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SOME FURTHER INEQUALITIES FOR UNIVARIATE
MOMENTS AND SOME NEW ONES FOR THE COVARIANCE

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. In this paper some further inequalities for univariate moments
are given with particular reference to the expectations of the extreme order
statistics. In addition, some inequalities are obtained for the covariance of two
continuous random variables.

1. INTRODUCTION

The expectation of a continuous random variable is given by

where f(x) is the probability density function of the random variable, X. If the
interval of definition is finite, (a,b), then this can be further expressed, using inte-
gration by parts, as

(1.1) E(X)=b— /bF(;z:) dz,

where F' (z) is the associated cumulative distribution function. This result has been
exploited variously to obtain inequalities involving the expectation and variance,
see for example [1], [2], [3].

The aim of this paper is to provide some additional inequalities utilising a gen-
eralisation of (1.1) to higher moments, as well as providing some specific results for
the extreme order statistics.

In addition, some results are obtained involving the covariance of two random
variables using a bivariate generalisation of (1.1) and generalisations of the inequal-
ities of Griiss and Ostrowski.

2. UNIVARIATE RESULTS

Denote by M, the n'" moment f: 2" f (z) dz which, using integration by parts,
can be expressed as

(2.1) b — n/b 2" 'F (2) da.
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Consider now

1 b 1 b b

5 / 2" 7F () da — (19)2/ x”_ldx/ F (x)dz
—aJq —a a a

for which various inequalities can be found. Before exploiting some of these, we
express the difference in terms of the distributional moments.

b b LC—
1)2/ xn_ldq;/ F(m)dszg{b—E(X)}-

(b—a n(b—a)
We therefore have:-
L (b — a™)
2.2 2" F (z) dx — b—E(X
(22) R et <w
b, M,, b(b™ —a™) M (b"™ —a")

nb-a) nb-a) nb-a?’ n(b—a)?

ab (a1t —bn1) M, My (b" — a™)
= 2 - + 2
n((b—a) n(b—a) n(b—a)
1

_ mm"(b—Ml)—b”(a—Ml)—Mn(b—a)|.

Now utilising various inequalities, we can obtain a number of results.

Pre-Griiss.
Using an inequality of [4] applied to (2.2), we have

(2.3) Mw (b= My) = b" (a = My) — My (b— a)

] Y o) 1 b ’
nfld o nfld
2@—@l$ ’ walm I)

1 I b2n71 _ a2n71 b — g™ 2 %
T 2|lb-a)@n-1) <n(b—a))
The special case when n = 2 gives:-

@ (b= B (X)) =¥ (= E(X)) = (b - a) (* + (£ (X))*)
¥oat  (-a2\7]
3(ba)_(2(ba))1 7

(b= E (X)) (B (X) —a) -0

N

IN
I

< (b-a)

that is,

1
b +ab+a? (b +2ab+a?) |’

3 4

IN

(b—a)*

(b—a)’
2V3
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which is Theorem 3 of [3].

Pre-Chebychev.
Using a further result of [4] and (2.2) we can obtain

1
——— |a"(b— M) —=b"(a— M) — M, (b—a
e o 0= M) =¥ (0= M) (0= o)

( ) 1 me(n—l) T — 1 bmn—l T I
N o ] ((bco/a “)

where || f||, is the supremum of the probability density function over (a,b), giving
(2.4) la™ (b — My) —b" (a — My) — M, (b— a)|

n(b—a)” a)® Pl —a? b —an 0
< Q\f £l [( —a)(2n—1) (n(b—a))‘| .

The special case where n = 2 gives:-

1/l

(b—a)’
(b= E(X) (B (X)—a)—o®| < ———fll
which was obtained by Barnett and Dragomir in [5].

3. LIPSCHITZIAN MAPPINGS
If 2"~ 1F () is of the Lipschitzian type, then
|2" ' F (z) —y" ' F(y)| < Lz -y,

where L > 0 in which case

1 b
n—lF _ / n—lF
x (x) e x (x) dz

(Ostrowski’s inequality, [7].)
Now,

1 b
2" (2) — / 2" F (2) da
b—a /,

and thus we have;-

If n = 2, then

o (4G22 oo

Consider now the mapping F (z), x € [a,b], then the mapping is Lipschitzian if
there exists L > 0 such that

|F (z) = F(y)| < Lz —yl.
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Now, if F'(-) is a cumulative distribution function, it is monotonic increasing be-
tween 0 and 1 over [a,b]. It is apparent that there exists z € [z, y] such that

F(x;_j(y) < [dljiix)]w_z'

dF (z)
dx

Thus, if we choose L = max [ ] for z € [a,b], then this implies that F ()
is Lipschitzian, since o
[F(z) = F )| < Ifllo 1z =yl
Consider similarly the mapping zF (z), it is also monotonic increasing and by
the same token, there exists z € [x,y] such that

aF () —yF (y)‘ < Hd(xF (w))] _

r—y dx

In addition, we have that

=5 |- |57
and hence o .
e e I o
< 1+ [|fllo max{lal, B[} .

