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NEW ESTIMATES OF THE KULLBACK-LEIBLER DISTANCE
AND APPLICATIONS

S. S. DRAGOMIR AND V. GLUŠČEVIĆ

Abstract. New estimates of the Kullback-Leibler distance and applications

for Shannon’s entropy and mutual information are given.

1. Introduction

The relative entropy is a measure of the distance between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio. The relative
entropy D(p‖q) is a measure of the inefficiency of assuming that the distribution
is q when the true distribution is p. For example, if we knew the true distribution
of the random variable, then we could construct a code with average description
length H(p). If, instead, we used the code for a distribution q, we would need
H(p) + D(p‖q) bits on the average to describe the random variable [1, p. 18].

With ln we will denote the natural logarithm throughout the paper.

Definition 1. The relative entropy or Kullback-Leibler distance between two prob-
ability mass functions p(x) and q(x) is defined by

D(p‖q) :=
∑
x∈X

p(x) ln
(

p(x)
q(x)

)
= Ep ln

(
p(X)
q(X)

)
.

In the above definition, we use the convention (based on continuity arguments)
that 0 ln

(
0
q

)
= 0 and p ln

(
p
0

)
= ∞.

It is well-known that relative entropy is always non-negative and equal to zero
if and only if p = q. However, it is not a true distance between distributions since
it is not symmetric and does not satisfy the triangle inequality.

The following theorem is of fundamental importance [1, p. 26].

Theorem 1. (Information Inequality) Let p(x), q(x) ∈ X , be two probability mass
functions. Then

(1.1) D(p‖q) ≥ 0

with equality if and only if

p(x) = q(x) for all x ∈ X .
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Actually, the inequality (1.1) can be improved as follows (see , [1, p. 300]):

Theorem 2. Let p, q be as above. Then

(1.2) D(p‖q) ≥ 1
2
‖p− q‖21

where ‖p− q‖1 =
∑

x∈X
|p(x)− q(x)| is the usual 1-norm of p− q. The equality holds

if and only if p = q.

We remark that the argument of (1.2) is not based on the convexity of the map
− ln(.).

We introduce mutual information, which is a measure of the amount of informa-
tion that one random variable contains about another random variable. It is the
reduction in the uncertainty of one random variable due to the knowledge of the
other [1, p. 18].

Definition 2. Consider two random variables X and Y with a joint probability
mass function p(x, y) and marginal probability mass function p(x) and q(y). The
mutual information is the relative entropy between the joint distribution and the
product distribution, i.e.,

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) ln
(

p(x, y)
p(x)q(y)

)
= D (p(x, y) ‖ p(x)q(y))

= Ep(x,y) ln
(

p(X, Y )
p(X)q(Y )

)
.

The following corollary of Theorem 1 holds [1, p. 27].

Corollary 1. (Non-negativity of mutual information): For any two random vari-
ables, X, Y we have

I(X;Y ) ≥ 0

with equality if and only if X and Y are independent.
We follow with an improvement of this result via Theorem 2.

Corollary 2. For any two random variables, X, Y we have

I(X;Y ) ≥ 1
2

∑
x∈X

∑
y∈Y

|p(x, y)− p(x)q(y)|

2

≥ 0

with equality if and only if X and Y are independent.
Now, let u(x) = 1

|X | be the uniform probability mass function on X and let p(x)
be the probability mass function for X.

It is well-known that [1, p. 27]

D(p‖u) =
∑

x∈X
p(x) ln

p(x)
u(x)

= ln |X | −H(X).

The following corollary of Theorem 1 is important [1, p. 27].
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Corollary 3. Let X be a random variable and |X | denotes the number of elements
in the range of X. Then

H(X) ≤ ln |X |

with equality if and only if X has a uniform distribution over X .

Using Theorem 2 we can also state the following.

Corollary 4. Let X be as above. Then

ln |X | −H(X) ≥ 1
2

[∑
x∈X

∣∣∣∣p(x)− 1
|X |

∣∣∣∣
]2

≥ 0.

The equality holds if and only if p is uniformly distributed on X .

