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Abstract

In this article we study the degree of Lp-approximation (1 ≤ p ≤ +∞) to the
unit, by univariate and multivariate variants of the Jackson-type generalizations
of Picard, Gauss–Weierstrass and Poisson–Cauchy singular integrals.

Part A: Univariate Results

1. Introduction

Let f be a function from R into itself. For r ∈ N, the rth Lp-modulus of smoothness

over R (1 ≤ p ≤ +∞) is defined by

ωr(f ; δ)X = sup
|h|≤δ

‖∆r
hf‖X ,

where

∆r
hf(x) =

r∑
i=0

(−1)i

(
r

i

)
f(x + ih), r ∈ N,
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X = Lp(R) or X = Lp
2π(R),

‖f‖Lp(R) =
(∫ +∞

−∞
|f(x)|p dx

)1/p

,

‖f‖Lp
2π(R) =

(∫ π

−π
|f(x)|p dx

)1/p

.

Next, for ξ > 0 we consider the Jackson-type generalizations of Picard, Poisson–Cauchy

and Gauss–Weierstrass singular integrals introduced in [3] by

Pn,ξ(f ;x) = − 1
2ξ

n+1∑
k=1

(−1)k

(
n + 1

k

)∫ +∞

−∞
f(x + kt)e−|t|/ξ dt,

Qn,ξ(f ;x) =
1

−
(

2
ξ

)
tan−1

(
π
ξ

) n+1∑
k=1

(−1)k

(
n + 1

k

)∫ π

−π

f(x + kt)
t2 + ξ2

dt.

and

Wn,ξ(f ;x) = − 1
2C(ξ)

n+1∑
k=1

(−1)k

(
n + 1

k

)∫ π

−π
f(x + kt)e−t2/ξ2

dt,

C(ξ) =
∫ π

0
e−t2/ξ2

dt,

respectively (the above operators are introduced by generalizing the usual Picard, Poisson–

Cauchy and Gauss–Weierstrass singular integrals, by following the same idea which is used

to define the Jackson’s generalized operator in classical approximation theory).

Here we consider only f such that Pn,ξ(f ;x), Qn,ξ(f ;x), Wn,ξ(f ;x) ∈ R, for all x ∈ R.

2. Lp-approximation, 1 ≤ p < +∞

The first main result of this section is

Theorem 2.1. Here take X = L1(R) (for Pn,ξ), X = L1
2π(R), (for Wn,ξ, Qn,ξ), ξ > 0,

n ∈ N, f ∈ X. Then

‖f − Pn,ξ‖X ≤
[

n+1∑
k=0

(
n + 1

k

)
k!

]
ωn+1(f ; ξ)X , ξ > 0; (1)

‖f −Wn,ξ(f)‖X ≤
[
1/

∫ π

0
e−u2

du

] [∫ +∞

0
(u + 1)n+1e−u2

du

]
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· ωn+1(f ; ξ)L1
2π(R), 0 < ξ ≤ 1; (2)

‖f −Qn,ξ(f)‖X ≤K(n, ξ)ωn+1(f ; ξ)L1
2π(R), ξ > 0, (3)

where K(n, ξ) =
[
1/ tan−1 π

ξ

] ∫ π/ξ
0

(u+1)n+1

u2+1
du.

Remark. For fixed n ∈ N, by (1) and (2) it follows that

‖f − Pn,ξ(f)‖X → 0, ‖f −Wn,ξ(f)‖X → 0 as ξ → 0.

On the other hand, because K(n, ξ) → +∞, as ξ → 0, by (3) we do not obtain, in

general, the convergence ‖f −Qn,ξ(f)‖X → 0 as ξ → 0. However, in some particular cases

the convergence holds, as can be seen by the following.

Corollary 2.1. If f (n+1) ∈ L1
2π(R) and f (n) is absolutely continuous on R, then

‖f −Qn,ξ(f)‖L1
2π(R) ≤ Cnξ, 0 < ξ ≤ 1

where Cn > 0 is a constant independent of f and ξ.

The second main result of the section follows.

