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ON CONVERGENCE OF QUADRATURE METHODS FOR THE
LIPSCHITZ-CONTINUOUS FUNCTIONS

I. FEDOTOV AND S.S. DRAGOMIR

Abstract. In this article we present a new approach to quadrature methods

where any quadrature formula is generated by a discontinuous function whose
jumps are quadrature weights. The quadrature error is estimated for Lipschitz-

continuous functions with the constant which can not be replaced by a smaller

one.

1. Introduction

Let I be a linear functional I : C0 [a, b] → R defined by formula

(1.1) I(f) =
∫ b

a

w(t)f(t)dt,

where w ∈ C0 [a, b] ∩ L1 [a, b] .
Then each formula from the sequence

(1.2) In(f) = −
n∑

k=0

f(xk)snk,

defines a numerical quadrature method (rule):

(1.3) I(f) ≡
∫ b

a

f(t)w (t) dt ≈ −
n∑

k=0

f(xk)snk ≡ In(f),

where a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b and the weights snk and nodes

x
(n)
k are real numbers.
The main problem in numerical integration is finding a system of nodes and

weights such that the quadrature error

En(f) = I(f)− In(f) → 0 as n →∞.

We say in such cases that the quadrature rule (1.2) converges. It is also important
to estimate the quadrature error. Usually, such estimations are given using the high
order derivatives of function f, for example, the error in Simpson’s rule uses the
fourth order derivative. The estimation of the quadrature error is more difficult if
the integrand is only continuous.

The first article concerning the convergence of quadrature rules for continuous
functions was written in 1884 by Stieltjes [1], where he proved the convergence of
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2 I. FEDOTOV AND S.S. DRAGOMIR

Gaussian quadratures for any continuous function but he doubted on the conver-
gence of Newton-Cotes quadratures. The next step was made by G. Pòlya in 1933,
[2], where he proved the sufficient conditions of convergence of quadrature rules
for continuous and even for Riemann integrable functions. The sequence In(f) for
continuous functions converges if and only if it converges for every polynomial and
if

(1.4)
∞∑

k=0

|snk| < C < ∞, (n = 1, 2, ...).

The necessity of the Pòlya condition follows from the Uniform Boundedness
Principle and the proof of this can be found in almost any text of functional analysis,
see for example [3] . In the same paper Pòlya proved that the Newton-Cotes method
diverges for big n and that the condition (1.4) does not hold, since for large n:

|s2n,n| >
22n

n3
.

If n is odd then snk also tends to 0 as n →∞ (see for example [4], [5] or [6]).
As mentioned above, there are not many convenient estimations of quadrature

errors for the continuous functions. One of such estimation can be given for Gauss-
ian quadrature for Lipschitz continuous functions. This estimation is based on the
Jackson theorem and has the form [7]:

|En(f)| ≤ 2Ld0

2n− 1

∫ b

a

|w(x)| dx,

where L is the Lipschitz constant of function f and the constant d0 is not always
known.

Another estimation of the quadrature error for a composite quadrature for a
continuous function can be found in [6] and is directly proportional to the modulo
of continuity of the function f.

In the recent articles [8] and [9], some convenient methods for evaluation of the
rate of convergence error estimations were obtained for the functions from C1[a, b].

In what follows, we establish some new error estimates which are sometimes
exact and convenient for evaluation of the quadrature error for the Lipschitz con-
tinuous functions using a new approach to numerical integration. The result can
be generalized for continuous functions and some types of cubature formulae.

2. Estimation of the Error for an Arbitrary Quadrature Rule for a
Lipschitz-Continuous Function

Let us consider the semi-normed space Lip1 [a, b] of all mappings f : [a, b] → R
with the semi-norm

(2.1) ‖f‖Lip = sup
x6=y,x,y∈[a,b]

|f(x)− f(y)|
|x− y|

< ∞.

To transform this space into a normed space we factorize it by the subspace of
constant functions.

We conserve for this new space with the norm defined by (2.1) the same notation
Lip1 [a, b] . For simplicity we consider a positive representative f of Lip1 [a, b] .
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Lemma 1. If f is a Lipschitz-continuous function and u is Riemann integrable on
[a, b], then

(2.2)

∣∣∣∣∣
∫ b

a

u(x)df(x)

∣∣∣∣∣ ≤ ‖f‖Lip ·
∫ b

a

|u(t)|dt.