In the recent paper [2], the authors proved between other the following upper
bound for the relative entropy and employed it in Coding Theory in connection to
Noiseless Coding Theorem:

Theorem 3. Under the above assumptions for p (x) and q (x) we have the inequality∑
x∈X

p2(x)
q(x)

− 1 ≥ D(p‖q)

with equality if and only if p (x) = q (x) for all x ∈ X .

The following upper bound for the mutual information holds.

Corollary 5. For any two random variables, X, Y we have∑
x∈X

∑
y∈Y

p2(x, y)
p(x)q(y)

− 1 ≥ I(X;Y )

with equality if and only if X and Y are independent.

Finally, we note that the following upper bound for the difference log |X |−H(X)
is valid.

Corollary 6. We have

|X |
∑
x∈X

p2(x)− 1 ≥ ln |X | −H(X)

with equality if and only if p is uniformly distributed on X .

Our aim is to point out some bounds for the relative entropy and to apply them
for Shannon’s entropy and mutual information.

2. Some Inequalities for the Logarithmic Mapping

The following theorem is well known in the literature as Taylor’s formula or Tay-
lor’s theorem with the integral remainder.
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Theorem 4. Let I ⊂ R be a closed interval, a ∈ I and let n be a positive integer.
If f : I −→ R is such that f (n) is absolutely continuous on I, then for each x ∈ I

(2.1) f (x) = Tn (f ; a, x) + Rn (f ; a, x)

where Tn (f ; a, x) is Taylor’s polynomial, i.e.,

Tn (f ; a, x) :=
n∑

k=0

(x− a)k

k!
f (k) (a) .

(Note that f (0) := f and 0! := 1), and the remainder is given by

Rn (f ; a, x) :=
1
n!

∫ x

a

(x− t)n
f (n+1) (t) dt.

A simple proof of this theorem can be done by mathematical induction using the
integration by parts formula.

The following corollary concerning the estimation of the remainder is useful when
we want to approximate real functions by their Taylor expansions.

Corollary 7. With the above assumptions, we have the estimation

(2.2) |Rn (f ; a, x)| ≤ |x− a|n

n!

∣∣∣∣∫ x

a

∣∣∣f (n+1) (t)
∣∣∣ dt

∣∣∣∣
or

(2.3) |Rn (f ; a, x)| ≤ 1
n!
|x− a|n+ 1

β

(nβ + 1)
1
β

∣∣∣∣∫ x

a

∣∣∣f (n+1) (t)
∣∣∣α dt

∣∣∣∣ 1
α

where α > 1 and 1
α + 1

β = 1, and the estimation:

(2.4) |Rn (f ; a, x)| ≤ |x− a|n+1

(n + 1)!
max

{∣∣∣f (n+1) (t)
∣∣∣ , t ∈ [a, x] or [x, a]

}
respectively.

Proof. The inequalities (2.2) and (2.4) are obvious.
Using Hölder’s integral inequality, we have that∣∣∣∣∫ x

a

(x− t)n
f (n+1) (t) dt

∣∣∣∣ ≤
∣∣∣∣∫ x

a

∣∣∣f (n+1) (t)
∣∣∣α dt

∣∣∣∣ 1
α
∣∣∣∣∫ x

a

|x− t|nβ
dt

∣∣∣∣ 1
β

=

[
|x− a|nβ+1

nβ + 1

] 1
β ∣∣∣∣∫ x

a

∣∣∣f (n+1) (t)
∣∣∣α dt

∣∣∣∣ 1
α

and the inequality (2.3) is also proved. �

The following result for the logarithmic mapping holds.

Corollary 8. Let a, b > 0. Then we have the equality:

(2.5) ln b− ln a− b− a

a
+

n∑
k=2

(−1)k (b− a)k

kak
= (−1)n

∫ b

a

(b− t)n

tn+1
dt.
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Proof. Consider the mapping f : (0,∞) −→ R, f (x) = lnx. Then

f (n) (x) =
(−1)n−1 (n− 1)!

xn
, n ≥ 1, x > 0,

Tn (f ; a, x) = ln a +
n∑

k=1

(−1)k−1 (x− a)k

kak
, a > 0

and

Rn (f ; a, x) = (−1)n
∫ x

a

(x− t)n

tn+1
dt.

Now, using (2.1) , we have the equality

lnx = ln a +
n∑

k=1

(−1)k−1 (x− a)k

kak
+ (−1)n

∫ x

a

(x− t)n

tn+1
dt.

