

A Generalization of Multiplication Table

This is the Published version of the following publication

Hassani, Mehdi (2004) A Generalization of Multiplication Table. Research report collection, 7 (4).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17391/

A Generalization of Multiplication Table

Mehdi Hassani

Department of Mathematics
Institute for Advanced Studies in Basic Sciences
Zanjan, Iran

mhassani@iasbs.ac.ir

Abstract

In this note, we generalize the concept of multiplication table by connecting with lattice points. Then we introduce and proof a generalization of Erdös multiplication table theorem.

2000 Mathematics Subject Classification: 65A05.

Keywords: Multiplication Table.

Consider the following $n \times n$ Multiplication Table (we call after this $MT_{n \times n}$):

1	2	3		n
2	4	6		2n
3	6	9		3n
:	:	:	٠	:
n	2n	3n		n^2

One of the wonderful results about $MT_{n\times n}$ is the following theorem [2]:

Erdös Multiplication Table Theorem. Suppose $M(n) = \#\{ij|1 \le i, j \le n\}$, then

$$\lim_{n\to\infty}\frac{M(n)}{n^2}=0.$$

In fact M(n) is the number of distinct numbers that you can find in $MT_{n\times n}$. Asymptotic behavior of M(n) is an open problem! The following table include some computational results about M(n) by Maple software.

n	M(n)	$rac{M(n)}{n^2} pprox$
10	42	0.4200000000
50	800	0.3200000000
100	2906	0.2906000000
200	11131	0.2782750000
1000	248083	0.2480830000
2000	959759	0.2399397500
2500	1483965	0.2374344000
3000	2121063	0.2356736667
4000	3723723	0.2327326875

It is shown that [1] there is some constant c > 0 such that

$$M(n) = O\left(\frac{n^2}{\log^c n}\right).$$

Now, consider lattice points on a quarter of plan;

$$L_2(n) := \{(a, b) \in \mathbb{N}^2 : 1 \le a, b \le n\}.$$

Clearly, $MT_{n\times n}$ is generated by multiplying point's entries in $L_2(n)$. This idea is generalizable! Consider the following lattice in \mathbb{R}^k :

$$L_k(n) := \{(a_1, a_2, \dots, a_k) \in \mathbb{N}^k : 1 \le a_1, a_2, \dots, a_k \le n\}.$$

Generalized Multiplication Table. A k-dimensional multiplication table, denoted by $\mathrm{MT}_{n\times n}^k$, is a k-dimensional array of n^k numbers in \mathbb{R}^k in which every number generated by multiplying entries of corresponding lattice point in $L_k(n)$.

Theorem 1 Suppose

$$M_k(n) = \#\{a_1 a_2 \cdots a_k : a_1, a_2, \cdots, a_k \in \mathbb{N}, 1 \le a_1, a_2, \cdots, a_k \le n\}.$$

Then we have

$$\lim_{n \to \infty} \frac{M_k(n)}{n^k} = 0,$$

and more precisely, there is some constant c > 0 such that

$$M_k(n) = O\left(\frac{n^k}{\log^c n}\right).$$

Proof: According to the definition of $M_k(n)$, we have

$$M_{k+1}(n) < nM_k(n)$$
.

Considering this fact with Erdös's result and with Linnik-Vinogradov's result yield the results of theorem, respectively.

We end this short note with the following table inclosing the values of $M_k(n)$ for some k and n. For generating this table we used the following kind of program in Maple (for example for computing $M_3(100)$ here):

with(stats):

n = 10:

M[3](n):=describe[count](convert(seq(seq(i*j*k,i=1..n),j=1..n),k=1..n),i|st'));

n	$M_2(n)$	$M_3(n)$	$M_4(n)$	$M_5(n)$
10	42	120	275	546
20	152	732	2670	8052
30	308	1909	8679	31856
40	517	3919	21346	OCCOC*
50	800	7431	49076	OCCOC*

^{*}Out of our computer's computational capacity!

References

- [1] http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi
- [2] C. Pomerance, Paul Erdös, Notices of Amer. Math. Soc., vol. 45, no. 1, 1998, 19-23.