Proof. Firstly, note that from the theory of Stieltjes integral, it follows that the
integral

∫ b

a
u(t)df(t) exists.

If ∆n =
{

a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b

}
is a sequence of partitions of

[a, b] with λ(∆n) = max
i=1,...,n

(x(n)
i − x

(n)
i−1) → 0 (for n → ∞) and ξ

(n)
i ∈ [x(n)

i−1, x
(n)
i ]

then ∣∣∣∣∣
∫ b

a

u(x)df(x)

∣∣∣∣∣
=

∣∣∣∣∣ lim
λ(∆n)→0

n∑
i=1

u
(
ξ
(n)
i

) [
f

(
x

(n)
i

)
− f

(
x

(n)
i−1

)]∣∣∣∣∣
≤ lim

λ(∆n)→0

n∑
i=1

∣∣∣(ξ
(n)
i

)∣∣∣
∣∣∣f (

x
(n)
i

)
− f

(
x

(n)
i−1

)∣∣∣∣∣∣x(n)
i − x

(n)
i−1

∣∣∣
(
x

(n)
i − x

(n)
i−1

)

≤ ‖f‖Lip · lim
ν(∆n)→0

n∑
i=1

∣∣∣u(ξ(n)
i )

∣∣∣ (
x

(n)
i − x

(n)
i−1

)
= ‖f‖Lip ·

∫ b

a

|u(t)|dt,

and the inequality (2.2) is proved.

Let u(t,x) be a Riemann integrable function on [a, b] depending on vector pa-
rameter x ∈Rn+1 and let f ∈Lip1 [a, b].

Let a = x0 < x1 < ... < xn−1 < xn = b be an arbitrary subdivision from ∆n.
We denote by hk = xk − xk−1, (k = 1, 2, ..., n− 1) the steps corresponding to this
subdivision.

Consider the following function

(2.3) ρ (t) = c +
∫ t

a

w (τ) dτ,

where w ∈ C0 [a, b] ∩ L1 [a, b] .
For n = 1, 2, ..., consider the following function

(2.4) un(t,x) = χ (a, b) [ρ (t) + ϑn(t,x)] ,

where x = (x0,x1, ..., xn), χ (a, b) = θ+(t−a)θ−(t− b) is the characteristic function
of segment [a, b]

θ+(t) =
{

0 if t < 0
1 if t ≥ 0

is Heaviside function,

θ−(t) =
{

1 if t ≤ 0
0 if t > 0

and

(2.5) ϑn(t,x) =
n−1∑
k=0

snkθ+(t− xk).
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The numbers snk (k = 0, 1, ..., n) represent the jumps of un(t,x) at points
x0, x1, ..., xn that is for k = 0, 1, ..., n

(2.6) snk = un(xk + 0,x)− un(xk − 0,x).

We suppose that

(2.7)
n∑

k=0

snk + (ρ (b)− ρ (a)) = 0.

The derivative of un(t,x) has the form:

dun(t,x)
dt

= χ (a, b) w (t) +
n∑

k=0

snkδ(t− xk).

Consider the following Riemann-Stieltjes integral∫ ∞

−∞
un(t,x)df (t) ≡

∫ b

a

un(t,x)df(t).

Integrating by parts we obtain∫ ∞

−∞
un(t,x)df(t) = −

∫ ∞

−∞
f(t)dun(t,x) =−

∫ b

a

f(t)w (t) dt−
n∑

k=0

f(xk)snk

or

(2.8)
∫ ∞

−∞
un(t,x)df(t) = −

∫ b

a

f(t)w (t) dt−
n∑

k=0

f(xk)snk.

Theorem 1. If f ∈ Lip1 [a, b] and un is defined by (2.4), then the error of the
quadrature rule

(2.9)
∫ b

a

f(t)w (t) dt ≈ −
n∑

k=0

f(xk)snk

can be evaluated using the inequality

(2.10) |En(f)| =

∣∣∣∣∣
∫ b

a

f(t)w (t) dt +
n∑

k=0

f(xk)snk

∣∣∣∣∣ ≤ ‖f‖Lip

∫ b

a

|un(t, x)|dt,

i.e., the quadrature rule converges if

(2.11)
∫ ∞

−∞
|un(t,x)| dt → 0 as n →∞.