That is,

lnx− ln a +
n∑

k=1

(−1)k (x− a)k

kak
= (−1)n

∫ x

a

(x− t)n

tn+1
dt, x, a > 0.

Choosing in the last equality x = b, we get (2.5) . �

The following inequality for logarithms holds.

Corollary 9. For all a, b > 0, we have the inequality:∣∣∣∣∣ln b− ln a− b− a

a
+

n∑
k=2

(−1)k (b− a)k

kak

∣∣∣∣∣(2.6)

≤


|b−a|n|bn−an|

nanbn ;

|b−a|n+ 1
β

[(n+1)α−1]
1
α (nβ+1)

1
β

[
|b(n+1)α−1−a(n+1)α−1|

b(n+1)α−1a(n+1)α−1

] 1
α

, α > 1, 1
α + 1

β = 1;

|b−a|n+1

n+1

[
1

min{a,b}

]n+1

.

The equality holds if and only if a = b.

Proof. We use Corollary 7 for mapping f : (0,∞) −→ R, f (x) = lnx for which we
have ∫ b

a

∣∣∣f (n+1) (t)
∣∣∣ dt = n!

∫ b

a

dt

tn+1
= n!

[
t−n+1−1

−n + 1− 1

∣∣∣∣b
a

]

=
n!
n

[
1
an

− 1
bn

]
=

n!
n
· bn − an

anbn
.

Also, we have∫ b

a

∣∣∣f (n+1) (t)
∣∣∣α dt = (n!)α

∫ b

a

dt

tα(n+1)
=

(n!)α

(n + 1) α− 1
· b(n+1)α−1 − a(n+1)α−1

b(n+1)α−1 · a(n+1)α−1
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and

max
{∣∣∣f (n+1) (t)

∣∣∣ , t ∈ [a, b] or t ∈ [b, a]
}

= max
{

n!
1

tn+1
, t ∈ [a, b] or t ∈ [b, a]

}
= n!

1
min {an+1, bn+1}

= n!
[

1
min {a, b}

]n+1

.

The equality in (2.6) holds via the representation (2.5) and we omit the details. �

Remark 1. By the concavity property of ln (·) we have

ln b− ln a ≤ (b− a)
a

and then, if we choose n = 1 in (2.6), we get the following counterpart result.

0 ≤ b− a

a
− ln b + ln a

≤


(b−a)2

ab ;
|b−a|1+

1
β |b2α−1−a2α−1|

1
α

(2α−1)
1
α (β+1)

1
β a2− 1

α b2−
1
α

, α > 1, 1
α + 1

β = 1;

(b−a)2

2 · 1
min2{a,b} .

The equality holds in both inequalities simultaneously if and only if a = b.

Remark 2. If we choose n = 2 in (2.6) , we get∣∣∣∣∣ln b− ln a− b− a

a
+

(b− a)2

2a2

∣∣∣∣∣
≤


(b−a)3

a2b2 · a+b
2 ;

|b−a|2+
1
β |b3α−1−a3α−1|

1
α

(3α−1)
1
α (2β+1)

1
β a3− 1

α b3−
1
α

, α > 1, 1
α + 1

β = 1;

(b−a)3

3 · 1
min3{a,b} .

The equality holds in both inequalities simultaneously if and only if a = b.

3. Inequalities for Relative Entropy

Let X and Y be two random variables having the probability mass functions
p (x) , q (x) , x ∈ X. Then we have the following representation of relative entropy.

Theorem 5. With the above assumptions of X and Y , we have

D (p‖q) =
∑
x∈X

n∑
k=2

(p (x)− q (x))k

kpk−1 (x)
(3.1)

+ (−1)n−1
∑
x∈X

p (x)
∫ q(x)

p(x)

(q (x)− t)n

tn+1
dt
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or

D (p‖q) =
∑
x∈X

p (x)
n∑

k=1

(−1)k−1 (p (x)− q (x))k

kqk (x)
(3.2)

+ (−1)n
∑
x∈X

p (x)
∫ p(x)

q(x)

(p (x)− t)n

tn+1
dt

respectively.