Thus, L can be taken to be
L+ |[fllo max {lal , [b[}

and then
|zF (z) — yF (y)| < [L+ [|fllo max{|al, |b[}] [z — y],

and so ¢ F (z) is Lipschitzian.
Similarly it can be shown that 2"~ F (z) is Lipschitzian for n = 3,4, ...

Thus,
#e- {5 n)

< L4 mas o] )] [(”g:j)Z (Zj)] (6-a).

For x = a we get

My — 2] = ‘02+((E(X))2)—b2‘
< (b—a)’ [1+ ||l max {|al , [b]}]
and for £ = b we have
2b(b—a) — 0%+ M| = |b° —2ab+ My
b(b—20) + 02+ ((B(X)))]
(b= a)®[1+ || £l max {|a], [B]}]

IN
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4. DISTRIBUTIONS OF THE MAXIMUM, MINIMUM AND RANGE OF A SAMPLE

Consider a continuous random variable X with a non-zero probability density
function over a finite interval [a,b]. Consider a random sample X1, Xo...., X,,.
We consider the distribution function of the maximum, minimum and the range of
the random sample.

Maximum

Let the cumulative distribution function of the maximum be G (z), the probabil-
ity density function be g (), and the corresponding functions for X be F (z) and
f(x). Then

G(z) =Prmax < z] =Prfall X;,...,X,, <z].

Therefore G (z) = [F ()" and g (z) = n[F (z)]" " f ().

Minimum

Let the cumulative distribution function of the minimum and the probability
density function be H (z) and h (x) respectively. Therefore

H(zx) = Pr[min<z]=1-Pr[min > z]
1—Prall Xq,..., X, >2]=1-[1-F(2)]"

and
h(z) =n[l—F@)" " £ (@).

Range
Let the distribution function of the range be R (x) and the probability density
function be r (x). Consider

K (s,t) = Pr[max < s,min < ¢
= Pr[max < s] — Prmax < s,min > ¢]
= [F(s)]" =Pr{t<all Xy,...,X, <s}
— )" - [F(s) - F(0)".
Therefore, the joint probability density function of the extreme order statistics can
be found by differentiating this with respect to s and ¢, giving

k(s,t)=n(n—1)f(s) f(t)[F(s) = F ()", s>t

which for a random variable defined on [a, b] gives
b—x

T($):n(n—1)/ f(8—|—1‘)f($)[F(s_|_x)_F(S)]n—2ds7

S=a

where 0 < x < b —a.

5. APPLICATION OF GRUSS’ INEQUALITY TO POSITIVE INTEGER POWERS OF A
FuNcTION

As a preliminary to the proof of Griiss’ inequality we can establish the identity:

b1a/abg($)f($)d$=p+<b1a>2/abf(x)dx~/abg(x)dx,

where it can be subsequently shown that

pl < 70 —7][® 4],

(5.1)
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and v, T, ¢, ® are respectively lower and upper bounds of f (z) and g (z).
Applying this same identity to the square of a function, we have

(5.2)

Similarly,

and using (5.1), we have

b
(5.3) ﬁ/ 2 (x)dx =

b n—2
+ <bia/ f(x)dar)

giving:-

e () (/]

b
o [ F@ide

S |pn71| + |pn72|

where

1 [, 10
b_a/af <x>dx=p2+—b_a/a

f(z)da-

ot o () ([ sow)

b
e [ P

i (52 ) </f )

Continuing, we can show that for positive integers n, n > 2

(5.4) b_la/abf”(x)dx(b_la)n (/abf(x)dx>n
= Pn-1+DPn-2 (bla /abf(x) dm) + Pn—3 <b1a /abf(x) d:c>2

)
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Assuming that f (z) > 0 and denoting (ﬁ fab f(z) dx) by A", we have

bla/abfn(x)dx— (blay </abf(x)dx>n‘

1

(5.5)

