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ON STEFFENSEN PAIRS

FENG QI AND BAI-NI GUO

Abstract. In this article, by mathematical induction and properties of the generalized weighted

mean values, some general Steffensen pairs are established.

1. Introduction

Let f and g be integrable functions on [a, b] such that f is decreasing and 0 6 g(x) 6 1 for

x ∈ [a, b]. Then
∫ b

b−λ
f(x)dx 6

∫ b

a
f(x)g(x)dx 6

∫ a+λ

a
f(x)dx, (1)

where λ =
∫ b

a g(x)dx.

The inequality (1) is called Steffensen’s inequality in [3, 8].

In [1], its discrete analogue of the inequality (1) was proved: Let {xi}n
i=1 be a decreasing finite

sequence of nonnegative real numbers, {yi}n
i=1 be a finite sequence of real numbers such that

0 6 yi 6 1 for 1 6 i 6 n. Let k1, k2 ∈ {1, 2, . . . , n} be such that k2 6
n
∑

i=1
yi 6 k1. Then

n
∑

i=n−k2+1

xi 6
n

∑

i=1

xiyi 6
k1
∑

i=1

xi. (2)

As a direct consequence of inequality (2), we obtain: Let {xi}n
i=1 be a finite sequence of non-

negative real numbers such that
n
∑

i=1
xi 6 A and

n
∑

i=1
x2

i > B2, where A and B are positive real

numbers. Let k ∈ {1, 2, . . . , n} be such that k > A
B . Then there are k numbers among {xi}n

i=1

whose sum is not less than B.

From above results, the so-called Steffensen pair was defined in [2] by Dr. H. Gauchman as

follows:
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Definition 1. Let ϕ : [c,∞) → [0,∞) and τ : (0,∞) → (0,∞) be two strictly increasing functions,

c > 0, let {xi}n
i=1 be a finite sequence of real numbers such that xi > c for all i, A and B be positive

real numbers,
n
∑

i=1
xi 6 A, and

n
∑

i=1
ϕ(xi) > ϕ(B). If, for any k ∈ {i}n

i=1 satisfying k > τ(A
B ), there

are k numbers among {xi}n
i=1 whose sum is not less than B, then we call (ϕ, τ) a Steffensen pair

on [c,∞).

In [1] and [2], the following Steffensen pairs were found:

(xα, x1/(α−1)), α > 2, x ∈ [0,∞);

(x exp(xα − 1), (1 + ln x)1/α), α > 1, x ∈ [1,∞).

It was verified in [5] that: Let a and b be real numbers satisfying b > a > 1 or b > a−1 > 1, and
√

ab > e, then
(

x
∫ b

a
tln x−1dt, x1/ ln

√
ab

)

(3)

is a Steffensen pair on [1,+∞). If a and b are real numbers satisfying b > a > 1 and
√

ab > e, then
(

x
∫ b

a
(ln t)ntln x−1dt, x

n+2
n+1 ·

(ln b)n+1−(ln a)n+1

(ln b)n+2−(ln a)n+2

)

(4)

are Steffensen pairs on [1, +∞) for any positive integer n.

In this article, we will establish more general Steffensen pairs, that is

Theorem 1. Let a, b ∈ R, let p 6≡ 0 be a nonnegative and integrable function and f a positive and

integrable function on the interval [a, b].

(i) If inequality
∫ b

a
p(u)du 6

∫ b

a
p(u) ln f(u)du (5)

holds, then
(

x
∫ b

a
p(u)[f(u)]ln xdu, x

R b
a p(u)duR b

a p(u) ln f(u)du

)

(6)

is a Steffensen pair on [1, +∞).

(ii) If f(u) > 1 and inequality (5) holds, then
(

x
∫ b

a
p(u)[f(u)]ln x[ln f(u)]ndu, x

R b
a p(u)[ln f(u)]nduR b

a p(u)[ln f(u)]n+1du

)

(7)

are Steffensen pairs on [1, +∞) for any positive integer n.

Remark 1. This theorem generalizes the Proposition 2 in [2] and the related results in [5].
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2. Lemmas

Lemma 1 ([2]). Let ψ : [c,∞) → [0,∞) be increasing and convex, c > 0. Assume that ψ satisfies

ψ(xy) > ψ(x)g(y) for all x > c and y > 1, where g : [1,∞) → [0,∞) is strictly increasing. Set

ϕ(x) = xψ(x), τ(x) = g−1(x), where g−1 is the inverse function of g. Then (ϕ, τ) is a Steffensen

pair on [c,∞).

Define

h(t) =
∫ b

a
p(u)f t(u)du, t ∈ R, (8)

where p(u) is a nonnegative and continuous function, f(u) a positive and continuous function on

the interval [a, b], and a, b ∈ R.

It is clear [4, 7] that, if f(u) > 1 on [a, b], then

h(n)(t) =
∫ b

a
p(u)f t(u)[ln f(u)]ndu > 0, (9)

that is, h(t) is an absolutely monotonic function, see [3, 4].

