SEMINORMS FOR
OSTROWSKI-GRÜSS TYPE INEQUALITIES

P. CERONE AND S.S. DRAGOMIR

Abstract. In this paper we point out some bounds for the remainder of a
generalised Ostrowski type formula by the use of ∆−seminorms.

1. Introduction

As in [1], let {Pn}n∈N and {Qn}n∈N be two sequences of harmonic polynomials,
that is, polynomials satisfying

P ′n (t) = Pn−1 (t) , P0 (t) = 1, t ∈ R,(1.1)

Q′
n (t) = Qn−1 (t) , Q0 (t) = 1, t ∈ R.(1.2)

In [1], the authors proved the following result.

Lemma 1. Let {Pn}n∈N and {Qn}n∈N be two harmonic polynomials. Set

Sn (t, x) :=







Pn (t) , t ∈ [a, x]

Qn (t) , t ∈ (x, b]
, (t, x) ∈ [a, b]2 .(1.3)

Then we have the equality
∫ b

a
f (t) dt(1.4)

=
n

∑

k=1

(−1)k+1
[

Qk (b) f (k−1) (b) + (Pk (x)−Qk (x)) f (k−1) (x)

−Pk (a) f (k−1) (a)
]

+ (−1)n
∫ b

a
Sn (t, x) f (n) (t) dt,

provided that f : [a, b] → R is such that f (n−1) is absolutely continuous on [a, b].

Using the following “pre-Grüss” inequality

|T (f, g)| ≤ 1
2

√

T (f, f) (Γ− γ) ,(1.5)

where

T (f, g) :=
1

b− a

∫ b

a
f (x) g (x) dx− 1

(b− a)2

∫ b

a
f (x) dx ·

∫ b

a
g (x) dx

is the Chebychev functional and f, g are such that the previous integrals exist
and γ ≤ g (x) ≤ Γ for a.e. x ∈ [a, b], the authors of [1] proved basically the

Date: June 16, 2000.
1991 Mathematics Subject Classification. Primary 26D15, 26D10; Secondary 41A55.
Key words and phrases. Ostrowski Inequality, Harmonic polynomials.

1
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following inequality for estimating the integral
∫ b

a f (t) dt in terms of the harmonic
polynomials {Pn}n∈N and {Qn}n∈N.

Theorem 1. Assume that f : [a, b] → R is such that f (n) is integrable and γn ≤
f (n) ≤ Γn for all t ∈ [a, b]. Put

Un (x) :=
1

b− a
[Qn+1 (b)−Qn+1 (x) + Pn+1 (x)− Pn+1 (a)] .(1.6)

Then for all x ∈ [a, b], we have the inequality
∣

∣

∣

∣

∣

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1
[

Qk (b) f (k−1) (b) + (Pk (x)−Qk (x)) f (k−1) (x)(1.7)

−Pk (a) f (k−1) (a)
]

− (−1)n Un (x)
[

f (n−1) (b)− f (n−1) (a)
]

∣

∣

∣

∣

≤ 1
2
K (x) (Γn − γn) (b− a) ,

where

K (x) :=

{

1
b− a

∫ x

a
P 2

n (t) dt +
∫ b

x
Q2

n (t) dt− [Un (x)]2
} 1

2

.(1.8)

A number of particular cases that were obtained by an appropriate choice of
harmonic polynomials have also been presented in [1].

In the recent paper [2], Dragomir proved the following refinement of (1.7).

Theorem 2. Assume that the mapping f : [a, b] → R is such that f (n−1) is abso-
lutely continuous on [a, b] and f (n) ∈ L2 [a, b] (n ≥ 1). If we denote

[

f (n−1); a, b
]

:=
f (n−1) (b)− f (n−1) (a)

b− a
,

then we have the inequality
∣

∣

∣

∣

∣

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1
[

Qk (b) f (k−1) (b) + (Pk (x)−Qk (x)) f (k−1) (x)(1.9)

−Pk (a) f (k−1) (a)
]

− (−1)n [Qn+1 (b)−Qn+1 (x)

+Pn+1 (x)− Pn+1 (a)]
[

f (n−1); a, b
]

∣

∣

∣

∣

≤ K (x) (b− a)
[

1
b− a

∥

∥

∥f (n)
∥

∥

∥

2

2
−

([

f (n); a, b
])2

] 1
2

(

≤ 1
2
K (x) (b− a) (Γn − γn) if f (n) ∈ L∞ (a, b)

)

,

for all x ∈ [a, b] and K (x) as is given in (1.8).

