

A short note on an integral inequality

This is the Published version of the following publication

Yu, Kit-Wing and Qi, Feng (2001) A short note on an integral inequality. RGMIA research report collection, 4 (1).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17365/

A SHORT NOTE ON AN INTEGRAL INEQUALITY

KIT-WING YU AND FENG QI

ABSTRACT. In this short note, we give a positive answer to an open problem posed by F. Qi in the paper Several integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 1 (2000), no. 2, Article 19. http://jipam.vu.edu.au/v1n2.html/001_00.html. RGMIA Research Report Collection 2 (1999), no. 7, Article 9. http://rgmia.vu.edu.au/v2n7.html.

1. Introduction

In [3], the second author of this note obtained the following new inequality which is not found in [1], [2], [4] and [5]:

Theorem A. Suppose that f(x) has a continuous derivative of the n-th order on [a,b], $f^{(i)}(a) \ge 0$ and $f^{(n)}(x) \ge n!$, where $0 \le i \le n-1$. Then

$$\int_{a}^{b} [f(x)]^{n+2} dx \ge \left[\int_{a}^{b} f(x) dx \right]^{n+1}. \tag{1}$$

Next, he proposed the following open problem

Open problem. Under what conditions does the inequality

$$\int_{a}^{b} [f(x)]^{t} dx \ge \left[\int_{a}^{b} f(x) dx \right]^{t-1}$$

hold for t > 1?

In this note, we are going to give an affirmative answer to the above problem, that is

Date: January 30, 2001.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 26D15.$

Key words and phrases. Integral inequality, Jensen's inequality, convex.

The second author was supported in part by NSF of Henan Province (#004051800), SF for Pure Research of Natural Sciences of the Education Department of Henan Province (#1999110004), Doctor Fund of Jiaozuo Institute of Technology, and NNSF (#10001016) of China.

This paper is typeset using $\mathcal{A}_{\mathcal{M}}S\text{-}\text{LAT}_{E}X$.

Theorem 1. Suppose that f is a continuous function on [a,b]. If $\int_a^b f(x)dx \ge (b-a)^{t-1}$ for given t > 1, then

$$\int_{a}^{b} [f(x)]^{t} dx \ge \left[\int_{a}^{b} f(x) dx \right]^{t-1} \tag{2}$$

holds.

Corollary 1. Suppose that f is a continuous function on [a,b], where $b-a \leq 1$. If $\int_a^b f(x)dx \geq 1$, then inequality (2) holds for all t > 1.

Corollary 2. Suppose that f is a continuous function on [a,b], where $b-a \leq 1$. If $f(x) \geq 1/(b-a)$ for all $x \in [a,b]$, then inequality (2) holds for all t > 1.

2. Lemmae

The basic tool we use here is the integral version of Jensen's inequality and a lemma of convexity.

Lemma 1 (Jensen's inequality [6]). Let μ be a positive finite measure on a σ algebra \mathcal{M} in (a,b). If f is a real function in $L^1(a,b)$ and φ is convex in (a,b),
then

$$\varphi\left(\frac{\int_{a}^{b} f(x)d\mu(x)}{\int_{a}^{b} d\mu}\right) \le \frac{\int_{a}^{b} \varphi(f(x))d\mu(x)}{\int_{a}^{b} d\mu}.$$
 (3)

Lemma 2 ([6]). Suppose that φ is a real differentiable function in (a,b). Then φ is convex in (a,b) if and only if for any u and v such that a < u < v < b we have $\varphi'(u) \leq \varphi'(v)$.

3. Proof of Theorem 1

Consider the function $\varphi(x) = x^t$ in (a, b) for t > 1. It is easy to check that $\varphi'(u) \le \varphi'(v)$ for a < u < v < b. Hence, by Lemma 2, the function φ is convex in (a, b).

Therefore, by the Jensen inequality (3) in Lemma 1, we have

$$\frac{\int_{a}^{b} \varphi(f(x))dx}{\int_{a}^{b} dx} \ge \varphi\left(\frac{\int_{a}^{b} f(x)dx}{\int_{a}^{b} dx}\right),\tag{4}$$

and then

$$\int_{a}^{b} f^{t}(x)dx \ge \frac{\left[\int_{a}^{b} f(x)dx\right]^{t}}{(b-a)^{t-1}}.$$

$$(5)$$

Since

$$\int_{a}^{b} f(x)dx \ge (b-a)^{t-1} \tag{6}$$

for given t > 1, it follows that

$$\frac{\int_{a}^{b} f(x)dx}{(b-a)^{t-1}} \ge 1 \tag{7}$$

for fixed t > 1. Hence, the desired result follows from (5) and (7).

References

- [1] E. F. Beckenbach and R. Bellman, *Inequalities*, Springer, Berlin, 1983.
- [2] G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, 2nd edition, Cambridge University Press, Cambridge, 1952.
- [3] F. Qi, Several integral inequalities, J. Inequal. Pure & Appl. Math. 1 (2000), no. 2, Article 19. http://jipam.vu.edu.au/v1n2.html/001_00.html. RGMIA Res. Rep. Coll. 2 (1999), no. 7, Article 9. http://rgmia.vu.edu.au/v2n7.html.
- $[4]\,$ D. S. Mitrinović, $Analytic\ Inequalities,$ Springer-Verlag, Berlin, 1970.
- [5] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- [6] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Company, New York, 1987.

DEPARTMENT OF MATHEMATICS, THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY, CLEAR WATER BAY, KOWLOON, HONG KONG, CHINA

 $E\text{-}mail\ address{:}\ \mathtt{maykw00@alumni.ust.hk}$

DEPARTMENT OF MATHEMATICS, JIAOZUO INSTITUTE OF TECHNOLOGY, JIAOZUO CITY, HENAN 454000, THE PEOPLE'S REPUBLIC OF CHINA

E-mail address: qifeng@jzit.edu.cn

URL: http://rgmia.vu.edu.au/qi.html