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NEW STEFFENSEN PAIRS

FENG QI AND JUN-XIANG CHENG

Abstract. In this article, using mathematical induction and analytic techniques, some new

Steffensen pairs are established.

1. Introduction

Let f and g be integrable functions on [a, b] such that f is decreasing and 0 6 g(x) 6 1 for

x ∈ [a, b]. Then
∫ b

b−λ
f(x)dx 6

∫ b

a
f(x)g(x)dx 6

∫ a+λ

a
f(x)dx, (1)

where λ =
∫ b

a g(x)dx.

The inequality (1) is called Steffensen’s inequality. For more information, please see [3, 4, 14].

In [1], its discrete analogue of inequality (1) was proved: Let {xi}n
i=1 be a decreasing finite

sequence of nonnegative real numbers, {yi}n
i=1 be a finite sequence of real numbers such that

0 6 yi 6 1 for 1 6 i 6 n. Let k1, k2 ∈ {1, 2, . . . , n} be such that k2 6
n
∑

i=1
yi 6 k1. Then

n
∑

i=n−k2+1

xi 6
n

∑

i=1

xiyi 6
k1
∑

i=1

xi. (2)

As a direct consequence of inequality (2), we have: Let {xi}n
i=1 be nonnegative real numbers such

that
n
∑

i=1
xi 6 A and

n
∑

i=1
x2

i > B2, where A and B are positive real numbers. Let k ∈ {1, 2, . . . , n}

be such that k > A
B . Then there are k numbers among x1, x2, . . . , xn whose sum is bigger than or

equals to B.

The so-called Steffensen pair was defined in [2] as follows:
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Definition 1. Let ϕ : [c,∞) → [0,∞) and τ : (0,∞) → (0,∞) be two strictly increasing functions,

c > 0, let {xi}n
i=1 be a finite sequence of real numbers such that xi > c for 1 6 i 6 n, A and B

be positive real numbers, and
n
∑

i=1
xi 6 A,

n
∑

i=1
ϕ(xi) > ϕ(B). If, for any k ∈ {1, 2, . . . , n} such that

k > τ(A
B ), there are k numbers among x1, . . . , xn whose sum is not less than B, then we call (ϕ, τ)

a Steffensen pair on [c,∞).

In [1] and [2], the following Steffensen pairs were found respectively:

(xα, x1/(α−1)), α > 2, x ∈ [0,∞);

(x exp(xα − 1), (1 + ln x)1/α), α > 1, x ∈ [1,∞).

Let a and b be real numbers satisfying b > a > 1 and
√

ab > e. Define

ϕ(x) =











x1+ln b − x1+ln a

ln x
, x > 1;

ln b− ln a, x = 1,

τ(x) = x1/ ln
√

ab.

Then it was verified in [2] that (ϕ, τ) is a Steffensen pair on [1,∞).

In this article, we will establish some new Steffensen pairs, that is

Theorem 1. If a and b are real numbers satisfying b > a > 1 or b > a−1 > 1, and
√

ab > e, then
(

x
∫ b

a
tln x−1dt, x1/ ln

√
ab

)

(3)

is a Steffensen pair on [1, +∞).

If a and b are real numbers satisfying b > a > 1 and
√

ab > e, then
(

x
∫ b

a
(ln t)ntln x−1dt, x

n+2
n+1 ·

(ln b)n+1−(ln a)n+1

(ln b)n+2−(ln a)n+2

)

(4)

are Steffensen pairs on [1, +∞) for any positive integer n.

Remark 1. This theorem generalizes the Proposition 2 in [2].

2. Lemmas

Lemma 1 ([2]). Let ψ : [c,∞) → [0,∞) be increasing and convex, c > 0. Assume that ψ satisfies

ψ(xy) > ψ(x)g(y) for all x > c and y > 1, where g : [1,∞) → [0,∞) is strictly increasing. Set

ϕ(x) = xψ(x), τ(x) = g−1(x), where g−1 is the inverse function of g. Then (ϕ, τ) is a Steffensen

pair on [c,∞).
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Let b > a > 1 or b > a−1 > 1, and
√

ab > e. Define

h(x) =











bx − ax

x
, x 6= 0;

ln b− ln a, x = 0.
(5)

It can be represented in integral form in [5]—[13] as follows

h(x) =
∫ b

a
tx−1dt, x ∈ R. (6)

It had been verified in [10] that the function h(x) is absolutely and regularly monotonic on

(−∞, +∞) for b > a > 1, or on (0,+∞) for b > a−1 > 1, completely and regularly monotonic on

(−∞,+∞) for 0 < a < b < 1, or on (−∞, 0) for 1 < b < a−1. Furthermore, h(x) is absolutely

convex on (−∞,+∞).

A function f(t) is said to be absolutely monotonic on (c, d) if it has derivatives of all orders

and f (k)(t) > 0 for t ∈ (c, d) and k ∈ N. For information of absolutely (completely, regularly,

respectively) monotonic (convex, respectively) function, please refer to [4, 6, 10].