IA

(1‘\ _ ’7) [Fn—l o ,yn—l} 4 % (F o ’7) [Fn—2 o ,yn—Q] A
1
4

SN

_ ne 1 n—
(=) [ =" N e S (T =) (T =) A"
1 n—1

= 1 (T — )Z (Fn—i _ ,yn—i) Ai—1

i=1

Now, if f is a p.d.f., the right hand side reduces to

1 n—1 1 i—1
T F’nf’i
o ()
1 n—1
n—1 i—1 1—(=——
1 1 1 (r(b—@)
4 g(l“(b—a)) 4 1 L

T TO-a)
B re r=lb—a)" "' -1
A2 (b—a)" 2 T(b—a)—1
2 | R () e |
4(b—a)"? F(b—a)—1 '

If we now consider this inequality for an associated cumulative distribution function
F (+), we have that

_b-EX)
 b—a
and the right hand side of (5.5) becomes

1oy =1 - = (- EX)"
i;(b £ 0) | ]

A

b—a 4(E(X)—a)(b—a)""

Thus, we have the two inequalities:-

(5.6) bia/abf"(x)dx— (biay

and

(5.7) bia/:F"(x)dx— (W)n <

Similarly, we can develop an inequality for 1 — F (x) by suitable substitution in
(5.5), that is,

2 | I () L |
<
—4(1)_@)"—2< P(b—a)-1 )

(=) = (b= E(x)"]
4(E(X)—a)(b—a)"?
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b b "
bia/ (1—F(m))"dx—<bia/ (1—F(x))dw>

bia/ab(lF(x))"dx(E(bX_)aa)n

(=) = (B(X) - )"
4(b—a)" % (b— E(X))

which gives

(5.8)

6. INEQUALITIES FOR THE EXPECTATION OF THE EXTREME ORDER STATISTICS
As the p.d.f. of the maximum is
g(@)=n[F @) f (),
then .
E [Xmax] :n/ 2 [F(2)]" 7 f (z)da.
Integrating by parts gives ’

ElXnw] = n|[ [F(xn”]Z—% /:<F<x>>"dx]

b— /b F" (z)dx
giving, from (5.7)
(6.1) \b ] (00 E(X))” _[emor—o-peor ]

4(E(X)—a)(b—a)"?

b—a b—a

and when E (X) = “£2, we have:-

b E[Xpa] 1 gn—1 1
2 A i 5 R P (-
62 et gl< ()
Consider now FE (Xpin) = n ;):a zf (z)[1 — F (2)]" " dz. Integration by parts
gives:-
Bl = |20 F ]+ L [0 pe
min] =1 - "] +- ’ x))" dx
and so

E (Xmin) =a+ /b (1—F(z))" dx.
Utilising (5.8) we have ’
E(Xnm) —a E(X)—-a\"
o PR (52)
and when E (X) = %%, we have:-
E(Xmin) —a . i
b—a 2n

(-0 = (BX) -
4(b—a)"*(b—E (X))

2n—t—1
<|l—].
(57

<

(6.4) ’
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7. APPLICATIONS TO THE BETA DISTRIBUTION

The Beta probability density function is given by

1 a—1 B—1
B(a,ﬁ)m (1-2x) ,0<z<1, a,B>0,
where
1
B(a,8)= [ 2*7'(1—2)""da.
@)= [ et a—a
Clearly,
_ 1 ! a+1-1 B-1 _ 1
E(X) = B(a,ﬂ)/ox+ (1—-x) dm—iB(%mB(a—l—Lﬁ)
Fa+1)T'(a+pP) ol (@) T (e + B) a

T(a+B+1)I(a) (a+B)L(a+B)T(a) (a+p)

Substituting @ = 0, b = 1 and letting ‘T"= m, from (5.6) we obtain

m? (1 — m”_l)

/Olf"(x)dx—l‘ <A

and further,

1 1

n(a—1) _ an(B-1) _
_ T 1—=x dr —1
‘Bn (aa 6) /0 ( )

‘B(n(a—l)—i—l,n(ﬁ—l)—l—l) B ‘< m? (1 —m"™1)
B (a, B) ~  4(1-m)

and m is the value of = for which f’ (z) = 0, that is

(1-2)" a =12 +a* (B (1-2)"* (-1) =0.
21—z {a-1)(1—2) -z (- 1)},
a—1

= — a,f0>1
ie.m P a, 3

We then have the inequality:-

Bn(a—1)+1,n(B—-1)+1)
B (e, )

(a— 1) a—1 \""
4(a+ﬂ—2)(ﬁ—1){1_<a+6—2> }

When « = 3, the right hand side becomes % (1 — 2%1)

_1’
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Consider now (6.1) when f (x) is the p.d.f. of a Beta distribution. This gives:-

a n
‘I_E(Xmax) - <1_ a+ﬁ)