2. Some Preliminary Results Involving Lebesgue Norms on [a, b]2

For f ∈ Lp [a, b] (p ∈ [1,∞)), we can define the functional (see also [3])

‖f‖∆p :=

(

∫ b

a

∫ b

a
|f (t)− f (s)|p dtds

) 1
p

(2.1)



∆−SEMINORMS FOR OSTROWSKI-GRÜSS INEQUALITIES 3

and for f ∈ L∞ [a, b], we can define

‖f‖∆∞ := ess sup
(t,s)∈[a,b]2

|f (t)− f (s)| .(2.2)

If we consider f∆ : [a, b]2 → R,

f∆ (t, s) = f (t)− f (s) ,(2.3)

then, obviously

‖f‖∆p = ‖f∆‖p , p ∈ [1,∞] ,(2.4)

where ‖·‖p are the usual Lebesque p-norms on [a, b]2.
Using the properties of the Lebesque p−norms, we may deduce the following

semi-norm properties for ‖·‖∆p :

(i) ‖f‖∆p ≥ 0 for f ∈ Lp [a, b] and ‖f‖∆p = 0 implies that f = c (c is a constant)
a.e. in [a, b] ;

(ii) ‖f + g‖∆p ≤ ‖f‖∆p + ‖g‖∆p if f, g ∈ Lp [a, b] ;

(iii) ‖αf‖∆p = |α| ‖f‖∆p .

We note that if p = 2, then,

‖f‖∆2 =

(

∫ b

a

∫ b

a
(f (t)− f (s))2 dtds

) 1
2

=
√

2



(b− a) ‖f‖22 −

(

∫ b

a
f (t) dt

)2




1
2

.

If f : [a, b] → R is absolutely continuous on [a, b], then we can point out the following
bounds for ‖f‖∆p in terms of ‖f ′‖p.

Theorem 3. Assume that f : [a, b] → R is absolutely continuous on [a, b].

(i) If p ∈ [1,∞), then we have the inequality

‖f‖∆p ≤















































2
1
p (b−a)

1+ 2
p

[(p+1)(p+2)]
1
p
‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

(2β2)
1
p (b−a)

1
β + 2

p

[(p+β)(p+2β)]
1
p
‖f ′‖α if f ′ ∈ Lα [a, b] ,

α > 1, 1
α + 1

β = 1;

(b− a)
2
p ‖f ′‖1 if f ′ ∈ L1 [a, b] ,

(2.5)

(ii) If p = ∞, then we have the inequality

‖f‖∆∞ ≤























(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

(b− a)
1
β ‖f ′‖α if f ′ ∈ Lα [a, b] , α > 1, 1

α + 1
β = 1;

‖f ′‖1 .

(2.6)
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Proof. As f : [a, b] → R is absolutely continuous, then f (t) − f (s) =
∫ t

s f ′ (u) du
for all t, s ∈ [a, b], and then

|f (t)− f (s)|(2.7)

=
∣

∣

∣

∣

∫ t

s
f ′ (u) du

∣

∣

∣

∣

≤























|t− s| ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

|t− s|
1
β ‖f ′‖α if f ′ ∈ Lα [a, b] , α > 1, 1

α + 1
β = 1;

‖f ′‖1 if f ′ ∈ L1 [a, b]

and so for p ∈ [1,∞), we may write

|f (t)− f (s)|p

≤























|t− s|p ‖f ′‖p
∞ if f ′ ∈ L∞ [a, b] ;

|t− s|
p
β ‖f ′‖p

α if f ′ ∈ Lα [a, b] , α > 1, 1
α + 1

β = 1;

‖f ′‖p
1 if f ′ ∈ L1 [a, b] ,

and then from (2.3), (2.4)

‖f‖∆p ≤



















































‖f ′‖∞
(

∫ b
a

∫ b
a |t− s|p dtds

) 1
p

if f ′ ∈ L∞ [a, b] ;

‖f ′‖α

(

∫ b
a

∫ b
a |t− s|

p
β dtds

) 1
p

if f ′ ∈ Lα [a, b] ,
α > 1, 1

α + 1
β = 1;

‖f ′‖1
(

∫ b
a

∫ b
a dtds

) 1
p

if f ′ ∈ L1 [a, b] .

