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SOME INEQUALITIES FOR THE KULLBACK-LEIBLER AND
χ2−DISTANCES IN INFORMATION THEORY AND

APPLICATIONS

S. S. DRAGOMIR AND V. GLUŠČEVIĆ

Abstract. Inequalities for the Kullback-Leibler and χ2−distances and appli-

cations for Shannon’s entropy and mutual information are given.

1. Introduction

Let p (x) , q (x) , x ∈ X, card (X) < ∞, be two probability mass functions. Define
the Kullback-Leibler distance (see [1] or [2]) by

KL (p, q) :=
∑
x∈X

p (x) log
p (x)
q (x)

,

the χ2−distance (see for example [3]) by

Dχ2 (p, q) :=
∑
x∈X

p2 (x)− q2 (x)
q (x)

and the variation distance (see for example [3]) by

V (p, q) :=
∑
x∈X

|p (x)− q (x)| .

The following theorem is of fundamental importance in Information Theory [4,
p. 26].
Theorem 1. (Information Inequality). Under the above assumptions for p and q,
we have

KL (p, q) ≥ 0,

with equality if and only if p (x) = q (x) for all x ∈ X.

This inequality can be improved as follows (see [4, p. 300]):
Theorem 2. Let p, q be as above. Then

(1.1) KL (p, q) ≥ 1
2
V 2 (p, q) ≥ 0,

with equality if and only if p (x) = q (x) for all x ∈ X.

In [5] (see also [6]), the authors proved the following counterpart of (1.1).
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Theorem 3. Let p (x) , q (x) > 0, x ∈ X be two probability mass functions. Then

(1.2) Dχ2 (p, q) ≥ KL (p, q) ≥ 0,

with equality if and only if p (x) = q (x) , x ∈ X.

In the same paper [6], the authors applied (1.2) for Shannon’s entropy, mutual
information, etc....

In Section 2 of the present paper, we provide improvement of result (1.2), in
Section 3 we apply this result to Entropy and in Section 4 to mutual information
in the same manner as in [6].

2. An Improved Inequality and Related Results

The following result holds.
Theorem 4. Let p (x) , q (x) > 0, x ∈ X be two probability mass functions. We
have the inequality

(2.1) 0 ≤ KL (p, q) ≤ log
[
Dχ2 (p, q) + 1

]
≤ Dχ2 (p, q) .

Equality holds in (2.1) if and only if p (x) = q (x) for all x ∈ X.

Proof. We use Jensen’s discrete inequality

(2.2) f

(∑
x∈X

p (x) t (x)

)
≤
∑
x∈X

p (x) f (t (x)) ,

provided that f is convex on a given interval I, t (x) ∈ I for all x ∈ X and p (x) is
a probability mass function on X.

Choosing f (s) = − log s, s > 0 and t (x) = p(x)
q(x) , we obtain in (2.2)

− log

(∑
x∈X

p (x)
p (x)
q (x)

)
≤ −

∑
x∈X

p (x) log
(

p (x)
q (x)

)
,

which is the first inequality in (2.1).
Equality holds in the first part of (2.1) if and only if p(x)

q(x) = p(y)
q(y) for all x, y ∈ X,

which is equivalent to p (x) = q (x) for all x ∈ X.
For the second inequality, we use the following elementary inequality

log t ≤ t− 1 for all t > 0

with equality if and only if t = 1.
Equality holds in the second part of (2.1) if and only if Dχ2 (p, q) = 0, which

holds if and only if p (x) = q (x) for all x ∈ X. �

In 1948, B.L. Kantorović (see for example [7]) proved the following inequality
for sequences of real numbers

n∑
k=1

rku2
k

n∑
k=1

1
rk

u2
k ≤

1
4

(√
M

m
+
√

m

M

)2( n∑
k=1

u2
k

)2

,

where
0 < m ≤ rk ≤ M < ∞ for k = 1, ..., n.

Using this result, we derived the following upper bound for the χ2−distance (see
also [6]).
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Lemma 1. Let p (x) , q (x) > 0, x ∈ X be two probability mass functions. Define
r (x) := p(x)

q(x) , x ∈ X and assume that

0 < r ≤ r (x) < R < ∞ for all x ∈ X.

Then we have the inequality

(2.3) 0 ≤ Dχ2 (p, q) ≤ (R− r)2

4rR
.

Equality holds in (2.3) if and only if p (x) = q (x) for all x ∈ X.

