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1. Introduction.
In [1], Dragomir established the following Ostrowski’s inequality for monotonic

mappings.

Theorem 1. Let f : [a, b] → R be a monotonic nondecreasing mapping on [a, b].
Then for all x ∈ [a, b], we have the following inequality

∣

∣

∣

∣

∣

f(x)− 1
b− a

∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤ 1
b− a

{

[2x− (a + b)]f(x) +
∫ b

a
sgn(t− x)f(t)dt

}

≤ 1
b− a

[(x− a)(f(x)− f(a)) + (b− x)(f(b)− f(x))]

≤
[

1
2

+
|x− ((a + b)/2)|

b− a

]

(f(b)− f(a)). (1.1)

And the constant 1/2 is the best possible one.

In [2], Dragomir, Pečarić and Wang generalized Theorem 1 and proved
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Theorem 2. Let f : [a, b] → R be a monotonic nondecreasing mapping on [a, b]
and t1, t2, t3 ∈ (a, b) be such that t1 ≤ t2 ≤ t3. Then

∣

∣

∣

∣

∣

∫ b

a
f(x)dx− [(t1 − a)f(a) + (t3 − t1)f(t2) + (b− t3)f(b)]

∣

∣

∣

∣

∣

≤(b− t3)f(b) + (2t2 − t1 − t3)f(t2)− (t1 − a)f(a) +
∫ b

a
T (x)f(x)dx

≤(b− t3)(f(b)− f(t3)) + (t3 − t2)(f(t3)− f(t2))

+(t2 − t1)(f(t2)− f(t1)) + (t1 − a)(f(t1)− f(a))

≤max{t1 − a, t2 − t1, t3 − t2, b− t3}(f(b)− f(a)), (1.2)

where T (x) = sgn(t1 − x), for x ∈ [a, t2], and T (x) = sgn(t3 − x), for x ∈ [t2, b].
In the present paper, we firstly improve the above results, and then provide its

application for some special means.

2. Main Result.
We shall start with the following result.

Theorem 3. Let f : [a, b] → R be a monotonic nondecreasing mapping on [a, b]
and let t1, t2, t3 ∈ [a, b] be such that t1 ≤ t2 ≤ t3. Then

∣

∣

∣

∣

∣

∫ b

a
f(x)dx− [(t1 − a)f(a) + (t3 − t1)f(t2) + (b− t3)f(b)]

∣

∣

∣

∣

∣

≤max{(b− t3)(f(b)− f(t3)) + (t2 − t1)(f(t2)− f(t1)),

(t3 − t2)(f(t3)− f(t2)) + (t1 − a)(f(t1)− f(a))} (2.1)

≤max{t1 − a, t2 − t1, t3 − t2, b− t3}(f(b)− f(a)). (2.2)

Proof. Since f(x) is a monotonic nondecreasing mapping on [a, b], we have
∣

∣

∣

∣

∣

∫ b

a
f(x)dx− [(t1 − a)f(a) + (t3 − t1)f(t2) + (b− t3)f(b)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t1

a
(f(x)− f(a))dx +

∫ t3

t1
(f(x)− f(t2))dx +

∫ b

t3
(f(x)− f(b))dx

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

[∫ t1

a
(f(x)− f(a))dx +

∫ t3

t2
(f(x)− f(t2))dx

]

−

[

∫ t2

t1
(f(t2)− f(x))dx +

∫ b

t3
(f(b)− f(x))dx

]∣

∣

∣

∣

∣

≤max{(b− t3)(f(b)− f(t3)) + (t2 − t1)(f(t2)− f(t1)),

(t3 − t2)(f(t3)− f(t2)) + (t1 − a)(f(t1)− f(a))}
≤max{t1 − a, t2 − t1, t3 − t2, b− t3}(f(b)− f(a)).

Thus (2.1) and (2.2) are proved.
For t1 = t2 = t3 = x, Theorem 3 becomes the following corollary.
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Corollary 1. Let f be defined as in Theorem 3. Then
∣

∣

∣

∣

∣

∫ b

a
f(x)dx− [(x− a)f(a) + (b− x)f(b)]

∣

∣

∣

∣

∣

≤max{(b− x)(f(b)− f(x)), (x− a)(f(x)− f(a))}
≤max{x− a, b− x}max{(f(x)− f(a)), (f(b)− f(x))}

≤
[

1
2
(b− a) +

∣

∣

∣

∣

x− a + b
2

∣

∣

∣

∣

]

(f(b)− f(a)).

For x = (a + b)/2, we get trapezoid inequality.

Corollary 2. Let f be defined as in Theorem 3. Then
∣

∣

∣

∣

∣

∫ b

a
f(x)dx− f(a) + f(b)

2
(b− a)

∣

∣

∣

∣

∣

≤b− a
2

max
{(

f
(

a + b
2

)

− f(a)
)

,
(

f(b)− f
(

a + b
2

))}

(2.3)

≤1
2
(b− a)(f(b)− f(a)).