Lemma 2. For x > 0 and n > 0, we have

h(n+1)(x) > h(n)(x). (7)

Proof. It is clear that

h(n)(x) =
∫ b

a
tx−1(ln t)ndt. (8)

By the Tchebysheff’s integral inequality or by Cauchy-Schwarz-Buniakowski inequality as in

[5]—[13], we have

[h(n+1)(x)]2 6 h(n)(x)h(n+2)(x). (9)

Since the extended mean values E(r, s; u, v) defined in [5, 9, 12] by

E(r, s;u, v) =
[

r
s
· us − vs

ur − vr

]1/(s−r)

, rs(r − s)(u− v) 6= 0; (10)

E(r, 0; u, v) =
[

ur − vr

ln u− ln v
· 1
r

]1/r

, r(v − u) 6= 0; (11)

E(r, r; u, v) = e−1/r
(

uur

vvr

)1/(ur−vr)

, r(u− v) 6= 0; (12)

E(0, 0;u, v) =
√

uv, u 6= v;

E(r, s;u, u) = u, u = v;
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are increasing with r and s for fixed positive numbers u and v, then, for every y > 0, the function

F (x) = h(x+y)
h(x) is increasing with x. Therefore

F ′(x) =
h′(x + y)h(x)− h(x + y)h′(x)

[h(x)]2
> 0,

hence

h′(x + y)h(x)− h(x + y)h′(x) > 0 (13)

holds for all x and y > 0.

Taking x = 0 in (13), for all y > 0, we obtain

h′(y)h(0)− h(y)h′(0) > 0. (14)

Since h′(0) = h(0) ln
√

ab and
√

ab > e, we have h′(0) > h(0), and h′(y) > h(y) for y > 0.

Note that inequality (13) can also be obtained from Lemma 4 in [12]: The functions h(2(k+i)+1)(t)
h(2k)(t)

are increasing with respect to t for i and k being nonnegative integers.

By mathematical induction, assume that h(n+1)(x) > h(n)(x) for n > 1 and x > 0. Then, from

inequality (9), we obtain

h(n)(x)h(n+1)(x) 6 [h(n+1)(x)]2 6 h(n)(x)h(n+2)(x), (15)

therefore

h(n+1)(x) 6 h(n+2)(x).

The proof is completed. �

3. Proof of Theorem 1

Now we give a proof of Theorem 1.

Set ψ(x) = h(n)(lnx) for x > 1 and n > 0. Direct computation yields that ψ′(x) = h(n+1)(ln x)
x >

0 and ψ′′(x) = h(n+2)(ln x)−h(n+1)(ln x)
x2 > 0. Hence ψ(x) is increasing and convex.

Let u, v, r, s ∈ R, let p 6≡ 0 be a nonnegative and integrable function and f a positive and

integrable function on the interval between x and y. Then the generalized weighted mean values

Mp,f (r, s; u, v) of the function f with weight p and two parameters r and s are defined in [6] by

Mp,f (r, s; u, v) =

(
∫ v

u p(t)fs(t)dt
∫ v

u p(t)fr(t)dt

)1/(s−r)

, (r − s)(u− v) 6= 0; (16)

Mp,f (r, r;u, v) = exp

(
∫ v

u p(t)fr(t) ln f(t)dt
∫ v

u p(t)fr(t)dt

)

, u− v 6= 0; (17)

M(r, s;u, u) = f(u).
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¿From the Cauchy-Schwarz-Buniakowski inequality and standard argument, it was obtained in

[13] that: The generalized weighted mean values Mp,f (r, s; u, v) are increasing with both r and

s for any given continuous nonnegative weight p, continuous positive function f , and fixed real

numbers u and v. Then, if b > a > 1, for x, y > 0 and n > 1, we have

h(n)(x + y)
h(n)(x)

=

∫ b
a tx+y−1(ln t)ndt
∫ b

a tx−1(ln t)ndt
> exp

(

y · n + 1
n + 2

· (ln b)n+2 − (ln a)n+2

(ln b)n+1 − (ln a)n+1

)

. (18)

Therefore, for x, y > 1,

ψ(xy)
ψ(x)

=
h(n)(ln(xy))
h(n)(ln x)

=
h(n)(ln x + ln y)

h(n)(ln x)
> y

n+1
n+2 ·

(ln b)n+2−(ln a)n+2

(ln b)n+1−(ln a)n+1 . (19)

Let g(x) = x
n+1
n+2 ·

(ln b)n+2−(ln a)n+2

(ln b)n+1−(ln a)n+1 for x > 1, then g−1(x) = x
n+2
n+1 ·

(ln b)n+1−(ln a)n+1

(ln b)n+2−(ln a)n+2 , x ∈ [1, +∞).

By Lemma 1, (ϕ, τ), where ϕ(x) = xψ(x) = xh(n)(ln x) = x
∫ b

a (ln t)ntln x−1dt and τ(x) =

x
n+2
n+1 ·

(ln b)n+1−(ln a)n+1

(ln b)n+2−(ln a)n+2 for x > 1 and n > 0, are Steffensen pairs on [1, +∞) for any given n > 0.

If a and b are real numbers satisfying b > a > 1 or b > a−1 > 1, and
√

ab > e, then, for x, y > 0,

we have
h(x + y)

h(x)
>

(√
ab

)y
. (20)

Therefore, for x, y > 1,

ψ(xy)
ψ(x)

=
h(ln(xy))
h(ln x)

=
h(ln x + ln y)

h(ln x)
> yln

√
ab. (21)

Let g(x) = xln
√

ab for x > 1, then g−1(x) = x1/ln
√

ab, x ∈ [1,+∞). By Lemma 1, (ϕ, τ), where

ϕ(x) = xψ(x) = xh(lnx) = x
∫ b

a tln x−1dt and τ(x) = x1/ln
√

ab for x > 1, is a Steffensen pair on

[1, +∞).

The proof is complete.

Remark 2. If considering the function
∫ y

x p(u)f t(u)du, then more new Steffensen pairs can be

obtained. We will discuss this in a subsequent paper [8].
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[3] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
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