Proof. Using the Kantorović inequality for rk = r (x) and uk =
√

p (x), we can
state that∑

x∈X

p (x) r (x)
∑
x∈X

p (x)
1

r (x)
≤ 1

4

(√
R

r
+
√

r

R

)2(∑
x∈X

p (x)

)2

,

which is equivalent to ∑
x∈X

p2 (x)
q (x)

≤ 1
4

(√
R

r
+
√

r

R

)2

,

from where we deduce

Dχ2 (p, q) ≤ 1
4

(√
R

r
+
√

r

R

)2

− 1

=
1
4

(√
R

r
−
√

r

R

)2

and the inequality (2.3) is proved.
The case of equality holds in (2.3) by the fact that in the Kantorović inequality,

we have equality if and only if rk = 1 for all k ∈ {1, ..., n} . �

The following theorem holds.
Theorem 5. Let p, q, r, R be as in Lemma 1. Then we have the inequality

(2.4) 0 ≤ KL (p, q) ≤ log

[
(R− r)2

4rR
+ 1

]
≤ (R− r)2

4rR
.

Equality holds if and only if p (x) = q (x) for all x ∈ X.

Proof. Using the first inequality in (2.1) and (2.3), we have

KL (p, q) ≤ log
[
Dχ2 (p, q) + 1

]
≤ log

[
(R− r)2

4rR
+ 1

]
.

The last inequality in (2.4) follows by the elementary inequality log (u + 1) ≤ u,
u ≥ 0 with equality if and only if u = 0. �

Remark 1. The inequality (2.4) improves the result

(2.5) 0 ≤ KL (p, q) ≤ (R− r)2

4rR
,

which was proved in [6]. We also note that (2.5) was proved independently by M.
Matić in [8] using another technique based on Grüss’ discrete inequality.
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The following corollary holds.
Corollary 1. Let p, q, r, R be as in Lemma 1. Define

S :=
R

r
(≥ 1) .

If ε > 0 and

(2.6) S ≤ 2eε − 1 + 2
√

eε (eε − 1),

then we have the inequality
0 ≤ KL (p, q) ≤ ε.

Proof. Observe that for a given ε > 0, the inequality

log

(
(R− r)2

4rR
+ 1

)
≤ ε

is equivalent to
(R− r)2

4rR
≤ eε − 1,

i.e.,

(2.7) R2 − 2 [1 + 2 (eε − 1)] rR + r2 ≤ 0.

Dividing (2.7) by r2 > 0, we obtain

S2 − 2 [1 + 2 (eε − 1)]S + 1 ≤ 0,

which is clearly equivalent to

(2.8) S ∈
[
2eε − 1− 2

√
eε (eε − 1), 2eε − 1 + 2

√
eε (eε − 1)

]
.

Furthermore, as S ≥ 1, then (2.8) follows by (2.6) and then (2.6) implies, by (2.4),
that KL (p, q) ≤ ε. �

The following result is well known in the literature as the Diaz-Metcalf inequality
for real numbers (see for example [7, p. 61]):

(2.9)
n∑

k=1

pkb2
k + mM

n∑
k=1

pka2
k ≤ (m + M)

n∑
k=1

pkakbk

provided that m ≤ bk

ak
≤ M for k = 1, ..., n and pk > 0 with

∑n
k=1 pk = 1.

The equality holds in (2.9) if and only if either bk = mak or bk = Mak for
k ∈ {1, ..., n} .

The following lemma holds (see also [6]).
Lemma 2. Let p, q, r, R be as in Lemma 1. Then we have the inequality

(2.10) 0 ≤ Dχ2 (p, q) ≤ (1− r) (R− 1) ≤ 1
4

(R− r)2 .

Equality holds if and only if p (x) = q (x) for all x ∈ X.

Proof. Define

b (x) =

√
p (x)
q (x)

, a (x) =

√
q (x)
p (x)

, x ∈ X.

Then
b (x)
a (x)

=
p (x)
q (x)

= r (x) ∈ [r, R] ⊂ (0,∞) for all x ∈ X.



INEQUALITIES FOR THE KULLBACK-LEIBLER AND χ2−DISTANCES 5

Applying the Diaz-Metcalf inequality, we deduce

∑
x∈X

p (x)

(√
p (x)
q (x)

)2

+ Rr
∑
x∈X

p (x)

(√
q (x)
p (x)

)2

≤ (r + R)
∑
x∈X

√
p (x)
q (x)

·

√
q (x)
p (x)

· p (x) ,

i.e., ∑
x∈X

p2 (x)
q (x)

+ rR
∑
x∈X

q (x) ≤ (r + R)
∑
x∈X

p (x) .