For t1 = a, t2 = x, t3 = b, we get Theorem 1.

3. Application for Special Means.
In this section, we shall give application of Corollary 2. Let us recall the fol-

lowing means.

1. The arithmetic mean:

A = A(a, b) :=
a + b

2
, a, b ≥ 0.

2. The geometric mean:

G = G(a, b) :=
√

ab, a, b ≥ 0.

3. The harmonic mean:

H = H(a, b) :=
2

1/a + 1/b
, a, b ≥ 0.

4. The logarthmic mean:

L = L(a, b) :=
b− a

ln b− ln a
, a, b ≥ 0, a 6= b; If a = b, then L(a, b) = a.

5. The identric mean:

I = I(a, b) :=
1
e

(

bb

aa

)1/(b−a)

, a, b ≥ 0, a 6= b; If a = b, then I(a, b) = a.
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6. The p-logarthmic mean:

Lp = Lp(a, b) :=
[

bp+1 − ap+1

(p + 1)(b− a)

]1/p

, a 6= b; If a = b, then Lp(a, b) = a,

where p 6= −1, 0 and a, b > 0.

The following simple relationships are known in the literature

H ≤ G ≤ L ≤ I ≤ A.

We are going to use inequality (2.3) in the following equivalent version:
∣

∣

∣

∣

∣

1
b− a

∫ b

a
f(t)dt− f(a) + f(b)

2

∣

∣

∣

∣

∣

≤1
2

max
{(

f
(

a + b
2

)

− f(a)
)

,
(

f(b)− f
(

a + b
2

)
)}

(3.1)

≤1
2
(f(b)− f(a)),

where f : [a, b] → R is monotonic nondecreasing on [a, b].

5.1. Mapping f(x) = xp

Consider the mapping f : [a, b] ⊂ (0,∞) → R, f(x) = xp, p > 0. Then

1
b− a

∫ b

a
f(t)dt = Lp

p(a, b),

f(a) + f(b)
2

= A(ap, bp),

f(b)− f(a) = p(b− a)Lp−1
p−1.

Then by (3.1), we get

∣

∣Lp
p(a, b)−A(ap, bp)

∣

∣ ≤1
2

max
{(

a + b
2

)p

− ap, bp −
(

a + b
2

)p}

=
1
2

[

bp −
(

a + b
2

)p]

=
1
2

(bp − ap)− 1
2

((

a + b
2

)p

− ap
)

≤1
2
p(b− a)Lp−1

p−1 −
p(b− a)ap−1

4
. (3.2)

Remark 1. The following result was proved in [2].

|Lp
p(a, b)−A(ap, bp)| ≤ 1

2
p(b− a)Lp−1

p−1.
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3.2. Mapping f(x) = −1/x
Consider the mapping f : [a, b] ⊂ (0,∞) → R, f(x) = −1/x. Then

1
b− a

∫ b

a
f(t)dt = −L−1(a, b),

f(a) + f(b)
2

= − A(a, b)
G2(a, b)

,

f(b)− f(a) =
b− a

G2(a, b)
.

Then by (3.1), we get
∣

∣

∣

∣

A(a, b)
G2(a, b)

− L−1(a, b)
∣

∣

∣

∣

≤1
2

max
{

1
a
− 2

a + b
,

2
a + b

− 1
b

}

=
1
2

b− a
a(a + b)

=
1
2

b− a
ab

− 1
2

b− a
b(a + b)

≤1
2

b− a
G2(a, b)

− 1
2

b− a
b(a + b)

.

Thus we get

0 ≤ AL−G2 ≤ 1
2

b
a + b

(b− a)L. (3.3)

Remark 2. The following result was proved in [2].

0 ≤ AG−G2 ≤ 1
2
(b− a)L.

3.3. Mapping f(x) = ln x
Consider the mapping f : [a, b] ⊂ (0,∞) → R, f(x) = ln x. Then

1
b− a

∫ b

a
f(t)dt = ln I(a, b),

f(a) + f(b)
2

= ln G(a, b),

f(b)− f(a) =
b− a

L(a, b)
.

Then by (3.1), we get

| ln I(a, b)− ln G(a, b)| ≤1
2

max
{

ln
a + b

2
− ln a, ln b− ln

a + b
2

}

=
1
2

ln
a + b
2a

=
1
2

b− a
L(a, b)

− 1
2

ln
2b

a + b
.

Thus we get

1 ≤ I
G
≤

√

a + b
2b

e
1
2

b−a
L(a,b) . (3.4)

Remark 3. The following result was proved in [2].

1 ≤ I
G
≤ e

1
2

b−a
L(a,b) .
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