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NEW PROOFS FOR INEQUALITIES OF POWER-EXPONENTIAL
FUNCTIONS

BAI-NI GUO AND FENG QI

Abstract. Some new proofs for the following inequalities of power-exponential

functions are given
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where y > x > 0 and (x− 1)(y − 1) > 0.

1. Introduction

Using different techniques, Professor Dr. F. Qi and L. Debnath proved the
following in [6]:
Theorem 1. For y > x > 0 and (x− 1)(y − 1) > 0, we have
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For 0 < x < 1 < y, the right hand sides of (1) and (2) are reversed.
If 0 < x < 1 < y or 0 < x < y < e, then
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· y
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> 1. (3)

If e < x < y, then inequality (3) is reversed.
The following lemma is well-known:

Lemma 1 ([3, page 11]). If f(t) is an increasing integrable function on I, then the
arithmetic mean of the function f(t),

Φ(r, s) =


1

s− r

∫ s

r

f(t) dt, r 6= s,

f(r), r = s,
(4)

is also increasing with both r and s on I.
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The above lemma was reproved and used successfully to verify monotonicity,
logarithmic convexity, and other properties of the extended mean values, generalized
weighted mean values, and generalized abstracted mean values in [4, 5] and [7, 8].

In this paper, using Lemma 1 and other techniques, we will give some new proofs
for the inequalities of power-exponential functions presented in Theorem 1.

2. New proofs

2.1. New proof of the right hand side of inequality (1).

2.1.1. First proof. Using standard arguments, the right hand side of inequality (1)
can be rewritten as

(1− x) ln y > (1− y) lnx (5)
for y > x > 0 and (x− 1)(y − 1) > 0. Inequality (5) is equivalent to

ln y
1− y

>
lnx

1− x
. (6)

By Lemma 1, we may deduce that the function φ defined by

φ(u) =
lnu
u− 1

=
1

u− 1

∫ u

1

1
t

dt,

φ(1) = 1
(7)

is decreasing for u > 0. Therefore, inequality (6) holds and the right hand side of
inequality (1) follows.

2.1.2. Second proof. We can rewrite the right hand side of inequality (1) as follows.

y
1

y−1 < x
1

x−1 (8)

for y > x > 0 and (x− 1)(y − 1) > 0. This is equivalent to the function t
1

t−1 , and
then the function ln t

t−1 , decreasing in t > 0. This was done in [6].

2.2. New proofs of inequality (2).

2.2.1. First proof. It is easy to see that inequality (2) is equivalent to
y ln y
y − 1

>
x lnx
x− 1

(9)

for y > x > 0 and (x− 1)(y − 1) > 0.
From Lemma 1, we obtain that the function

ϕ(u) =
u lnu
u− 1

=
1

u− 1

∫ u

1

(1 + ln t) dt,

ϕ(1) = 1
(10)

is increasing for u > 0. Therefore, inequality (9) holds and (2) follows.

2.2.2. Second Proof. Inequality (2) can be rewritten as
(yy)x

(xx)y
>
yy

xx
, (11)

which is equivalent to
y

y
y−1 > x

x
x−1 (12)

for y > x > 0 and (x− 1)(y − 1) > 0. It suffices to prove that the function t ln t
t−1 is

increasing in t > 0. This was done in [6].
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2.3. New proof of the left hand side of inequality (1). The equivalent form
of the left hand side of inequality (1) is

xy − 1
yx − 1

>
lnx
ln y

(13)

for (x− 1)(y − 1) > 0 and y > x > 0.
Let ω(t) = xyt and ψ(t) = yxt for t ∈ [0, 1]. Direct computation yields

ω′(t) = xyt · y lnx,

ψ′(t) = yxt · x ln y.
(14)

Then, using the Cauchy’s mean-value theorem for differentiation and the right
inequality in (1), there exists a point ξ ∈ (0, 1), such that
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(15)

2.4. New proofs of inequality (3). Since the inequality xy < yx holds for 0 <
x < y < e and is reversed for e < x < y, (For more information about this
inequality, please refer to [1, 2, 3, 6]), from the first three lines in inequality (15),
we have that

xy − 1
yx − 1

=
(
xy

yx

)ξ

· y lnx
x ln y

<
y lnx
x ln y

(16)

holds for 0 < x < y < e and is reversed for e < x < y. This implies that the right
hand side of inequality (3) holds.

In [6], it was proved that the function t−1
ln t is increasing in t > 0. For y > 1 >

x > 0, we have yx > 1 > xy, and thus
yx − 1
ln yx

>
xy − 1
lnxy

. (17)

This implies that the right hand side of inequality (3) holds.
For 0 < x < y < e, we have yx > xy, and applying the same procedure produces

an identical result.
It was also proved in [6] that the function t−1

t ln t decreases in t > 0. Since the
inequality xy < yx holds for 0 < x < 1 < y and for 0 < x < y < e, then

yx − 1
yx ln yx

<
xy − 1
xy lnxy

. (18)

Simplification of inequality (18) gives us the left hand side of inequality (3).
Similar arguments enable us to establish the reversed inequalities.
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