In addition, as ∑
x∈X

p (x) =
∑
x∈X

q (x) = 1,

we obtain ∑
x∈X

p2 (x)
q (x)

≤ r + R− rR,

that is, the first inequality in (2.10).
The second inequality in (2.10) is obvious by the elementary inequality

ab ≤ 1
4

(a + b)2 , a, b ∈ R.

Finally, the case of equality follows by the similar case in the Diaz-Metcalf result.
�

The following theorem holds.
Theorem 6. Let p, q, r, R be as in Lemma 1. Then we have the inequality

0 ≤ KL (p, q) ≤ log [(1− r) (R− 1) + 1] ≤ log
[
1
4

(R− r)2 + 1
]

.

Equality holds if and only if p (x) = q (x) for all x ∈ X.

The proof is obvious by Theorem 4 and Lemma 2 and we omit the details.
The following corollary holds.

Corollary 2. Let p, q, r, R be as in Lemma 1. If ε > 0 and

0 < R− r < 2
√

eε − 1,

then we have the inequality
KL (p, q) ≤ ε.

3. Applications for Shannon’s Entropy

The entropy of a random variable is a measure of the uncertainty of the random
variable; it is a measure of the amount of information required on the average to
describe the random variable.

Let p (x) , x ∈ X be a probability mass function. Define the Shannon’s entropy
of a random variable X having the probability distribution p by

(3.1) H (X) :=
∑
x∈X

p (x) log
1

p (x)
.



6 S. S. DRAGOMIR AND V. GLUŠČEVIĆ

In the above definition, we use the convention (based on continuity arguments) that
0 log

(
0
q

)
= 0 and p log

(
p
0

)
= ∞.

Now, assume that |X| (card (X) = |X|) is finite and let u (x) = 1
|X| be the uniform

probability mass function on X. It is well known that [4, p. 27]

KL (p ‖ u) =
∑
x∈X

p (x) log
(

p (x)
u (x)

)
(3.2)

= log |X| −H (X) .

The following result is important in Information Theory [4, p. 27].
Theorem 7. Let X, p and X be as above. Then

(3.3) H (X) ≤ log |X| ,
with equality if and only if X has a uniform distribution over X.

Using some of the results obtained in Section 2 for Kullback-Leibler distances
and χ2−distances, we now develop some new inequalities for Shannon’s entropy.
Theorem 8. Let X, p and X be as above. Then

(3.4) 0 ≤ log |X| −H (X) ≤ log

(
|X|
∑
x∈X

p2 (x)

)
.

Equality holds if and only if p (x) = 1
|X| for all x ∈ X.

Proof. The proof follows by the inequality (2.1), choosing q = u and taking into
account that

KL (p, u) = log |X| −H (X) ;

Dχ2 (p, u) = |X|
∑
x∈X

p2 (x)− 1.

We omit the details. �

Remark 2. The second inequality in (3.4) is equivalent to

(3.5) H (X) + log

(∑
x∈X

p2 (x)

)
≥ 0.

If we denote by E (X) (informational energy of X) the sum
∑

x∈X p2 (x) ≤ 1, then,
from (3.5), we obtain

H (X) ≥ log
1

E (X)
≥ 0.

An equivalent inequality is

E (X) ≥ exp [−H (X)] > 0.

The following upper bound for the informational energy E also holds.
Theorem 9. Let X, p and X be as above. Then

(3.6) E (X) ≤ 1
|X|

(P + p)2

4pP
,

provided that p = minx∈X p (x) , P = maxx∈X p (x) . Equality holds in (3.6) if and
only if p (x) = 1

|X| for all x ∈ X.
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The proof follows from Lemma 1 setting q = u.
Another result concerning an upper bound for the difference log |X| −H (X) is

embodied in the following theorem.

Theorem 10. Let X, p and X be as in Theorem 9. Then we have

(3.7) 0 ≤ log |X| −H (X) ≤ log

[
(P − p)2

4pP
+ 1

]
.

Equality holds in (3.7) if and only if p (x) = 1
|X| for all x ∈ X.

The proof is obvious by Theorem 5 by choosing q = u. We omit the details.

Corollary 3. Under the assumptions of Theorem 10 and assuming that

ρ :=
P

p
(≥ 1)

and that ρ satisfies the inequality

ρ ≤ 2eε − 1 + 2
√

eε (eε − 1)

for a given ε > 0. Then we have the estimate

0 ≤ log |X| −H (X) ≤ ε.

Using Lemma 2, we can state another upper bound for the informational energy
E (X) .

Theorem 11. Let X, p and X be as in Theorem 9. Then we have the inequality:

E (X) ≤ 1
|X|

+ |X|
(

1
|X|

− p

)(
P − 1

|X|

)
≤ 1

|X|
+

1
4
|X| (P − p)2 .