Proof. Choose in (2.5) a = p (x) , b = q (x) , x ∈ X to get

ln q (x)− ln p (x)− q (x)− p (x)
p (x)

+
n∑

k=2

(−1)k (q (x)− p (x))k

kpk (x)
(3.3)

= (−1)n
∫ q(x)

p(x)

(q (x)− t)n

tn+1
dt.

Multiply (3.3) by p (x) and sum over x ∈ X to get

−D (p‖q)−
∑
x∈X

[q (x)− p (x)] +
∑
x∈X

n∑
k=2

(−1)k (q (x)− p (x))k

kpk−1 (x)
(3.4)

= (−1)n
∑
x∈X

p (x)
∫ q(x)

p(x)

(q (x)− t)n

tn+1
dt.

However, ∑
x∈X

[q (x)− p (x)] = 0.

Therefore, by (3.4) we get (3.1) .
To prove the second equality, choose in (2.5) b = p (x) , a = q (x) , x ∈ X to get

ln p (x)− ln q (x)− p (x)− q (x)
q (x)

+
n∑

k=2

(−1)k (p (x)− q (x))k

kqk (x)
(3.5)

= (−1)n
∫ p(x)

q(x)

(p (x)− t)n

tn+1
dt.

Multiply (3.5) by p (x) and sum over x ∈ X to get

D (p‖q) =
∑
x∈X

p (x)
n∑

k=1

(−1)k−1 (p (x)− q (x))k

kqk (x)

+ (−1)n
∑
x∈X

p (x)
∫ p(x)

q(x)

(p (x)− t)n

tn+1
dt

from where we get (3.2) . �

Using Corollary 9, we can give the following result containing an approximation
of the relative entropy.
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Theorem 6. With the above assumption over X and Y , we have∣∣∣∣∣D (p‖q)−
∑
x∈X

n∑
k=2

(p (x)− q (x))k

kpk−1 (x)

∣∣∣∣∣

≤ M :=



1
n

∑
x∈X

|q(x)−p(x)|n|qn(x)−pn(x)|
pn−1(x)qn(x) ;

1

[(n+1)α−1]
1
α (nβ+1)

1
β

∑
x∈X p (x) |q (x)− p (x)|n+ 1

β

×
[
|q(n+1)α−1(x)−p(n+1)α−1(x)|

q(n+1)α−1(x)p(n+1)α−1(x)

] 1
α

;
1

n+1

∑
x∈X p (x) |q (x)− p (x)|n+1

×
[

1
min{p(x),q(x)}

]n+1

;

and

(3.6)

∣∣∣∣∣D (p‖q)−
∑
x∈X

p (x)
n∑

k=1

(−1)k−1 (p (x)− q (x))k

kqk (x)

∣∣∣∣∣ ≤ M,

respectively. The equality holds in both inequalities if and only if p (x) = q (x) ,
x ∈ X.

Proof. Proof for the first inequality is obvious by Corollary 9, choosing a = p(x),
b = q(x), multiplying by q(x) and sum over x ∈ X. Proof for second inequality is
obvious by Corollary 9, choosing b = p(x), a = q(x), multiplying by q(x) and sum
over x ∈ X. �

Corollary 10. Under the assumptions from Theorem 6 for n = 1, we have

(3.7) D (p‖q) ≤ M1

where

M1 :=


∑

x∈X
(q(x)−p(x))2

q(x) ;

1

(2α−1)
1
α (β+1)

1
β

∑
x∈X p (x) |q (x)− p (x)|1+

1
β × |q2α−1(x)−p2α−1(x)|

1
α

q2− 1
α (x)p2− 1

α (x)
;

1
2

∑
x∈X p (x) (q (x)− p (x))2 × 1

min2{p(x),q(x)} ;

and

(3.8) 0 ≤
∑
x∈X

p (x)
q (x)

(p (x)− q (x))−D (p‖q) ≤ M1

respectively, where α > 1 and 1
α + 1

β = 1.

