VICTORIA UNIVERSITY

MELBOURNE AUSTRALIA

Grss Inequality in Terms of A\ - Seminorms and
Applications

This is the Published version of the following publication

Cerone, Pietro, Dragomir, Sever S and Roumeliotis, John (2000) Gruss
Inequality in Terms of A - Seminorms and Applications. RGMIA research report
collection, 3 (3).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17327/



GRUSS INEQUALITY IN TERMS OF A—-SEMINORMS AND
APPLICATIONS

P. CERONE, S.S. DRAGOMIR, AND J. ROUMELIOTIS

ABSTRACT. Some upper bounds for the modulus of the Chebychev functional
in terms of A—seminorms are pointed out. Applications for midpoint and
trapezoid inequalities are also given.

1. INTRODUCTION

For two measurable functions f,g : [a,b] — R, define the functional, which is
known in the literature as Chebychev’s functional

(1.1) T(f,g;a,b): /f dx— b /f da:/ g (z) dz,

provided that the involved integrals exist.
The following inequality is well known in the literature as the Griiss inequality
[9]

(1.2) T (f,9:0,0)] < (M —m)(N —n),

provided that m < f < M and n < g S N a.e. on [a,b], where m, M,n, N are real
numbers. The constant } in (1.2) is the best possible.

Another inequality of this type is due to Chebychev (see for example [1, p.
207]). Namely, if f, g are absolutely continuous on [a,b] and f’,¢’ € Lo [a,b] and

[/l := €ss sup [f"(¢)[, then

t€la,b]

(1.3) T (f,g:0,b)] < E 1 lloo 19 o (0 — @)

and the constant % is the best possible.

Finally, let us recall a result by Lupas (see for example [1, p. 210]), which states
that:

1
(1.4) 7 (f.g:0,0)] < = [1/'lla 1912 (b= a)®,

provided f, g are absolutely continuous and f’,¢’ € Ls [a,b]. The constant 2 is
the best possible here.

For other Griiss type inequalities, see the books [1] and [2], and the papers
[3]-[10], where further references are given.

In the present paper we point out some bounds for the Chebychev functional in
terms of the A—seminorms ||~H]f7 p € [1,00]; as will be defined in the sequel.
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2. A—SEMINORMS AND RELATED INEQUALITIES

For f € L, [a,b] (p € [1,00)) we can define the functional (see also [11])

b b %
(2.1) I£1l5 = ( / / If(t)f(S)Ipdtd8>

and for f € L [a,b], we can define

(2:2) £ =ess sup |f(t)— f(s)].

(t,s)€[a,b]?

If we consider fa :[a,b]®> — R,
(2.3) fa(ts)=f(t)—=f(s),

then, obviously

A

(2.4) 11, = 1fall,, p e (1,09,
where |-, are the usual Lebesque p-norms on |a, b)°.

Using the properties of the Lebesque p—norms, we may deduce the following
semi-norm properties for H||§ :

(7) ||f||§ >0 for f € L,a,b] and ||f||§ = 0 implies that f = ¢ (¢ is a constant)

a.e. in [a,b];

. A A A

@) \If +gll, < WfI, + lgll, if £,9 € Ly [a, bl ;

A A

(#ii) [lecf [l = el [[£Il, -

We note that if p = 2, then,

(/ab /ab (F (1) = £ (s))* dtds>

b 2
NG <ba)||f||§—</ f(t)dt>

Using the inequalities (1.2), (1.3) and (1.4), we obtain the following estimate for

A
-5

1
2

[Fil5

Nl

[S

QQ(M—m) if m<f< M,

A .
12 <9 3% 01 1 (b—a) if [ € Lo a,b];
V2

TNy (0—a) i f € Lya,b].

If f : [a,b] — R is absolutely continuous on [a, b], then we can point out the following
bounds for ||f\|§ in terms of || '] ..

Theorem 1. Assume that f : [a,b] — R is absolutely continuous on [a,b].



GRUSS INEQUALITY 3

(1) If p € [1,00), then we have the inequality
2

21 (b a) P || F/H Zf f’l c [ [ l]
1 [e'e] oo a’? )
[(p 1)([) 2)]

(262)% (b—a)B 5

A i . i
2.5 < — |l o J' € Lala,b],
@5) IR s RISy a0
a>1, t+5=1
2 .

(b—a)" [l if f'€ Lila,0],
(i4) If p = oo, then we have the inequality

b=a)lfllc if f'€Losla,bl;
26) 2 <q G- fla ¥ f€Lalad],a>1, L+l=1;

11y -

Proof. As f : [a,b] — R is absolutely continuous, then f (t) — f(s) = fst 1 (w)du
for all ¢, s € [a,b], and then

2.7) [f () = f(s)]

AV%wmt

and so for p € [1,00), we may write

If ()= f ()
t=s"IIflI% if S € Loofa, ]

[t =5/l if f' € Loo[a,b];

< Jt=slP | f), i S € Lalab], a>1,

1 _ 1.
+1=1

114 it f" € Lila,b]