Proof. Using (2.8) and Lemma 1, we obtain∣∣∣∣∣
∫ b

a

f(t)w (t) dt +
n∑

k=0

f(xk)snk

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

un(t,x)df(x)

∣∣∣∣∣ ≤ ‖f‖Lip

∫ b

a

|un(t, x)|dt,

which tends to zero as n tends to infinity.

We call the function un(t, x) a generating function corresponding to the quad-
rature rule (2.9). For the interpolatory quadrature formulae this function is the
Peano Kernel.
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Remark 1. The constant ‖f‖Lip in (2.10) is sharp in the sense that it cannot
be replaced by a smaller one. In fact, consider a quadrature rule defined by the
function

un(t,x) = t +
1
2n

+
n−1∑
k=0

(
− 1

n

)
θ+(t− xk),

where xk =
k

n
, 0 ≤ t ≤ 1, and w = 1. We denote by Eun(t, x) the periodical

extension of un(t,x) from [0, 1] on whole t-axes and apply the quadrature rule to
the function

f(t) =
∣∣∣∣Eun

(
t− 1

2n
,x

)∣∣∣∣ .

Here snk = − 1
n .

It is easy to check that the sum
n∑

k=0

f(xk)snk = 0.

Also, ‖f‖Lip = 1 and we can rewrite (2.10) as follows∣∣∣∣∫ 1

0

f(t)dt

∣∣∣∣ ≤ ∫ 1

0

|un(t,x)|dt,

or by definition of f(t) we have∣∣∣∣∫ 1

0

∣∣∣∣Eun(t− 1
2n

,x)
∣∣∣∣ dt

∣∣∣∣ ≤ ∫ 1

0

|un(t,x)|dt,

but the left-hand side and the right-hand side of the last inequality coincide.
Remark 2. It is possible to prove that the condition (2.11) is, in certain sense,
necessary for the convergence of the quadrature rule. To prove it, we can consider
the function un(t,x) as an element of the space

(
Lip1 [a, b]

)∗
dual to Lip1 [a, b] (this

space was introduced by Kantorovich and Rubinstein [3]) and apply the uniform
boundedness principle for the weak* convergence (for example in the form [3] or
[10]) to get that the sequence {

∫ b

a
|un(t,x)|} is bounded. Under some additional

assumptions, this sequence tends to zero.
Remark 3. The meaning of Theorem 1 is that:
If for the Lipschitz-continuous functions∫ 1

0

|un(t,x)|dt → 0 as n →∞,

then the error functional tends strongly to zero. It is not true for continuous func-
tions. Namely, the error functional never tends strongly to zero (for all sets of
nodes and weights). In fact, if f(x) ∈ C[a, b] then its dual space is the space of
functions with the bounded variation. Moreover,∣∣∣∣∣

∫ b

a

un(t,x)df(x)

∣∣∣∣∣ ≤ ‖un‖C∗ ‖f‖C ,

where

‖un‖C∗ = V ar[un] =
∫ b

a

w (t) dt +
n∑

k=0

snk
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which never tends to zero.

3. Application of the Grüss’ Inequality for the Riemann-Stieltjes
Integral.

Theorem 1 gives the possibility to evaluate the error of the quadrature method for
Lipschitz-continuous functions. However, the estimation of the value

∫ b

a
|un(t,x)|dt

sometimes is not simple. Therefore, we suggest another possibility in evaluating
the quadrature error of a quadrature rule based on the inequalities of Grüss type.
These estimations are not sharp but they are much simpler to check.

The Grüss inequality was proved in 1935. It establishes a connection between
the integral of the product of two functions and the product of the integrals:∣∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1
b− a

∫ b

a

f(x)dx · 1
b− a

∫ b

a

g(x)dx

∣∣∣∣∣
≤ 1

4
(Φ− φ)(Γ− γ),

provided f and g are two integrable functions on [a, b] and satisfy the condition

φ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b].

The constant 1
4 is the best possible one and is achieved for

f(x) = g(x) = sgn

(
x− a + b

2

)
.

For other similar results, generalizations for positive linear functionals, discrete
versions, determinantal versions etc. see the Chapter X of the book [11], where
further references are given.

In the following we point out a Grüss’ type inequality for the Riemann-Stieltjes
integral and apply it for the convergence of quadrature methods (see also [12]).

