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SOME INEQUALITIES FOR THE KULLBACK-LEIBLER AND
Y?—DISTANCES IN INFORMATION THEORY AND
APPLICATIONS

S. S. DRAGOMIR AND V. GLUSCEVIC

ABSTRACT. Inequalities for the Kullback-Leibler and y2—distances and appli-
cations for Shannon’s entropy and mutual information are given.

1. INTRODUCTION

Let p(z),q(z),x € X, card (X) < 0o, be two probability mass functions. Define
the Kullback-Leibler distance (see [1] or [2]) by

the x?—distance (see for example [3]) by

and the variation distance (see for example [3]) by
=Y Ip(a) —q(x)|
zeX

The following theorem is of fundamental importance in Information Theory [4,
p. 26].

Theorem 1. (Information Inequality). Under the above assumptions for p and q,
we have

KL(p.q) >0,
with equality if and only if p (x) = q(x) for all x € X.
This inequality can be improved as follows (see [4, p. 300]):
Theorem 2. Let p,q be as above. Then

1
(1.1) KL(p.g) = 5V*(p.q) 20,

with equality if and only if p(z) = q(z) for all x € X.
In [5] (see also [6]), the authors proved the following counterpart of (1.1).
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Theorem 3. Let p(x),q(z) > 0,2 € X be two probability mass functions. Then

(1.2) D, (p,q) > KL (p,q) >0,

with equality if and only if p(x) = q(x), = € X.

In the same paper [6], the authors applied (1.2) for Shannon’s entropy, mutual
information, etc....

In Section 2 of the present paper, we provide improvement of result (1.2), in
Section 3 we apply this result to Entropy and in Section 4 to mutual information
in the same manner as in [6].

2. AN IMPROVED INEQUALITY AND RELATED RESULTS

The following result holds.

Theorem 4. Let p(x),q(z) > 0,2 € X be two probability mass functions. We
have the inequality

(2.1) 0< KL(p,q) <log [Dy: (p,q) +1] < Dy (p,q).
Equality holds in (2.1) if and only if p (x) = q (z) for all x € X.

Proof. We use Jensen’s discrete inequality

(2.2) f <Zp(x)f($)> <D p(@) f(t@),

reX zeX
provided that f is convex on a given interval I, ¢t (x) € I for all x € X and p () is
a probability mass function on X.
Choosing f (s) = —logs, s > 0 and ¢ (z) = 22 we obtain in (2.2)

q(z)
o aP@ o o (P&
lg<§p( )q(x)>§ ;ep( )1g<q(x)>7

which is the first inequality in (2.1).
Equality holds in the first part of (2.1) if and only if % = % for all 2,y € X,
which is equivalent to p () = ¢ (x) for all z € X.

For the second inequality, we use the following elementary inequality
logt <t-—1 forallt >0

with equality if and only if ¢ = 1.
Equality holds in the second part of (2.1) if and only if D, (p,q) = 0, which
holds if and only if p (z) = ¢ (z) for all z € X. O

In 1948, B.L. Kantorovi¢ (see for example [7]) proved the following inequality
for sequences of real numbers

2 2
~ "1 1( /M m -
2 : 2 2 : 2 2 : 2
Ic:lrku}C aUk 4( EJF M) (k—IUk> ’

k=1

IN

where
O<m<rg<M<oo fork=1,..n.

Using this result, we derived the following upper bound for the x?—distance (see
also [6]).
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Lemma 1. Let p(z),q(x) > 0,2 € X be two probability mass functions. Define
r(x) = %w € X and assume that

O<r<r(z)<R<oo foralzeX.
Then we have the inequality

(2.3) 0< Dy (pg) < M~

Equality holds in (2.3) if and only if p (x) = q (z) for all x € X.

Proof. Using the Kantorovi¢ inequality for ri = r(z) and ux = /p (z), we can
state that
1 1 R ’ ’
r
> @)@ Y p) 5 < (\/T+Q/R> (me) ,
reX reX reX

which is equivalent to

2
2
p(ﬂﬁ)<£11</RJr T)j
= q(x) r R
from where we deduce
2
1 R T
D < Z|y/E44/=] -1
v (pa) < 4( 7'+ R)

Il
e
N
3|
\
;=
N———
[\v]

and the inequality (2.3) is proved.
The case of equality holds in (2.3) by the fact that in the Kantorovi¢ inequality,
we have equality if and only if rp, =1 for all k € {1,...,n}. O

The following theorem holds.
Theorem 5. Let p,q,r, R be as in Lemma 1. Then we have the inequality
(R-n? ] (R-1*

. < <
(2.4) 0< KL(p,q) <log TR < IR

+1

Equality holds if and only if p () = q(x) for all x € X.
Proof. Using the first inequality in (2.1) and (2.3), we have

(R—r)?

