

On the value distribution of phi (z)[f(z)]^{n-1}f^{(k)}(z)

This is the Published version of the following publication

Yu, Kit-Wing (2001) On the value distribution of phi $(z)[f(z)]^{n-1}f^{(k)}(z)$. RGMIA research report collection, 4 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17392/

ON THE VALUE DISTRIBUTION OF $\varphi(z)f^{n-1}(z)f^{(k)}(z)$

KIT-WING YU

Abstract In this paper, the value distribution of $\varphi(z)f^{n-1}(z)f^{(k)}(z)$ is studied, where f(z) is a transcendental meromorphic function, $\varphi(z) (\neq 0)$ is a function such that $T(r,\varphi) = o(T(r,f))$ as $r \to +\infty$, n and k are positive integers such that n = 1or $n \ge k+3$. This generalizes a result of Hiong.

1. INTRODUCTION AND THE MAIN RESULT

In 1940, Milloux [5] showed that

Theorem A. Let f(z) be a non-constant meromorphic function and k be a positive integer. Further, let

$$\phi(z) = \sum_{i=0}^{k} a_i(z) f^{(i)}(z),$$

where $a_i(z)(i = 0, 1, ..., k)$ are small functions of f(z). Then we have

$$m\left(r,\frac{\phi}{f}\right) = S(r,f)$$

and

$$T(r,\phi) \le (k+1)T(r,f) + S(r,f)$$

as $r \to +\infty$.

From this, it is easily for us to derive the following inequality which states a relationship between T(r, f) and the 1-point of the derivatives of f. For the proof, please see [4], [7] or [8],

Theorem B. Let f(z) be a non-constant meromorphic function and k be a positive integer. Then

$$T(r,f) \leq \overline{N}(r,f) + N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f^{(k)}-1}\right)$$
$$-N\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f)$$

as $r \to +\infty$.

Date: April 30, 2001.

2000 Mathematics Subject Classification. Primary 30D35, 30A10.

Key words and phrases. derivatives, inequality, meromorphic functions, small functions, value distribution. This paper is typeset using A_{MS} -IAT_EX. In fact, the above estimate involves the consideration of the zeros and poles of f(z). Then a natural question is: Is it possible to use only the counting functions of the zeros of f(z) and an *a*-point of $f^{(k)}(z)$ to estimate the function T(r, f)? Hiong proved that the answer to this question is yes. Actually, Hiong [6] obtained the following inequality

Theorem C. Let f(z) be a non-constant meromorphic function. Further, let a, b and c be three finit complex numbers such that $b \neq 0$, $c \neq 0$ and $b \neq c$. Then

$$\begin{split} T(r,f) &< N\left(r,\frac{1}{f-a}\right) + N\left(r,\frac{1}{f^{(k)}-b}\right) + N\left(r,\frac{1}{f^{(k)}-c}\right) \\ &- N\left(r,\frac{1}{f^{(k+1)}}\right) + S(r,f) \end{split}$$

as $r \to +\infty$.

Following this idea, a natural question to Theorem C is: Can we extend the three complex numbers to small functions of f(z)? In [9], by studying the zeros of the function f(z)f'(z) - c(z), where c(z) is a small function of f(z), the author generalized the above inequality under an extra condition on the derivatives of $f^{(k)}(z)$. In fact, we have

Theorem D. Suppose that f(z) is a transcendental meromorphic function and that $\varphi(z) (\not\equiv 0)$ is a meromorphic function such that $T(r, \varphi) = o(T(r, f))$ as $r \to +\infty$. Then for any finite non-zero distinct complex numbers b and c and any positive integer k such that $\varphi(z)f^{(k)}(z) \not\equiv \text{ constant}$, we have

$$\begin{split} T(r,f) &< N\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{\varphi f^{(k)} - b}\right) + N\left(r,\frac{1}{\varphi f^{(k)} - c}\right) \\ &- N(r,f) - N\left(r,\frac{1}{(\varphi f^{(k)})'}\right) + S(r,f) \end{split}$$

as $r \to +\infty$.