Let f : [a, b] → R be L-Lipschitzian on [a, b], i.e. (2.1) holds. In other words,

(3.1) |f(x)− f(y)| ≤ L|x− y|, for all x, y ∈ [a, b],

where L = ‖f‖Lip .
The following result of Grüss’ type holds:

Lemma 2. Let a and b be finite real numbers and let f, u : [a, b] → R be such that
f ∈Lip1 [a, b] and u is Riemann integrable on [a, b]. Assume that there exist the
real numbers m,M with

(3.2) m ≤ u(x) ≤ M, for all x ∈ [a, b].

Then the following inequality holds

(3.3)

∣∣∣∣∣
∫ b

a

u(t)df(t)− f(b)− f(a)
b− a

∫ b

a

u(t)dt

∣∣∣∣∣ ≤ L

2
(M −m)(b− a)

and the constant
1
2

is sharp.

Lemma 2 is proved in [12].
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Corollary 1. Let f ∈Lip1 [a, b] and un(t,x) is the function defined by (2.4). Then
the following inequality holds∣∣∣∣∣

∫ b

a

f(t)w (t) dt +
n∑

k=0

f(xk)snk + (f(b)− f(a))ūn(x)

∣∣∣∣∣(3.4)

≤ L

2
(Mn −mn)(b− a),

where mn and Mn are lower and upper bounds of the function:

(3.5) mn ≤ un(t,x) ≤ Mn

and

ūn(x) =
1

b− a

∫ b

a

un(t,x)dt.

Now, it is clear that the assumption (2.7) is natural due to inequality (3.4). In
fact, if f(t) ≡ 1, then the Lipschitz constant L = 0 and (3.4) has the form∣∣∣∣∣−

∫ b

a

w (t) dt−
n∑

k=0

snk

∣∣∣∣∣ ≤ 0 ⇒
∫ b

a

w (t) dt +
n∑

k=0

snk = 0,

which is equivalent to (2.7).
Corollary 2. Let the functions u and f satisfy the conditions of Lemma 2 and the
function u be such that

ū ≡ 1
b− a

∫ b

a

u(t,x)dt = 0,

then the following inequality holds:

(3.6)

∣∣∣∣∣
∫ b

a

u(t)df(t)

∣∣∣∣∣ ≤ L
√
−mM(b− a).

Proof. We can write inequality (2.2) as

(3.7)

∣∣∣∣∣
∫ b

a

u(t)df(t)

∣∣∣∣∣ ≤ L ‖u(t)− ū‖1 ≤ L
√

b− a ‖u‖2

and since a simple computation shows that

1
b− a

‖u‖2 = −mM − 1
b− a

∫ b

a

(M − u (t)) (u (t)−m) dt

≤ −mM,

that is

(3.8) ‖u‖2 ≤
√

b− a
√
−mM,

then from (3.7) and (3.8) we get (3.6).

We shall prove below that the constant c in definition (2.3) of generating function
can be chosen such that

(3.9) ūn(x) ≡ 1
b− a

∫ b

a

un(t,x)dt = 0.

We suppose in what follows that (3.9) is valid.
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Theorem 2. Let un(t,x) be a function defined by (2.4) satisfying (3.9), and let f
be a L-Lipschitzian on [a, b] function and the function

w ∈ C0 [a, b] ∩ L1 [a, b] .

Then the quadrature rule (2.9) converges either if∫ b

a

|un(t,x)|dt → 0 as n →∞,

or if
√
−mnMn → 0 as n →∞,

or if Mn −mn → 0 as n →∞.

More precisely, the following inequalities are true:∣∣∣∣∣
∫ b

a

f(t)w (t) dt +
n∑

k=0

f(xk)snk

∣∣∣∣∣(3.10)

≤ L

∫ b

a

|un(t,x)|dt ≤ L
√
−mnMn(b− a)

≤ L

2
(Mn −mn)(b− a).

Remark 4. The second and the third inequalities in (3.10) are sharp, for example∫ b

a

|un(t,x)|dt =
√
−mnMn(b− a)

for

un = χ(0, 1)
[
−1

2
+ θ+(t− 1

2
)
]

for a = 0, b = 1 and the last inequality becomes an equality if −mn = Mn.

Some applications of formula (3.3) which are different from those presented in
this article can be found in [12].

We are going to prove now that the constant c can be chosen so that (3.9) would
be true. We consider

(3.11) (b− a) ūn(x) =
∫ b

a

un(t,x)dt =
∫ b

a

ρ (t) dt +
∫ b

a

ϑn(t,x)dt.