< L Je=sF YR it f € Lala,b], a>1,

Q=

”f/HIl) if f/eLl [a7b]’

and then from (2.3), (2.4)

1 e (S22 1t = slP dds)” it ' € Locla,b];

S =

, bb, % e
(28) Hf”? < ||f ||a (fa fa |t $|[j dtdS) if f S Lal[a,b]l,
a>1, o + 3= 1;

11 (S S deds)” it fe Ly fab].
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Further, since

(2.9) (/b/b |t—s|pdtds>
[/b (/ (t—s)f ds—i—/tb(s—t)pds)dt};
([ [reere)

25 b—a)lJr
[(p+1) (p+2))7

i

giving

-

(/b/bhﬁ—sgdtds)p:@ﬂ) (b—a)”
a Ja (p+B) (p+20)]

(/j/jdtds) =(b—-a)r,

we obtain, from (2.8), the stated result (2.5).
Using (2.7) we have (for p = 0co) that

[f'lcess sup |t — s
(t,5)€[a,b]? (b—a)[lf'l

S |
Q=

Bl 8

and

=
3

b—a)? 1],
171l

A 1
(2.10) Illse = 1Flloess sup [t —s|7

(t,s)€[a,b]

11,
and the inequality (2.6) is also proved. i

3. SOME BOUNDS IN TERMS OF A—SEMINORMS
The following result of Griiss type holds.

Theorem 2. Let f,g : [a,b] — R be measurable on [a,b]. Then we have the in-
equality:

(3.1) T (f,g:0,b)] < 2(51) A2 g2,

wherep =1, g =00, orp > 1, %—i—% =1o0rq=1 andp = oo, provided all integrals
involved exist. Further, T (f,g;a,b) is the Chebychev functional defined by (1.1).

Proof. Using Korkine’s identity, we have

T(fgad) = ot // ) (9 () ~ g (v)) dady.
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Now, if f € Ly [a,b], then

IT(f7gva b)|

= 2(b—a)? //'f Yl lg () — g (y)| dady
1 b b
—————5 ess  su ) — 2) — dnd
) (b_a)2 (o)l ) f(y))/a /a l9(x) =g (y)] dwdy

= (b_ YO 17115 gl

and the inequality is proved for p = oo, ¢ = 1.

A similar argument applies for p =1, ¢ = oc.

Ifp>1, %—i—% = 1, then applying Holder’s integral inequality for double integrals,
we deduce that

|T(f,g,a b)|

< //\f )l (2) — g (v)| dedy l
(//|f |pda:dy> (//|g qudy>q

m ||pr Hqu

IN

and the theorem is proved. i

Remark 1. Taking into account by Theorem 2 that for p = 1, we have three bounds
for ||f||1A and for p € (1,00) we have another three bounds for ||f||pA and for p = oo,
we can state some other three bounds by ||f||OAO, then, by the inequality (3.1), we are

able to point out eighty-one bounds for the modulus of the functional T (f,g;a,b),
i terms of the derivatives f' and g'.

In some practical applications, the A—seminorm of a mapping, say f, can be
easily computed. In that case, the number of bounds is much less.
The following result for the trapezoid formula holds.

Theorem 3. Assume that the mapping f : [a,b] — R is absolutely continuous on
[a,b]. Then we have the inequality

(3.2) f();Lf _a/f £ dt

1

20 A i e (1 o0) and f € Lylabl; b+

1 =1
[(p+1)(p+2)]? p

»Q\»—A

IA
oy
i

(for p =1 we choose ¢ = x);

A
i 1712
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Proof. We know the following identity (see [12]) holds, where many other related
results are given,

(3.3) f();f _a/f b_a/b<t—a;b>f’(t)dt,

which can be easily proved by applying the integration by parts formula.
We observe that

a+b 1 b a+b\
() [ () o

If we define h(t) :=1t — “—"’b, and

p _ (b— a)p+2
(3.4) D, (a,b) / / |z — y|” dedy = 2(p+1)(p+2)’

then we observe that for p > 1, from (2.9) and (2.10),
2v (- a)H%

h p% ab 1
Il = (p+1)(p+2)]»

and

Hh||f‘C =ess sup |z—y|l=b—a
(z.y)€[a,b]?

for which, using (3.1), we conclude the desired inequality (3.2). B

Corollary 1. With the assumptions of Theorem 8 and if f' € Lo[a,b], then we
have the inequality

b
55) ‘f(a);rf(b)_bia/ Iy

W=

1 , 2
< 55 0= = 1£0) - £ (@]

The proof follows by (3.2) for p = ¢ = 2.
For a different proof, see [14].

Remark 2. If we take

then we would obtain

[ e (e =)

() (42

where the bound B is as defined in (3.2) and is independent of z. If z = “7“’, then
the perturbation resulting from the application of the Griss identity vanishes and
the results of Theorem 8 are recaptured.