1
4rR +

KL(p,q) <log [Dy2 (p,q) + 1] <log

The last inequality in (2.4) follows by the elementary inequality log (u + 1) < wu,
u > 0 with equality if and only if u = 0. O

Remark 1. The inequality (2.4) improves the result

(R—r)

which was proved in [6]. We also note that (2.5) was proved independently by M.
Matié in [8] using another technique based on Griss’ discrete inequality.
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The following corollary holds.
Corollary 1. Let p,q,r, R be as in Lemma 1. Define

== (>1).
S (>1)
Iis>0and

(2.6) S <2e® —1424/ef (ef — 1),

then we have the inequality
0<KL(p,q) <e.

Proof. Observe that for a given € > 0, the inequality

(R — 7‘)2
A S <
log ( 4rR 1 c

is equivalent to

(R — 7,)2 €
L <1
R —F ’
i.e.,
(2.7) R*—2[1+2(e* = 1)]rR+r*<0.

Dividing (2.7) by 72 > 0, we obtain
S?—2[1+2(ef-1)]S+1<0,

which is clearly equivalent to

(2.8) S e [265 12/ (eF — 1), 265 — 1+ 2v/eF (e — 1)} .

Furthermore, as S > 1, then (2.8) follows by (2.6) and then (2.6) implies, by (2.4),
that KL (p,q) < e. O

The following result is well known in the literature as the Diaz-Metcalf inequality
for real numbers (see for example [7, p. 61]):

(2.9) Zpkbi +mM Zpkai < (m+ M) Zpkakbk
k=1 k=1 k=1
provided that m < Z—’; <M fork=1,..,n and pr > 0 with ZZ=1Pk =1
The equality holds in (2.9) if and only if either by = may or by = May for
ked{l,..,n}.
The following lemma holds (see also [6]).
Lemma 2. Let p,q,r, R be as in Lemma 1. Then we have the inequality

1
(2.10) 0< D, (p7q)S(l—r)(R—l)SZ(R—T)2~
Equality holds if and only if p (z) = q(x) for all x € X.
Proof. Define

Then
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Applying the Diaz-Metcalf inequality, we deduce

Zp(x)( pi) + R > pla ( é;)

zeX reX

< (r+R)§\/> \/>

i.e.,
p” (z)
> <(r+R)Y p(2)
zeX a7\ zeX rzeX
In addition, as
dop@)=> q@) =1,
rzeX zeX
we obtain )
(@) <r+R-rR,
zeX q(x)

that is, the first inequality in (2.10).
The second inequality in (2.10) is obvious by the elementary inequality

1
abgz(a+b)2, a,beR.

Finally, the case of equality follows by the similar case in the Diaz-Metcalf result.
O

The following theorem holds.
Theorem 6. Let p,q,r, R be as in Lemma 1. Then we have the inequality

0< KL(p,q) <log[(1—r)(R—1)+1] < log E(R_T)QH}.

Equality holds if and only if p(x) = q(x) for all x € X.

The proof is obvious by Theorem 4 and Lemma 2 and we omit the details.
The following corollary holds.

Corollary 2. Let p,q,r, R be as in Lemma 1. If ¢ > 0 and
O0<R—r<2ve —1,

then we have the inequality
KL(p,q) <e

3. APPLICATIONS FOR SHANNON’S ENTROPY

The entropy of a random variable is a measure of the uncertainty of the random
variable; it is a measure of the amount of information required on the average to
describe the random variable.

Let p (z),2 € X be a probability mass function. Define the Shannon’s entropy
of a random variable X having the probability distribution p by

(3.1) = p(2) ).

zeX
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In the above definition, we use the convention (based on continuity arguments) that
Olog (%) =0 and plog (§) = oc.

Now, assume that |X| (card (¥X) = |X]) is finite and let u (x) = ﬁ be the uniform
probability mass function on X. It is well known that [4, p. 27]

(z)

(3.2) KL(p|u) = (z)log ( 2

P ;f g(u(z))
= log|X| - H (X).

The following result is important in Information Theory [4, p. 27].
Theorem 7. Let X,p and X be as above. Then

(3.3) H (X) < log|%|,
with equality if and only if X has a uniform distribution over X.

Using some of the results obtained in Section 2 for Kullback-Leibler distances
and x?—distances, we now develop some new inequalities for Shannon’s entropy.

Theorem 8. Let X,p and X be as above. Then

(3.4) 0<log|X| — H(X) <log <|%| ZpQ (x)) .

zeX

Equality holds if and only if p (x) = ﬁ for all x € X.

Proof. The proof follows by the inequality (2.1), choosing ¢ = u and taking into
account that

KL(p,u) = log|X|—H(X);
Dy (pou) = |X[Y p*(x)—1.
reX
We omit the details. O

Remark 2. The second inequality in (3.4) is equivalent to

(3.5) H (X) + log (Z p° (x)) > 0.
reX
If we denote by E (X) (informational energy of X ) the sum erxpz (z) <1, then,
from (3.5), we obtain
1

H(X)ZlogE()Q

> 0.

An equivalent inequality is
E(X)>exp|—H (X)] > 0.
The following upper bound for the informational energy E also holds.