To evaluate the last integral we use the definition (2.5). After elementary compu-
tation we obtain∫ b

a

ϑn(t,x)dt =
∫ b

a

n−1∑
k=0

snkθ+(t− xk)dt(3.12)

=
n∑

j=1

hj

j−1∑
k=0

snk =
n∑

k=0

snk (b− xk)

and

(3.13)
∫ b

a

ρ(t,x)dt = c(b− a) +
∫ b

a

(b− τ)w(τ)dτ .

Thus

(3.14) ūn(x) = c +
∫ b

a

b− τ

b− a
w (τ) dτ +

n∑
k=0

b− xk

b− a
snk
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and if

(3.15) c = −
∫ b

a

b− τ

b− a
w (τ) dτ −

n∑
k=0

b− xk

b− a
snk

then (3.9) holds.
The following are some weight functions that are of most interest in the quad-

rature formulae theory.
Example 1. Interpolatory Method with Legendre weight function w(t) = 1. For
example, in the closed Newton-Cotes scheme the jumps are defined by formulae

(3.16) snk = − (b− a) (−1)n−k

n (k!) (n− k)!

n∫
0

n∏
j=0

(t− j)

t− k
dt.

Here,

c = −
∫ b

a

b− τ

b− a
dτ −

n∑
k=0

b− xk

b− a
snk

= −b− a

2
−

n∑
k=0

b− xk

b− a
snk

= −b− a

2
− b

b− a

n∑
k=0

snk +
1

b− a

n∑
k=0

xksnk.

Since all interpolatory methods for n ≥ 1 are exact for f(t) ≡ 1 and f(t) = t, then
n∑

k=0

snk = − (b− a) and
n∑

k=0

xksnk = −
(

b2 − a2

2

)
and we have

c = −b− a

2
+ b− b + a

2
= 0.

Thus, in this case

un(t,x) = χ (a, b) [ρ (t) + ϑ(t,x)] = un(t,x) = χ (a, b) [t− a + ϑ(t,x)]

Example 2. Consider the Chebyshev weight function

w(t) =
1√

1− x2
, a = −1, b = 1,

snk =
π

n
, k = 1, 2, ..., n, xk = cos

[
(2k − 1) π

2n

]
.

Since
n∑

k=1

cos
[
(2k − 1) π

2n

]
= 0

and ∫ −1

−1

1− τ

2
1√

1− τ2
dτ =

1
2
π,

then

c = −π

2
+

π

2n

n∑
k=1

(1− xk) = − π

2n

n∑
k=1

xk = 0.
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In conclusion, we know the values of
∫ 1

0
|un(t,x)| dt and

Mn −mn

2
for the gen-

erating functions of closed Newton-Cotes Method, Gauss-Legendre Method on the
interval [0, 1] and for the simplest generating “saw”-function

un(t,x) = t +
1
2n

− 1
n

θ+(t)− 1
n

θ+

(
t− 1

n

)
− . . .

− 1
n

θ+

(
t− n− 1

n

)
.

Denote Bn =
Mn −mn

2
; Sn =

∫ 1

0
|un(t,x)| dt. With these notations, we have

the table:
N − C G− L Saw

n Sn Sn Sn

1 0.2500 0.2500 0.2500
2 0.1667 0.1280 0.1250
3 0.0868 0.0893 0.0833
4 0.0738 0.6900 0.0625
5 0.0537 0.0563 0.0500

N − C G− L Saw
Bn Bn Bn

0.5000 0.5000 0.5000
0.3333 0.2887 0.2500
0.2083 0.2222 0.1667
0.1833 0.1700 0.1250
0.1340 0.1422 0.1000

6 0.0627 0.0476 0.0417
7 0.0417 0.0412 0.0357
8 0.0845 0.0363 0.0312
9 0.0433
10 0.1493
11 0.0669
12 0.3111
13 0.1270
14 0.7249
15 0.2755

0.1619 0.1193 0.0834
0.1076 0.1045 0.0714
0.2050 0.0896 0.0625
0.1022
0.3569
0.1595
0.7794
0.2911
1.9520

This table shows that for n not large, no method has advantage in the numer-
ical integration of a Lipschitz-continuous function. For large n the Newton-Cotes
method is not good and the Gauss-Legendre and “Saw”- methods have almost the
same efficiency.
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