Remark 3. The first inequality in (3.7) is equivalent to (see also [2]):

D (p‖q) ≤
∑
x∈X

p2 (x)
q (x)

− 1

with equality if and only if p (x) = q (x) for all x ∈ X.
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We introduce notation M12 for the summation part of the second term in M1

and apply Hölder’s discrete inequality. Then we can write

M12 :=
∑
x∈X

p (x) |q (x)− p (x)|
β+1

β ×
∣∣q2α−1 (x)− p2α−1 (x)

∣∣ 1
α

q2− 1
α (x) p2− 1

α (x)

≤

(∑
x∈X

p (x) |q (x)− p (x)|β+1

) 1
β
(∑

x∈X

∣∣q2α−1 (x)− p2α−1 (x)
∣∣

q2α−1 (x) p2α−2 (x)

) 1
α

:= M̃12

and then from second inequality of (3.7) we get the inequality

D (p‖q) ≤ 1

(2α− 1)
1
α (β + 1)

1
β

M̃12.

For α = β = 2, we get the particular inequality

D (p ‖q ) ≤ 1
3

(∑
x∈X

p (x) |q (x)− p (x)|3
) 1

2

×

(∑
x∈X

∣∣q3 (x)− p3 (x)
∣∣

q3 (x) p2 (x)

) 1
2

.

If we assume that

(3.9) min
x∈X

[min {p (x) , q (x)}] = δ > 0

then from the third inequality of (3.7) we have the inequality

D (p‖q) ≤ 1
2δ2

∑
x∈X

p (x) (q (x)− p (x))2 .

Remark 4. Since ∑
x∈X

p (x)
q (x)

(p (x)− q (x)) =
∑
x∈X

p2 (x)
q (x)

− 1,

then the first inequality in (3.8) is obvious.
Using Hölder’s inequality, from second inequality in (3.8) we get∑

x∈X

p2 (x)
q (x)

− 1−D (p‖q) ≤ 1

(2α− 1)
1
α (β + 1)

1
β

M̃12.

If, as above, we assume that (3.9) holds, then from third inequality in (3.8) we have∑
x∈X

p2 (x)
q (x)

− 1−D (p‖q) ≤ 1
2δ2

∑
x∈X

p (x) (q (x)− p (x))2 .

4. Inequalities for the Entropy Mapping

Let X be a random variable having the probability mass function p (x) , x ∈ X.
Consider the entropy mapping

H (X) =
∑
x∈X

p (x) ln
1

p (x)
.

We have the following representation of H (X) .
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Theorem 7. With the above assumption for X, we have

H (X) = ln |X| −
∑
x∈X

n∑
k=2

(|X| p (x)− 1)k

k |X|k pk−1 (x)
(4.1)

+
(−1)n

|X|n
∑
x∈X

p (x)
∫ 1

|X|

p(x)

(1− |X| t)n

tn+1
dt

or

H (X) = ln |X|+
∑
x∈X

p (x)
n∑

k=1

(−1)k (|X| p (x)− 1)k

k
(4.2)

+ (−1)n+1
∑
x∈X

p (x)
∫ p(x)

1
|X|

(p (x)− t)n

tn+1
dt

respectively.

Proof. Put in (3.1) q = u, where u is the uniform distribution on X, i.e., u (x) = 1
|X| ,

|X| is the number of elements in X. Then

ln |X| −H (X)

=
∑
x∈X

n∑
k=2

(
p (x)− 1

|X|

)k

kpk−1 (x)
+ (−1)n−1

∑
x∈X

p (x)
∫ 1

|X|

p(x)

(
1
|X| − t

)n

tn+1
dt

=
∑
x∈X

n∑
k=2

(|X| p (x)− 1)k

k |X|k pk−1 (x)
+

(−1)n−1

|X|n
∑
x∈X

p (x)
∫ 1

|X|

p(x)

(1− |X| t)n

tn+1
dt

from where results (4.1) .
Put in (3.2) q = u, to get

ln |X| −H (X)

=
∑
x∈X

p (x)
n∑

k=1

(−1)k−1
(
p (x)− 1

|X|

)k

k 1
|X|k

+ (−1)n
∑
x∈X

p (x)
∫ p(x)

1
|X|

(p (x)− t)n

tn+1
dt

=
∑
x∈X

p (x)
n∑

k=1

(−1)k−1 (|X| p (x)− 1)k

k
+ (−1)n

∑
x∈X

p (x)
∫ p(x)