_ (Y
() - pt

(ot B)" " — g
do(a+B)" 2

and when o = (3, this becomes:-

'1 (1>HE<Xmax> <

and from (6.3)

E Xmin - “ >n < =
o= (555) | (i-2m) ey
and when o = (3
- ln_l
‘E(Xmin)_;n S%

From these we can obtain further E (Xin) < % and % < E(Xmax) < % — (%)n_l )

8. SOME BOUNDS FOR JOINT MOMENTS AND PROBABILITIES USING
OSTROWSKI TYPE INEQUALITIES FOR DOUBLE INTEGRALS

Theorem 1. Let X,Y be two continuous random variables x € [a,b], y € [c, d] with
probability density functions fi (-) and fa(-) respectively and with joint probabil-
ity density function f (-,-) with associated cumulative distribution functions Fy (),
F>(:) and F (-,). Then
b pd

(8.1) E(XY)=bE(Y)+dE(X) — bd+/ / F (s,t) dsdt.

s=a Jit=c

This is a generalisation of the result

E(X):b—/bF(s)ds

and is equivalent to:-

(8.2) E(XY):bd—d/bFl(s)ds—b/ng(t)dt—&—/b /d F (s,t) dsdt.

Proof.
E(XY):/:ct{/absf(s,t)ds}dt
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and
[ sttenas - [/ Sl :a_Lja(Ajaf<u,t>du)ds
- nin= [ ([ )
SO
E(XY) = b/cdtfg(t)dt—/:ct[/:a</u;f(u,t)du>ds]dt
e [ ([ ([ i) ) o
Now
[ trona - [ s dv[c [ ([ sooa)a
= dfy (u) / (/ fuvdv)dt
B(XY) - bEm_f (/Sa{dﬁ( / (/' fwdv)dt}du>d

= d/ Fi(s)ds
+/;(/s= /(I fwdu)dv)ds)d

_ bE(Y)+dE(X)—bd+/ / F (s,t) dsdt

and, equivalently,

E(XY):bd—d/abFl (s)ds—b/chg(t)dt—&—/ab/ch(s,t)dsdt.

In [6] Barnett and Dragomir proved the following theorem.

Theorem 2. Let f: [a,b] x [c,d] — R be continuous on [a,b] x [c,d], f,/, = ;;gy
exists on (a,b) x (¢,d) and is bounded, i.e.,

< o0

*f (z,y) ‘

H'f!tHoo = sup dxdy

(z,y)€(a,b)x(c,d)
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then we have the inequality:

(8.3) f(s,t)dsdt

- [(b—a)/cdf(x,t)dﬂr(d—C)/abf(s,y)ds—(d—C)(b—a)f(w,y)H
< |fll(b—a)2+<x—a—2|—b>2
X [i(dc)QJr(y C+d>

for all (x,y) € [a,b] x [c,d].
If we apply this taking f (-, -) to be a joint cumulative distribution function F (-, )
with x = b, y = d we obtain

b pd
//F(s,t)dsdt

d b
—(b—a)/ F(b,t)dt—(d—c)/ F(s,d)ds+ (d—c)(b—a)

£l

1 2 "
< Lo-ora- o e,
That is
d b
—(b—a)/ Fg(t)dt—(d—c)/ Fy(s)ds+ (d—c) (b—a)
< Lo-aP@-o||Fn -

4
Using (8.2), this gives

d b
E(XY)+a/ Fy@t)dt+c | Fi(s)ds—ad—bc+ac
c a

= |E(XY)4aE(Y)—cE(X)+ac| < %(bf a)® (d—c)* || FIy||.
= 0P |fle,

providing bounds for E (XY') in terms of F (X) and E (Y).
Since Cov (X,Y) = E(XY) — E(X) - E(Y), we can write the left hand side
alternatively as:-
Cov(X,Y)+[c—E(Y)][a— E(X)].
We can similarly extract other bounds from (8.3) in the situations where
(1) z=by=c
(i) x =a, y=d, and
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(iii) r=a, y=c
giving respectively

(B (XY) ~ dBE(X) ~aB(¥) +ad| < 7 0-a?@d- 0[],

[B(XY)~ eB(X) ~bE(Y) +be| < (-0 (@~ |l

and
[E(XY) —dE(X) =bE(Y) +bd| < - (b—a) (d=¢) |1 £llo
We can use the results of [8] by Dragomir, Cerone, Barnett and Roumeliotis to
obtain further inequalities relating the first single and joint moments as well as

some involving joint probabilities.
In [8], bounds were obtained for:-

b pd

namely M (z) + Mz (y) + M3 (z,y) where these are as defined in [8]. For one
particular case we have