Equality holds if and only if p (x) = 1
|X| for all x ∈ X.

The proof follows by Lemma 2 for q = u. We omit the details.
Finally, we have the following upper bound for log |X| −H (X) .

Theorem 12. Under the assumptions of Theorem 9, we have the inequality

0 ≤ log |X| −H (X) ≤ log
[
1 + |X|2

(
1
|X|

− p

)(
P − 1

|X|

)]
≤ log

[
1 +

1
4
|X|2 (P − p)2

]
.

Equality holds if and only if p (x) = 1
|X| for all x ∈ X.

The proof follows by Theorem 6 for q = u.

Corollary 4. If, for a given ε > 0, we have

0 < P − p <
2
|X|

√
eε − 1,

then
0 ≤ log |X| −H (X) ≤ ε.
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4. Applications for the Mutual Information

We consider the mutual information, which is a measure of the amount of infor-
mation that one random variable contains about another random variable. It is the
reduction of uncertainty of one random variable due to the knowledge of the other
[4, p. 18].

To be more precise, consider two random variables X and Y with a joint prob-
ability mass r (x, y) and marginal probability mass functions p (x) and q (y) , x ∈
X, y ∈ Y. The mutual information is the relative entropy between the joint distri-
bution and the product distribution. That is,

I (X;Y ) =
∑

x∈X,y∈Y

r (x, y) log
[

r (x, y)
p (x) q (y)

]
= D (r ‖ pq) .

in following theorems equality holds if and only if X and Y are independent.
The following result is well known [4, p. 27].

Theorem 13. (Non-negativity of mutual information) For any two random vari-
ables X, Y

(4.1) I (X;Y ) ≥ 0.

The following counterpart of (4.1) holds.

Theorem 14. For any two random variables X, Y we have

(4.2) 0 ≤ I (X;Y ) ≤ log

 ∑
(x,y)∈X×Y

r2 (x, y)
p (x) q (y)

 .

Proof. Follows by the inequality (2.1), taking into account that

KL (r, pq) = I (X;Y ) ,

and

Dχ2 (r, pq) =
∑

(x,y)∈X×Y

r2 (x, y)
p (x) q (y)

− 1.

We omit the details. �

Now we consider the following “mutual information” associated with the χ2−distance
function. Therefore, for two random variables X and Y as above, consider the
χ2−mutual information given by

(4.3) Iχ2 (X, Y ) = Dχ2 (r, pq) =
∑

(x,y)∈X×Y

r2 (x, y)
p (x) q (y)

− 1.

It is obvious that Iχ2 (X, Y ) ≥ 0 and, by (4.2),

0 ≤ I (X;Y ) ≤ log
[
Iχ2 (X, Y ) + 1

]
≤ Iχ2 (X, Y ) .

We now point out an upper bound for the χ2−mutual information.
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Theorem 15. Let X and Y be as above. Suppose that

0 < t ≤ r (x, y)
p (x) q (y)

≤ T for all (x, y) ∈ X× Y.

Then we have the inequality

Iχ2 (X, Y ) ≤ (T − t)2

4tT
.

The proof follows by Lemma 1 and we omit the details.
Using Theorem 5, we can state the following upper bound for the usual mutual

information I (X, Y ) .

Theorem 16. Let X and Y be as in Theorem 15. Then we have the inequality

0 ≤ I (X;Y ) ≤ log

[
(T − t)2

4tT
+ 1

]
.

Equality holds if and only if X and Y are independent.

The following corollary also holds.

Corollary 5. Let X and Y be as in Theorem 15. If

ρ :=
T

t
(≥ 1)

satisfies the inequality

ρ ≤ 2eε − 1 + 2
√

eε (eε − 1),

then we have the inequality

0 ≤ I (X;Y ) ≤ ε.

Another bound for χ2−mutual information is embodied in the following theorem.

Theorem 17. Let X and Y be as in Theorem 15. Then we have the inequality

Iχ2 (X, Y ) ≤ (1− t) (T − 1) ≤ 1
4

(T − t)2 .

The proof is obvious by Lemma 2 and we omit the details.
Lastly, by the use of Theorem 6, we have

Theorem 18. Under the assumptions of Theorem 15 for X and Y, we have the
bound:

0 ≤ I (X;Y ) ≤ log [(1− t) (T − 1) + 1] ≤ log
[
1
4

(R− r)2 + 1
]

.

Corollary 6. For a given ε > 0, if

0 ≤ T − t ≤ 2
√

eε − 1,

then we have the inequality

0 ≤ I (X;Y ) ≤ ε.
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