(2.8)

Further, since
(

∫ b

a

∫ b

a
|t− s|p dtds

) 1
p

=

[

∫ b

a

(

∫ t

a
(t− s)p ds +

∫ b

t
(s− t)p ds

)

dt

] 1
p

=

(

∫ b

a

[

(t− a)p+1 + (b− t)p+1

p + 1

]

dt

) 1
p

=
2

1
p (b− a)1+

2
p

[(p + 1) (p + 2)]
1
p
,

giving
(

∫ b

a

∫ b

a
|t− s|

p
β dtds

) 1
p

=

(

2β2)
1
p (b− a)

1
β + 2

p

[(p + β) (p + 2β)]
1
p

,

and
(

∫ b

a

∫ b

a
dtds

) 1
p

= (b− a)
2
p ,

we obtain, from (2.8), the stated result (2.5).
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Using (2.7) we have (for p = ∞) that

‖f‖∆∞ ≤



































‖f ′‖∞ ess sup
(t,s)∈[a,b]2

|t− s|

‖f ′‖α ess sup
(t,s)∈[a,b]

|t− s|
1
β

‖f ′‖1

=























(b− a) ‖f ′‖∞

(b− a)
1
β ‖f ′‖α

‖f ′‖1

and the inequality (2.6) is also proved.

3. Some Bounds in Terms of ∆−Seminorms

We start with the following result which obtains bounds for the left hand side of
(1.9) (or equivalently (1.7)) in terms of the ∆−seminorms of the previous section.

Theorem 4. Let {Pn}n∈N and {Qn}n∈N be two harmonic polynomials. Set Sn (·, ·)
as in Lemma 1 and assume that f : [a, b] → R is such that f (n−1) is absolutely
continuous on [a, b]. Then we have the inequality:

∣

∣

∣

∣

∣

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1
[

Qk (b) f (k−1) (b) + (Pk (x)−Qk (x)) f (k−1) (x)(3.1)

−Pk (a) f (k−1) (a)
]

− (−1)n [Qn+1 (b)−Qn+1 (x)

+Pn+1 (x)− Pn+1 (a)]
[

f (n−1); a, b
]

∣

∣

∣

∣

≤ 1
2 (b− a)

×































‖Sn (·, x)‖∆1
∥

∥f (n)
∥

∥

∆
∞ if f (n) ∈ L∞ [a, b] ;

‖Sn (·, x)‖∆q
∥

∥f (n)
∥

∥

∆
p if 1

p + 1
q = 1, p > 1,

f (n) ∈ Lp [a, b] ;
‖Sn (·, x)‖∆∞

∥

∥f (n)
∥

∥

∆
1

and the ∆−seminorms ‖·‖∆p (p ∈ [1,∞]) are defined as in Section 2.

Proof. Recall Korkine’s identity

T (h, g) =
1

2 (b− a)2

∫ b

a

∫ b

a
(h (t)− h (s)) (g (t)− g (s)) dtds,(3.2)

where T (·, ·) is the Chebychev functional. That is, we recall that

T (h, g) =
1

b− a

∫ b

a
h (x) g (x) dx− 1

(b− a)2

∫ b

a
h (x) dx ·

∫ b

a
g (x) dx,

provided that all the involved integrals exist.
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Using (3.2) and the identity (1.4), gives (see also [1]):

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1
[

Qk (b) f (k−1) (b) + (Pk (x)−Qk (x)) f (k−1) (x)(3.3)

−Pk (a) f (k−1) (a)
]

− (−1)n [Qn+1 (b)−Qn+1 (x)

+Pn+1 (x)− Pn+1 (a)]
[

f (n−1); a, b
]

=
1

2 (b− a)2

∫ b

a

∫ b

a
(Sn (t, x)− Sn (s, x)) (f (n) (t)− f (n) (s))dtds.