Theorem 2.2. Let us consider X = Lp(R) (for Pn,ξ), X = Lp
2π(R) (for Wn,ξ, Qn,ξ),

0 < ξ ≤ 1, n ∈ N, 1 < p < +∞, 1
p + 1

q = 1, f ∈ X. Then

‖f − Pn,ξ(f)‖X ≤ (2/q)1/q‖g‖Lp(R+)ωn+1(f ; ξ)X ,

where g(u) = (u + 1)n+1e−u/2;

‖f −Wn,ξ(f)‖X ≤
(√

π

2q

)1/q 1∫ π
0 e−u2 du

‖h‖Lp(R+)ωn+1(f ; ξ)X ,

where h(u) = (u + 1)n+1e−u2/2;

‖f −Qn,ξ(f)‖X ≤ Kp(n, ξ)ωn+1(f ; ξ)Lp
2π(R),

where Kp(n, ξ) =
[

1
tan−1 π

ξ

∫ π/ξ
0 (u + 1)(n+1)p 1

u2+1
du

]1/p

.
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Remark. Theorem 2.2 shows us that

‖f − Pn,ξ(f)‖X ≤ C1ωn+1(f ; ξ)X , ‖f −Wn,ξ(f)‖X ≤ C2ωn+1(f ; ξ)X

where C1, C2 > 0 are independent of f , n and ξ, while Kp(n, ξ) in the third estimation (in

Theorem 2.2) tends to +∞ with ξ → 0. In this case, as in Corollary 2.1 we can improve

the estimation of ‖f −Qn,ξ(f)‖X .

3. Uniform Approximation by Qn,ξ Operator

We present

Theorem 3.1. For 0 < ξ ≤ 1, n ∈ N, f ∈ X = C2π(R), we get the estimation

‖f −Qn,ξ(f)‖X ≤ K(n, ξ)ωn+1(f ; ξ)X ,

where K(n, ξ) is given by Theorem 2.1.

Corollary 3.2. If f (n+1) ∈ C2π(R) = X, then

‖f −Qn,ξ(f)‖X ≤ Cnξ, 0 < ξ ≤ 1,

where Cn > 0 is independent of f and ξ.

Part B: Multivariate Results

4. Introduction

Let f be a function defined on Rm with values in R.

Let x = (x1, . . . , xm), h = (h1, . . . , hm) ∈ Rm. Let us denote

∆r
hf(x) =

r∑
i=0

(−1)r−i

(
r

i

)
f(x + ih), r ∈ N.
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We define the rth Lp-modulus of smoothness over Rm, 1 ≤ p ≤ +∞, by

ωr(f ; δ)p = sup{‖∆r
hf(·)‖Lp(Rm); |h| ≤ δ},

where |h| = (|h1|, |h2|, . . . , |hm|), δ = (δ1, . . . , δm), |h| ≤ δ means |hi| ≤ δi, i = i,m and

‖f‖Lp(Rm) =
{∫ +∞

−∞
· · ·
∫ +∞

−∞
|f(x1, . . . , xm)|pdx1 . . . dxm

}1/p

,

if 1 ≤ p < +∞,

‖f‖L∞(Rm) = sup{|f(x1, . . . , xm)|;xi ∈ R, i = i,m},

if p = +∞.

When f ∈ Lp
2π(Rm) = {f : Rm → R; f is 2π-periodic in each variable and ‖f‖Lp

2π(Rm) <

+∞}, the rth Lp-modulus of smoothness is defined as above, where

‖f‖Lp
2π(Rm) =

{∫ π

−π
· · ·
∫ π

−π
|f(x1, . . . , xm)|p dx1 . . . dxm

}1/p

,

if 1 ≤ p < +∞,

‖f‖Lp
2π(Rm) = sup{|f(x1, . . . , xm)|;xi ∈ [−π, π], i = 1,m},

if p = +∞.

Next, for ξ = (ξ1, . . . , ξm) > 0 (i.e., ξi > 0, i = 1,m), we consider the multivariate vari-

ants of the Jackson-type generalizations of Picard, Poisson–Cauchy and Gauss–Weierstrass

singular integrals introduced in [2] by

Pn,ξ(f ;x) = − 1
m∏

i=1
(2ξi)

n+1∑
k=1

(−1)k

(
n + 1

k

)∫ +∞

−∞

· · ·
∫ +∞

−∞
f(x1 + kt1, . . . , xm + ktm)

m∏
i=1

e−|ti|/ξi dt1 . . . dtm,

Qn,ξ(f ;x) = − 1
m∏

i=1

[
2
ξi

tan−1
(

π
ξi

)] n+1∑
k=1

(−1)k

(
n + 1

k

)∫ π

−π

· · ·
∫ π

−π

f(x1 + kt1, . . . , xm + ktm)
m∏

i=1
(t2i + ξ2

i )
dt1 . . . dtm,
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and

Wn,ξ(f ;x) = − 1
m∏

i=1
(2C(ξi))

n+1∑
k=1

(−1)k

(
n + 1

k

)∫ π

−π

· · ·
∫ π

−π
f(x1 + kt1, . . . , xm + ktm)

m∏
i=1

e−t2i /ξ2
i dt1 . . . , dtm,

respectively, where C(ξi) =
∫ π
0 e−t2i /ξ2

i dti, i = 1,m, x = (x1, . . . , xm) ∈ Rm.