N [5(—a)+ |z —=52] || 0f (s.)
My (@) b—a)(d—0) H .
_ [3(d—c) —l—{y—m stt
Maly) = (b—a)( H 1
and
[ —a) + e — ] [5(d—c) + |y — “F] ||9*f (s,t)
Ms (@,y) = (b—a)(d—o) osot ||,

It follows then that if we choose f to be the joint cumulative distribution function,
F (z,y), we can generate the following inequalities

/ / F (s,t)dsdt — Pr{X <az,Y <y}

< M (a) + Ma (¢) + M3 (a,c),

and

< My (z) + Mz (y) + M3 (x,y) .

The first of these simplifies to give:-
|[E(XY)—bE(Y)—dE(X)+bd <(b—a)+(d—c)+(d—c)(b—a).

9. FURTHER INEQUALITIES FOR THE COVARIANCE USING GRUSS INEQUALITY

Consider functions fi (+), f2 (-) and f (-,-) where f; is integrable over [a, b], fa is
integrable over [c,d] and f (z,y) is integrable for z € [a,b] and y € [c,d]. Consider
the integral

[ [ nonoreosa=[ ne ( LB f6 )ﬁ>“.
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—C/ f2 Stdt—( —C) /f2 t)dt tcf(St)
say

‘We have:-

:Pl

//f1 ) fo (£) f (s, ) dsdt
:/fl { /f2 dt/fstdt}ds

= (d—C)/ab ds+—/ fa (t dt/ </ fi(s stds)t

and where

—a/fl f s t)ds — _1a)2/abfl(S)ds/:f(s,t)dSZpg(t)

Hence,

Therefore
//f1 ) f2 (t) f (s, t) dsdt
= <dc>/p1<s>f1<s>ds+di/dfzof)dt
></C [(ba P2 ( +7/ fi(s /bf(s,t)d5‘|dt
- <dfc>/ L) 1 6)ds ¢ /f2 dt/c pa
b—a) d_ /f2 dt/f1 ds//fstdsdt
and thus
(9.1) s) fa (t) f (s,t) dsdt

—m/ f2<t>dt/abf1(s)ds[/jf(s,t)dsdt

b d
< (d—C)Ilpllloo/ \fl(S)\dS+(b—a)llp2|\m/ [f2 ()] dt.

Case 1. Now, if f1(s) =s and fo(t) =t, and f (-,-) is a joint probability density
function, the left hand side becomes

E(XY) - (d* =) (b* — a®)

4(d—c)(b—a)

_ ’E(XY)—i(b—&-a)(d—i—c) .




INEQUALITIES FOR UNIVARIABLE MOMENTS 15

3_ 3 d 2] %
p1(s)] < %Hf”oo (?)d(dc)) _ (dlc/ tdt) ] see [4]

A

|

Ly (@@ sdere) (@ -\
o e 3(d—c¢) 2(d—rc)
- 1
B lllfll d?+de+c?  (d+o)
o2 3 4
1 1 1 1
= = X —— [d? = 2dc + *|? = — d—c).
3171 x 55 [ J# =z Il (a=0)
Similarly,
2_b2
p2§a 5 ,a<0,b<0
Now

b 2 4 p2

[in©ls= 5" <0050
and similarly,

d B2 _ g2
/\fQ(t)|dt§ 5 ,a>0,b>0.

Thus, we then have for a < 0,5 >0, ¢ <0, d > 0:-

‘E(XY)—i(lH—a)(d—i—c)
1 (d— 6)2 (a® +b?) 1 (b— a)2 (c? +d?)
= 4\/§|\f||oo 5 +4\/§Hf||00 5
= % [(d= ) (a2 +8%) + (b — @) (2 + d)| /]l
1 2 12\ (2 g2
= m [(a +0b ) (c +d ) —l—(ac—i—db)(ad—i—bc)] 1l -

Case 2. If fi(s) =s and fo(t) =1, and [ (-,-) = to (s,t) where ¢ (-,-) is a joint
probability density function, then the left hand side is:-

b pd — o) (b2 — a2
//sw(s,t)dsdt—(:(d_)c()b(b_a))E(Y)

- ‘E(XY)—;(a+b)E(Y)’~

P2 s as above and

2
1 I I
<7 a— —_— =
P1 > Hf”oo [d_c/; dt <d_c/c dt)] O
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and hence
(b—a)’ (c? +d?)
8V3

E(XY)~ L (a+BE(Y)| < 171

when a < 0,b>0,c < 0,d > 0.
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