Theorem 9. Let X,p and X be as above. Then

1 (P+p)°
(36) BX) < b
provided that p = mingex p (z), P = maxzex p (z). Equality holds in (3.6) if and
only if p(x) = ﬁ for all x € X.
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The proof follows from Lemma 1 setting ¢ = u.
Another result concerning an upper bound for the difference log|X| — H (X) is
embodied in the following theorem.

Theorem 10. Let X,p and X be as in Theorem 9. Then we have

(3.7) 0 < log|X| — H (X) < log (P-p”

Equality holds in (3.7) if and only if p (x) = ﬁ for all x € X.
The proof is obvious by Theorem 5 by choosing ¢ = u. We omit the details.

Corollary 3. Under the assumptions of Theorem 10 and assuming that

P
P;E(Zl)

and that p satisfies the inequality
p<2e —142/ef (e — 1)
for a given € > 0. Then we have the estimate
0<log|X|—H(X)<e.

Using Lemma 2, we can state another upper bound for the informational energy
E(X).

Theorem 11. Let X,p and X be as in Theorem 9. Then we have the inequality:

200 < ¥ (g ) (7 )

11 )
< — 4+ - |X| (P - .
< gt gREe-p)

Equality holds if and only if p (x) = ﬁ for all x € X.

The proof follows by Lemma 2 for ¢ = u. We omit the details.
Finally, we have the following upper bound for log |¥X| — H (X).

Theorem 12. Under the assumptions of Theorem 9, we have the inequality

log || — H (X) < log {1 + % <31€| P> (P - |3le>}

1
log |1+ 7 x> (P —p)2:| .

0

IN

IN

Equality holds if and only if p (x) = ﬁ for all x € X.
The proof follows by Theorem 6 for ¢ = u.
Corollary 4. If, for a given € > 0, we have

2
ves —1,

O<P-p<—
| X]|

then
0<log|X|—H(X)<e.
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4. APPLICATIONS FOR THE MUTUAL INFORMATION

We consider the mutual information, which is a measure of the amount of infor-
mation that one random variable contains about another random variable. It is the
reduction of uncertainty of one random variable due to the knowledge of the other
[4, p. 18].

To be more precise, consider two random variables X and Y with a joint prob-
ability mass r (z,y) and marginal probability mass functions p (z) and ¢ (y), = €
X, y € Y. The mutual information is the relative entropy between the joint distri-
bution and the product distribution. That is,

r(z,y)
I(X;Y) = r(z,y)log | —2—
ze;g;ey i gL?(:v)Q(y)]

= D(r| pq).

in following theorems equality holds if and only if X and Y are independent.
The following result is well known [4, p. 27].

Theorem 13. (Non-negativity of mutual information) For any two random vari-
ables X, Y

(4.1) 1(X:Y) > 0.

The following counterpart of (4.1) holds.

Theorem 14. For any two random variables X,Y we have

2
(4.2) 0<I(X;Y)<log| 7 (@y)
(z,y)eX XY

Proof. Follows by the inequality (2.1), taking into account that
KL(r,pq) =1(X;Y),
and

Dy (r,pg) = Y 77«1(3;,@,) —1

(z,y)€XXY
We omit the details. O

Now we consider the following “mutual information” associated with the y%—distance
function. Therefore, for two random variables X and Y as above, consider the
x2—mutual information given by

(4.3) Le(X,Y) =Dy (rpg) = Y
(z,y)€XXY

It is obvious that I,2 (X,Y) > 0 and, by (4.2),

(X;Y) <log [I2 (X,Y) +1]

Y
0 < I
< Le(X,Y).

We now point out an upper bound for the x?—mutual information.
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Theorem 15. Let X and Y be as above. Suppose that

0<t< @Y

“r(@)q(y)

Then we have the inequality

<T forall (z,y) € X x Y.

Lo (X,Y) < T-o

The proof follows by Lemma 1 and we omit the details.

Using Theorem 5, we can state the following upper bound for the usual mutual
information I (X,Y).

Theorem 16. Let X and Y be as in Theorem 15. Then we have the inequality

(T )’

0<I(X;Y)<log T

+1

Equality holds if and only if X and Y are independent.
The following corollary also holds.
Corollary 5. Let X and Y be as in Theorem 15. If

pz:%(zl)

satisfies the inequality
p <2 —1+2\/ef (e - 1),
then we have the inequality
0<I(X;Y)<e.
Another bound for y2—mutual information is embodied in the following theorem.

Theorem 17. Let X and Y be as in Theorem 15. Then we have the inequality
1
Le(X,Y)<(1-t)(T—-1)< E(T—t)z.

The proof is obvious by Lemma 2 and we omit the details.
Lastly, by the use of Theorem 6, we have

Theorem 18. Under the assumptions of Theorem 15 for X and Y, we have the
bound:

1
0<I(X;Y)<log|[(1—1t)(T—1)+1] <log {4(3_70)2“] .
Corollary 6. For a given € > 0, if

0<T—t<2vVer —1,

then we have the inequality

0<I(X;Y)<e.
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