The following result for the midpoint formula holds.
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Theorem 4. Assume that the mapping f : [a,b] — R is absolutely continuous on
[a,b]. Then we have the inequality:

a+b 1 b
. - — t) dt
N e g 4G
Mufu if pello0) and f' € Lyla,b];
[(p+1)(p+2)] P
< B:= %—I—%:l, (for p =1 we choose ¢ = x);

A
s 17112
Proof. A simple integration by parts demonstrates that the following identity holds:

3.7) f<a+b>

where

b

k(t) £ (t) dt,

a

t—a if te[a, 4]
k(t) =
t—b if te (% p],
which can easily be proved using the integration by parts formula.
We observe that

1

—a

b
T (k, f'sa,b) = / k(1) f (1) dt,

as a simple computation shows that
1 / ’ k(t)dt=0
b—a/, -

|2 =ess  sup  |k(z)—k(y)| =b—a.

We observe that

(z,y)€la,b]?
Also, we have:

1

A P

I (/ / k(& |pdxdy)
b gt b »
- V (/ |k<:c>y+a|pdy+/+b|k<:c>y+b|f’dy>dz]

a a aT

a+b

I8

atd b afb
(/ |$—Zl|pdy>da:+/ </
a atd a
2
a+b

= b b b v
+/ (/ x—a—y+b|pdy>dx+/ (/ x—y|pdy>dx]

:Il+12+13+14.

|x—b—y—|—a|pdy> dx
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< +b
(17 rovefenfees)

We have

a+b

11:/2

and so, from (3.4),

2(59"  p—a  D,(ab)

11: (2 _ —_
(p+D(P+2) 2H(p+1)(p+2) 207

Further,

b
12:/
atb

\J;— y—|—b—a)|pdy> dx

/b Mpdu)dx/; (/b

2

’ (u—xz)? du) dx

p+1 btz

d
p—|—1 v

a p+l p+1
+5t—a) " —(b—a)f ]dx

p+1

 (b-a)t? (b—a)’*? B 1
- (p+1)(p+2)_2P+1(p+1)(p+2)_(1_219+1)D”(a’b)'

Now,

afb b
I3:/ </+I |x—(y—|—a—b)|pdy>dx

2

and following a similar argument to the calculation of I gives

1
Ig: (1_21)H) Dp(a,b).

An alternate approach is that a substitution of Y = y — b_?a and X =z + 17_7“ in
I3 shows that I3 = I.
Now, from (3.4),

b b
b
I, = (/ z—ypdy> dx =D, (H,b>
a+b a+b 2

Consequently,

2(b—a)P™

I:[1+12+13+I4:2Dp(a,b):m
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and so

1 1+2
A 2p (b—a) P
&N, =

[(p+1) (p+2)]"
Using Theorem 2, we obtain the desired inequality (2.6). I

Corollary 2. With the assumptions of Theorem 4 and if f' € Lo la,b], we have
the inequality:

(3.5) ’f(jb) —b_la/:f(t)dt

1 2 2
< 5 0=l -1£0) - f (@]

The proof follows by Theorem 4 applied for p = ¢ = 2.
For a different proof of this inequality see [14].

1
2

Remark 3. If we take
t—a, te€la,z]
(3.9) K((t)=

t—0b, te(z}]

then the following identity attributed to Montgomery (see [13, p. 565]) may be easily
shown to hold

b b
(3.10) f(z)—ﬁ/a Ft)dt = bia/a K () ' (¢) dt.
Now, from (1.1), (3.9) and (3.10)
b
(3.11) -T(K, f',a,b) = ﬁ/ f@ydt—f(z)+ (z

since

_a+b> (f () — f(a))
2 b—a

. e+ Lo fB) = fla)
b—a/aK(t)dt_z_T and b_a/af(t)dt—bi.

We note that from (3.9)

|K||% =ess sup |K(z)—K(y)|=b—a
(%,y)€Ela,b]?

and forp>1
A
(3.12) K],

b b v
- (/ / |K<x>—K<y>|pdydx>
z rz b rz
- {//|x—y|pdydx+//|33—b—(y—a)|pdydx
z b b b 5
+//xa(yb)|pdydx+//|:ry|pdydx}

:(J1+J2+J3+J4) .

=
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Now, from (3.3)

p+2
5= Dys) = Ity
and
p+2
Ji =D, (2,b) = (§(+b1)8+2)'
Further,
bz b pbtz—a
Jo = /Z/a \:c—b—(y—a)|pdydx=/z/b |z — ul? dudz

b b+z—a 1 b 1 1
= /Z/b (u—x)f’duda::lm/z (b+z—a—z)P" — (-2 de
1

- - _ap+2_z_ap+2_ _Zp+2
= GITGTY (b= af™ = (2= a)" = (b - 2)
= D,(a,b) — Dy (a,z) — D, (z,b).

Using symmetry arguments or direct calculation shows that J3 = Jo. Hence, from
(3.12)

and

2(b—a)P*?

1K, = 2D, (a,b) = G+ T2

so, from (8.11)

Z)lcl/(lbf(t)dt—f(z)—F(z—a;b) (f(bz_i(a)) < B,

gwing the same bounds as obtained previously for the trapezoidal and midpoint rules.

If z

(1

(10]

= %H), then the midpoint rule is recaptured.
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