1
|X|

(p (x)− t)n

tn+1
dt,

from where results (4.2) . �

Using Theorem 6, we can state the following result concerning the approximation
of the entropy mapping.
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Theorem 8. With the above assumption for X, we have∣∣∣∣∣H (X)− ln |X|+
∑
x∈X

n∑
k=2

(|X| p (x)− 1)k

k |X|k pk−1 (x)

∣∣∣∣∣

≤ µ :=



1
n|X|n

∑
x∈X

|1−|X|p(x)|n|1−|X|npn(x)|
pn−1(x) ;

1

[(n+1)α−1]
1
α (nβ+1)

1
β

∑
x∈X p (x)

∣∣∣ 1
|X| − p (x)

∣∣∣n+ 1
β ×

[
|1−|X|(n+1)α−1p(n+1)α−1(x)|

p(n+1)α−1(x)

] 1
α

;

1
n+1

∑
x∈X p (x)

∣∣∣ 1
|X| − p (x)

∣∣∣n+1

×
[

1

min{p(x), 1
|X|}

]n+1

;

and ∣∣∣∣∣H (X)− ln |X| −
∑
x∈X

p (x)
n∑

k=1

(−1)k (|X| p (x)− 1)k

k

∣∣∣∣∣ ≤ µ.

5. Inequalities for Mutual Information

Let X and Y be random variables having the probability mass functions p (x) ,
q (y) , x ∈ X, y ∈ Y. Consider the mutual information [1]

I (X, Y ) =
∑
x∈X

∑
y∈Y

p (x, y) ln
p (x, y)

p (x) q (y)
.

We have the following representation for I (X, Y ) .

Theorem 9. With the above assumption for X and Y , we get

I (X, Y ) =
∑
x∈X

∑
y∈Y

n∑
k=2

(p (x, y)− p (x) q (y))k

kpk−1 (x, y)

+ (−1)n−1
∑
x∈X

∑
y∈Y

p (x, y)×
∫ p(x)q(y)

p(x,y)

(p (x) q (y)− t)n

tn+1
dt

or

I (X, Y ) =
∑
x∈X

∑
y∈Y

p (x, y)
n∑

k=1

(−1)k−1 (p (x, y)− p (x) q (y))k

kpk (x) qk (y)

+ (−1)n
∑
x∈X

∑
y∈Y

p (x, y)
∫ p(x,y)

p(x)q(y)

(p (x, y)− t)n

tn+1
dt.

The proof follows by Theorem 5, taking into account that

I (X, Y ) = D (p (x, y) ‖p (x) q (y) ) .

Finally, using Theorem 6, we can state the following estimation of the mutual in-
formation.
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Theorem 10. With the above assumption over X and Y , we have:∣∣∣∣∣∣I (X, Y )−
∑
x∈X

∑
y∈Y

n∑
k=2

(p (x, y)− p (x) q (y))k

kpk−1 (x, y)

∣∣∣∣∣∣

≤ M̃ :=



1
n

∑
x∈X

∑
y∈Y

|p(x)q(y)−p(x,y)|n
pn−1(x,y)pn−1(x)qn−1(y) × |pn (x) qn (y)− pn (x, y)| ;

1

[(n+1)α−1]
1
α (nβ+1)

1
β

∑
x∈X

∑
y∈Y p (x, y)× |p (x) q (y)− p (x, y)|n+ 1

β

×
[
|p(n+1)α−1(x)q(n+1)α−1(y)−p(n+1)α−1(x,y)|

p(n+1)α−1(x)q(n+1)α−1(y)p(n+1)α−1(x,y)

] 1
α

;
1

n+1

∑
x∈X

∑
y∈Y p (x, y)× |p (x) q (y)− p (x, y)|n+1

×
[

1
min{p(x,y),p(x)q(y)}

]n+1

;

and ∣∣∣∣∣∣I (X, Y )−
∑
x∈X

∑
y∈Y

p (x, y)
n∑

k=1

(−1)k−1 (p (x, y)− p (x) q (y))k

kpk (x) qk (y)

∣∣∣∣∣∣ ≤ M̃.

The equality holds in both inequalities simultaneously if and only if X and Y are
independent.

For other results related to the entropy mapping and the mutual information,
we recommend the recent papers [2]-[8] where further references are given.
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