We denote

Erf(xi) =
2√
π

∫ xi

0
e−t2i dti, xi ∈ R.

Here we obtain analogous results as in Part A.

5. Lp-approximation 1 ≤ p ≤ +∞

The first main result here is

Theorem 5.1. Let X = L1(Rm) (for Pn,ξ), X = L1
2π(Rm) (for Wn,ξ, Qn,ξ), ξ ∈ Rm,

ξ > 0, n ∈ N, f ∈ X. Then

‖f − Pn,ξ(f)‖X ≤
[

n+1∑
k=0

(
n + 1

k

)
k!

]m

ωn+1(f ; ξ)X , ξ > 0;

‖f −Wn,ξ(f)‖X ≤
[∫+∞

0 (u + 1)n+1e−u2
du∫ π

0 e−u2 du

]m

ωn+1(f ; ξ)L1
2π(Rm),

0 ≤ ξ ≤ 1;

and

‖f −Qn,ξ(f)‖X ≤
[

m∏
i=1

K(n, ξi)

]
ωn+1(f ; ξ)X , ξ > 0,

where

K(n, ξi) =

[∫ π/ξi

0

(u + 1)n+1

u2 + 1
du

]
/ tan−1 π

ξi
, i = i,m.

The next main result has as follows:
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Theorem 5.2. Let X = Lp(Rm) (for Pn,ξ), X = Lp
2π(Rm) (for Wn,ξ, Qn,ξ), ξ ∈ Rm,

0 < ξi ≤ 1, i = 1,m, n ∈ N, 1 < p < +∞, 1
p + 1

q = 1, f ∈ X. Then

‖f − Pn,ξ(f)‖X ≤
(

2
q

)m/q

‖g‖m
Lp(R+)ωn+1(f ; ξ)X ,

where g(u) = (u + 1)n+1e−u/2, u ∈ R+;

‖f −Wn,ξ(f)‖X ≤
[(√

π

2q

)1/q

‖h‖Lp(R+)

/∫ π

0
e−u2

du

]m

ωn+1(f ; ξ)X ,

0 < ξ ≤ 1,

where h(u) = (u + 1)n+1e−u2/2; and

‖f −Qn,ξ(f)‖X ≤
[

m∏
i=1

Kp(n, ξi)

]
ωn+1(f ; ξ)X , 0 ≤ ξ ≤ 1,

where Kp(n, ξi) =
[∫ π/ξi

0 [(u + 1)(n+1)p/(u2 + 1)] du/ tan−1 π
ξi

]1/p
.

The last result has to do with the uniform convergence.

Theorem 5.3. Let X = L∞(Rm) (for Pn,ξ), X = L∞2π(Rm) (for Wn,ξ, Qn,ξ), ξ ∈ Rm,

0 < ξ ≤ 1, n ∈ N, f ∈ X. Then

‖f − Pn,ξ(f)‖X ≤
[

m∑
k=0

(
n + 1

k

)
k!

]m

ωn+1(f ; ξ)X , ξ > 0;

‖f −Wn,ξ(f)‖X ≤
[∫+∞

0 (u + 1)n+1e−u2
du∫ π

0 e−u2 du

]m

ωn+1(f ; ξ)X , 0 < ξ ≤ 1;

and

‖f −Qn,ξ(f)‖X ≤
[

m∏
i=1

K(n, ξi)

]
ωn+1(f ; ξ)X , ξ > 0,

where K(n, ξi) is given in Theorem 5.1.

Remark. Theorems 5.1–5.3 show us that while the generalized operators Pn,ξ and Wn,ξ

give very good estimates (such that if ξ → 0, i.e., ξi → 0, i = 1,m, then Pn,ξ(f) → f ,

Wn,ξ(f) → f), for the generalized operator Qn,ξ(f) in general this does not happen, because

if ξi → 0, we have Kp(n, ξi) → +∞, for all 1 ≤ p < +∞.
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However, under some smoothness conditions for f , (as for example if
∣∣∣∣ ∂|k|f

∂x
k1
1 ···∂xkm

m

∣∣∣∣ ≤ M

on Rm, for all |k| ∈ {0, 1, . . . , n+1}, where |k| = k1 + · · ·+ km, ki ∈ N∪{0}, i = 1,m) and

reasoning as in the univariate case, Part A, we easily get that Qn,ξ(f) → f , as ξ → 0.

We intend to publish the above results with full proofs and more discussion elsewhere.
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