By the Cauchy-Schwarz-Buniakowski inequality, it is easy to obtain

Lemma 2. For n > 0, if f(u) > 1 on [a, b], then we have

[h(n+1)(x)]2 6 h(n)(x)h(n+2)(x), x ∈ R. (10)

Let a, b, r, s ∈ R, let p 6≡ 0 be a nonnegative and integrable function and f a positive and

integrable function on the interval between a and b. Then the generalized weighted mean values

Mp,f (r, s; a, b) of the function f with weight p and two parameters r and s are defined in [4] by

Mp,f (r, s; a, b) =

(
∫ b

a p(u)fs(u)du
∫ b

a p(u)fr(u)du

)1/(s−r)

=
(

h(s)
h(r)

)1/(s−r)

, (r − s)(a− b) 6= 0; (11)

Mp,f (r, r; a, b) = exp

(
∫ b

a p(u)fr(u) ln f(u)du
∫ b

a p(u)fr(u)du

)

= exp
(

h′(r)
h(r)

)

, a− b 6= 0; (12)

M(r, s; a, a) = f(a).

From the Cauchy-Schwarz-Buniakowski inequality again and standard argument, we have

Lemma 3 ([7]). The generalized weighted mean values Mp,f (r, s; a, b) are increasing with both r

and s for any given continuous nonnegative weight p and continuous positive function f .

Lemma 4. For n > 0 and x > 0, if
∫ b

a
p(u)du 6

∫ b

a
p(u) ln f(u)du, (13)
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then we have

h(n+1)(x) > h(n)(x). (14)

Proof. By Lemma 3, the mean values

(

h(x + y)
h(x)

)1/y

are increasing with respect to x and y, then the function

F (x) =
h(x + y)

h(x)

is increasing with x for fixed y > 0. Therefore

F ′(x) =
h′(x + y)h(x)− h(x + y)h′(x)

[h(x)]2
> 0.

Hence, the inequality

h′(x + y)h(x)− h(x + y)h′(x) > 0 (15)

holds for all x and all y > 0.

Note that the inequality (15) can also be obtained from the Lemma in [6].

Taking x = 0 in inequality (15), we obtain

h′(y)h(0)− h(y)h′(0) > 0 (16)

for all y > 0, and

h(0) =
∫ b

a
p(u)du, (17)

h′(0) =
∫ b

a
p(u) ln f(u)du. (18)

Since inequality (13) means that h′(0) > h(0), thus h′(y) > h(y) for all y > 0.

By mathematical induction, assume that h(n+1)(x) > h(n)(x) for n > 2 and x > 0. Then, from

Lemma 2, we obtain

h(n)(x)h(n+1)(x) 6 [h(n+1)(x)]2 6 h(n)(x)h(n+2)(x), (19)

therefore

h(n+1)(x) 6 h(n+2)(x).

The proof is completed. �
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3. New Steffensen Pairs

Now we give a proof of Theorem 1.

Set ψ(x) = h(n)(lnx) for x > 1 and n > 0. Direct computation yields that ψ′(x) = h(n+1)(ln x)
x >

0 and ψ′′(x) = h(n+2)(ln x)−h(n+1)(ln x)
x2 > 0. Hence ψ(x) is increasing and convex.

Since f(u) > 1, for n > 1, by Lemma 3, we have

h(n)(x + y)
h(n)(x)

=

∫ b
a p(u)[f(u)]x+y[ln f(u)]ndu
∫ b

a p(u)[f(u)]x[ln f(u)]ndu
> exp

(

y ·
∫ b

a p(u)[ln f(u)]n+1du
∫ b

a p(u)[ln f(u)]ndu

)

. (20)

Therefore, for x, y > 1,

ψ(xy)
ψ(x)

=
h(n)(ln(xy))
h(n)(ln x)

=
h(n)(ln x + ln y)

h(n)(ln x)
> y

R b
a p(u)[ln f(u)]n+1duR b

a p(u)[ln f(u)]ndu . (21)

Let g(x) = x

R b
a p(u)[ln f(u)]n+1duR b

a p(u)[ln f(u)]ndu for x > 1, then g−1(x) = x

R b
a p(u)[ln f(u)]nduR b

a p(u)[ln f(u)]n+1du , x ∈ [1,+∞).

By Lemma 1, (ϕ, τ), where ϕ(x) = xψ(x) = xh(n)(lnx) = x
∫ b

a p(u)[f(u)]ln x[ln f(u)]ndu and

τ(x) = x

R b
a p(u)[ln f(u)]nduR b

a p(u)[ln f(u)]n+1du for x > 1 and n > 1, are Steffensen pairs on [1, +∞) for any given n > 1.

For n = 0, by Lemma 3, we have

h(x + y)
h(x)

=

∫ b
a p(u)[f(u)]x+ydu
∫ b

a p(u)[f(u)]xdu
> exp

(

y ·
∫ b

a p(u) ln f(u)du
∫ b

a p(u)du

)

. (22)

Therefore, for x, y > 1,

ψ(xy)
ψ(x)

=
h(ln(xy))
h(lnx)

=
h(lnx + ln y)

h(lnx)
> y

R b
a p(u) ln f(u)duR b

a p(u)du . (23)

Let g(x) = x

R b
a p(u) ln f(u)duR b

a p(u)du for x > 1, then g−1(x) = x

R b
a p(u)duR b

a p(u) ln f(u)du , x ∈ [1,+∞).

By Lemma 1, (ϕ, τ), where ϕ(x) = xψ(x) = xh(lnx) = x
∫ b

a p(u)[f(u)]ln xdu and τ(x) =

x

R b
a p(u)duR b

a p(u) ln f(u)du for x > 1 and n > 1, are Steffensen pairs on [1, +∞) for any given n > 1.

The proof is complete.
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