Using Hölder’s integral inequality for double integrals, we may write

B :=

∣

∣

∣

∣

∣

∫ b

a

∫ b

a
(Sn (t, x)− Sn (s, x)) (f (n) (t)− f (n) (s))dtds

∣

∣

∣

∣

∣

≤

(

∫ b

a

∫ b

a
|Sn (t, x)− Sn (s, x)|q dtds

) 1
q

(

∫ b

a

∫ b

a

∣

∣

∣f (n) (t)− f (n) (s)
∣

∣

∣

p
dtds

) 1
p

= ‖Sn (·, x)‖∆q
∥

∥

∥f (n)
∥

∥

∥

∆

p
,

where 1
p + 1

q = 1, p > 1.
If q = 1, we have

B ≤ ‖Sn (·, x)‖∆1
∥

∥

∥f (n)
∥

∥

∥

∆

∞

and if p = 1, then

B ≤ ‖Sn (·, x)‖∆∞
∥

∥

∥f (n)
∥

∥

∥

∆

1
.

Further, using the identity (3.3) and the properties of modulus, we obtain (3.1).

Remark 1. For p = q = 2, we recapture Theorem 2 and so Theorem 4 represents
an Ostrowski-Grüss result whose bounds are given in terms of the ∆−seminorms
whose properties are given in Section 2.

The following corollary holds.

Corollary 1. Let {Pn}n∈N,{Qn}n∈N and {Sn}n∈N be as in Theorem 4. If f :
[a, b] → R is such that f (n) is absolutely continuous, then we have the inequality:

∣

∣

∣

∣

∣

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1
[

Qk (b) f (k−1) (b) + (Pk (x)−Qk (x)) f (k−1) (x)(3.4)

−Pk (a) f (k−1) (a)
]

− (−1)n [Qn+1 (b)−Qn+1 (x)

+Pn+1 (x)− Pn+1 (a)]
[

f (n−1); a, b
]

∣

∣

∣

∣
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≤



































































































































































1
2 ‖Sn (·, x)‖∆1

∥

∥f (n+1)
∥

∥

∞ if f (n+1) ∈ L∞ [a, b] ;

1
2 (b− a)

1
β−1 ‖Sn (·, x)‖∆1

∥

∥f (n+1)
∥

∥

α if f (n+1) ∈ Lα [a, b] ,
α > 1, 1

α + 1
β = 1;

1
2(b−a) ‖Sn (·, x)‖∆1

∥

∥f (n+1)
∥

∥

1

2
1
p−1

(b−a)
2
p

[(p+1)(p+2)]
1
p
‖Sn (·, x)‖∆q

∥

∥f (n+1)
∥

∥

∞ if 1
p + 1

q = 1, p > 1,

f (n+1) ∈ Lα [a, b] ;
2

1
p−1(β2)

1
p (b−a)

1
β + 2

p−1

[(p+β)(p+2β)]
1
p

‖Sn (·, x)‖∆q
∥

∥f (n+1)
∥

∥

α if f (n+1) ∈ Lα [a, b] ,

α > 1, 1
α + 1

β = 1,
p > 1, 1

p + 1
q = 1,

1
2 (b− a)

2
p−1 ‖Sn (·, x)‖∆q

∥

∥f (n+1)
∥

∥

1 if 1
p + 1

q = 1, p > 1;

(b−a)2

6 ‖Sn (·, x)‖∆∞
∥

∥f (n+1)
∥

∥

∞ if f (n+1) ∈ L∞ [a, b] ;

β2(b−a)
1
β +1

2(β+1)(β+2) ‖Sn (·, x)‖∆∞
∥

∥f (n+1)
∥

∥

α if α > 1, 1
α + 1

β = 1,
f (n+1) ∈ Lα [a, b] ;

1
2 (b− a) ‖Sn (·, x)‖∆∞

∥

∥f (n+1)
∥

∥

1 .

The proof follows by Theorem 4 and by Theorem 3 (Section 2) applied for the
∆−seminorm of the mapping f (n). We omit the details.

Remark 2. If we choose

Sn (t, x) =







Pn (t) , t ∈ [a, x] ,

kHn (t− x) + Pn (t) , t ∈ (x, b]
(3.5)

with Pn (·) and Hn (· − x) harmonic polynomials satifying (1.1) and Hn (0) = 0
for all n ∈ N then, Sn (·, x) is absolutely continuous on [a, b]. Hence, the bounds
obtained in Theorem 3 will hold for ‖Sn (·, x)‖q, q ≥ 1 in terms of ‖S′n (·, x)‖γ ,
γ ≥ 1. Here,

S′n (t, x) =







Pn−1 (t) , t ∈ [a, x] ,

kHn−1 (t− x) + Pn−1 (t) , t ∈ (x, b],
(3.6)

where the differentiation is with respect to t within each of the two subintervals.
With the above development, we have from Theorem 3:

(i) For q ∈ [1,∞),

‖Sn (·, x)‖∆q ≤



































2
1
q (b− a)1+

2
q ‖S′n (·, x)‖∞ , S′n ∈ L∞ [a, b] ;

(2δ2)
1
q (b−a)

1
δ + 2

q

(q+δ)(q+2δ)
1
q

‖S′n (·, x)‖γ , S′n ∈ Lγ [a, b] ,

γ > 1, 1
γ + 1

δ = 1;

(b− a)
2
q ‖S′n (·, x)‖1 , S′n ∈ L1 [a, b] ,

(3.7)



8 P. CERONE AND S.S. DRAGOMIR

(ii)

‖Sn (·, x)‖∆∞ ≤























(b− a) ‖S′n (·, x)‖∞ , S′n ∈ L∞ [a, b] ;

(b− a)
1
δ ‖S′n (·, x)‖γ , S′n ∈ Lγ [a, b] ,

γ > 1, 1
γ + 1

δ = 1;
‖S′n (·, x)‖1 , S′n ∈ L1 [a, b] ,

(3.8)

and so substitution into the right hand side of Corollary 1 would give bounds
involving 27 branches.

Corollary 2. Let {Pn}n∈N be as in Theorem 4. Then for f : [a, b] → R and f (n)

absolutely continuous, we have
∣

∣

∣

∣

∣

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1
[

Pk (b) f (k−1) (b)− Pk (a) f (k−1) (a)
]

(3.9)

− (−1)n [Pn+1 (b)− Pn+1 (a)]
[

f (n−1); a, b
]

∣

∣

∣

∣

≤



































































































































































1
2 ‖Pn‖∆1

∥

∥f (n+1)
∥

∥

∞ if f (n+1) ∈ L∞ [a, b] ;

1
2 (b− a)

1
β−1 ‖Pn‖∆1

∥

∥f (n+1)
∥

∥

α if f (n+1) ∈ Lα [a, b] ,
α > 1, 1

α + 1
β = 1;

1
2(b−a) ‖Pn‖∆1

∥

∥f (n+1)
∥

∥

1

2
1
p−1

(b−a)
2
p

[(p+1)(p+2)]
1
p
‖Pn‖∆q

∥

∥f (n+1)
∥

∥

∞ if 1
p + 1

q = 1, p > 1,

f (n+1) ∈ Lα [a, b] ;
2

1
p−1(β2)

1
p (b−a)

1
β + 2

p−1

[(p+β)(p+2β)]
1
p

‖Pn‖∆q
∥

∥f (n+1)
∥

∥

α if f (n+1) ∈ Lα [a, b] ,

α > 1, 1
α + 1

β = 1,
p > 1, 1

p + 1
q = 1,

1
2 (b− a)

2
p−1 ‖Pn‖∆q

∥

∥f (n+1)
∥

∥

1 if 1
p + 1

q = 1, p > 1;

(b−a)2

6 ‖Pn‖∆∞
∥

∥f (n+1)
∥

∥

∞ if f (n+1) ∈ L∞ [a, b] ;

β2(b−a)
1
β +1

2(β+1)(β+2) ‖Pn‖∆∞
∥

∥f (n+1)
∥

∥

α if α > 1, 1
α + 1

β = 1,
f (n+1) ∈ Lα [a, b] ;

1
2 (b− a) ‖Pn‖∆∞

∥

∥f (n+1)
∥

∥

1 .

where for q ∈ [1,∞)

‖Pn‖∆q ≤































2
1
q (b− a)1+

2
q ‖Pn−1‖∞ , Pn ∈ L∞ [a, b] ;

(

2δ2)
1
q (b− a)

1
δ + 2

q ‖Pn−1‖γ , Pn ∈ Lγ [a, b] ,
γ > 1, 1

γ + 1
δ = 1;

(b− a)
2
q ‖Pn−1‖1 , Pn ∈ L1 [a, b] ,

(3.10)
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and

‖Pn‖∆∞ ≤























(b− a) ‖Pn−1‖∞ , Pn ∈ L∞ [a, b] ;

(b− a)
1
δ ‖Pn−1‖γ , Pn ∈ Lγ [a, b] ,

γ > 1, 1
γ + 1

δ = 1;
‖Pn−1‖1 , Pn ∈ L1 [a, b] .

(3.11)

Proof. Taking k = 0 in (3.5) or equivalently Qn (t) ≡ Pn (t) in (1.3) gives from
Corollary 1 the stated results where we have used (3.6) – (3.8).

Remark 3. As an example, take

P̃n (t) =
(t− θ)n

n!
(3.12)

with

θ = (1− λ) a + λb, λ ∈ [0, 1] ,

then,
∥

∥

∥P̃n

∥

∥

∥

∞
= sup

t∈[a,b]

∣

∣

∣P̃n (t)
∣

∣

∣ =
(b− a)n

n!
max {λn, (1− λ)n}(3.13)

=
(b− a)n

n!

[

1
2
|
∣

∣

∣

∣

λ− 1
2

∣

∣

∣

∣

]n

.

Further,

∥

∥

∥P̃n

∥

∥

∥

γ
=

(

∫ b

a

∣

∣

∣P̃n (t)
∣

∣

∣

γ
dt

) 1
γ

(γ ∈ [1,∞))

=
1
n!

[

∫ θ

a
(θ − t)nγ dt +

∫ b

θ
(t− θ)nγ dt

] 1
γ

=
1
n!

[

(θ − a)nγ+1 + (b− θ)nγ+1

nγ + 1

] 1
γ

,

giving

∥

∥

∥P̃n

∥

∥

∥

γ
=

(b− a)n+ 1
γ

n!

[

λnγ+1 + (1− λ)nγ+1

nγ + 1

] 1
γ

.(3.14)

Thus, from (3.9) with Pn (t) as given by (3.12) gives

τλ : =

∣

∣

∣

∣

∣

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1 (b− a)k

k!
(3.15)

×
[

(1− λ)k f (k−1) (b)− λkf (k−1) (a)
]

− (−1)n (b− a)n+1

(n + 1)!

×
[

(1− λ)n+1 f (n) (b)− λn+1f (n) (a)
] [

f (n−1); a, b
]

∣

∣

∣

∣

≤ B
(

∥

∥

∥P̃n

∥

∥

∥

∆
)

,
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where B
(

‖Pn‖∆
)

is the right hand side of (3.9) with
∥

∥

∥P̃n

∥

∥

∥

∆

q
,

∥

∥

∥P̃n

∥

∥

∥

∆

∞
given by

(3.10), (3.11) on using (3.13) and (3.14).
For λ = 1

2 the left hand side of (3.15) simplifies to

1
b− a

τ 1
2

=

∣

∣

∣

∣

∣

1
b− a

∫ b

a
f (t) dt−

n
∑

k=1

(−1)k+1

k!

(

b− a
2

)k [

f (k−1); a, b
]

− (−1)n

(n + 1)!

(

b− a
2

)n+1 [

f (n); a, b
]

×
[

f (n−1); a, b
]

∣

∣

∣

∣

,

where [g; a, b] = g(b)−g(a)
b−a .
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