In this paper, we are going to show that Theorem D is still valid for all positive integers k. As a result, this generalizes Theorem C to small functions completely. More generally, we show that **Theorem.** Suppose that f(z) is a transcendental meromorphic function and that $\varphi(z) (\neq 0)$ is a meromorphic function such that $T(r, \varphi) = o(T(r, f))$ as $r \to +\infty$. Suppose further that b and c are any finite non-zero distinct complex numbers, and k and n are positive integers. If n = 1 or $n \geq k+3$, then we have

$$T(r,f) < N\left(r,\frac{1}{f}\right) + \frac{1}{n} \left[N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)} - b}\right) + N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)} - c}\right) \right] - \frac{1}{n} \left[N(r,f) + N\left(r,\frac{1}{(\varphi f^{n-1}f^{(k)})'}\right) \right] + S(r,f)$$
(1)

as $r \to +\infty$.

If f(z) is entire, then (1) is true for all positive integers $n \neq 2$.

As an immedicate application of our theorem, we have

Corollary 1. If we take n = 1 in the theorem, then we have Theorem D.

Corollary 2. If we take n = 1, $\varphi(z) \equiv 1$ and f(z) = g(z) - a, where a is any complex number, then we obtain Theorem C.

Remark 1. We shall remark that our main theorem and corollaries are also valid if f(z) is rational since $\varphi(z) \equiv constant$ and $\varphi(z)f^{n-1}(z)f^{(k)}(z) \neq constant$ in this case.

Here, we assume that the readers are familiar with the basic concepts of the Nevanlinna value distribution theory and the notations m(r, f), N(r, f), $\overline{N}(r, f)$, T(r, f), S(r, f) and etc., see e.g. [1].

2. Lemmae

For the proof of the main result, we need the following three lemmae.

Lemma 1. [3] If F(z) is a transcendental meromorphic function and K > 1, then there exists a set M(K) of upper logarithmic density at most

$$\delta(K) = \min\{(2e^{K-1} - 1)^{-1}, (1 + e(K - 1))\exp(e(1 - K))\}\$$

such that for every positive integer q,

$$\overline{\lim_{r \to \infty, r \notin M(K)}} \frac{T(r, F)}{T(r, F^{(q)})} \le 3eK.$$
(2)

If F(z) is entire, then we can replace 3eK by 2eK in (2).

Lemma 2. Suppose that f(z) is a transcendental meromorphic function and that $\varphi(z) (\not\equiv 0)$ is a meromorphic function such that $T(r, \varphi) = o(T(r, f))$ as $r \to +\infty$. Suppose further that k and n are positive integers. If n = 1 or $n \ge k + 3$, then $\varphi(z) f^{n-1}(z) f^{(k)}(z) \not\equiv constant$.

Proof: Without loss of generality, we suppose that the constant is 1. If n = 1, then $\varphi f^{(k)} \equiv 1$. Hence, $T(r, \varphi) = T(r, f^{(k)}) + O(1)$ as $r \to +\infty$ and this implies that

$$\overline{\lim}_{r \neq M(K)} \frac{T(r, f)}{T(r, f^{(k)})} = \infty.$$

This contradicts Lemma (1).

If $n \ge k+3$, then $T(r, \varphi f^{(k)}) = (n-1)T(r, f)$ as $r \to +\infty$ and

r-

$$(n-1)T(r,f) \le T(r,f^{(k)}) + S(r,f)$$
(3)

as $r \to +\infty$. On the other hand,

$$T(r, f^{(k)}) \le (k+1)T(r, f) + S(r, f)$$
(4)

as $r \to +\infty$. By (3) and (4), we have $n \le k+2$, a contradiction.

Hence, we have $\varphi f^{n-1} f^{(k)} \not\equiv constant$ in both cases and the lemma is proven.

Lemma 3. If f(z) is entire, then $\varphi(z)f^{n-1}(z)f^{(k)}(z) \neq \text{constant for all positive integers } n(\neq 2)$ and k.

Proof: For the case n = 1, we still have $T(r, \varphi) = T(r, f^{(k)}) + O(1)$ as $r \to +\infty$, so a contradiction to Lemma (1) again.

For $n \geq 3$, instead of (4), we have

$$T(r, f^{(k)}) \le T(r, f) + S(r, f)$$
 (5)

as $r \to +\infty$.

So by (3) and (5), we have $n \leq 2$, a contradiction.

3. Proof of the main result

Proof: First of all, by the given conditions and Lemma 2, we know that $\varphi f^{n-1} f^{(k)} \neq constant$ for $n \geq 1$. Therefore, we have

$$m\left(r,\frac{1}{\varphi f^n}\right) \le m\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}}\right) + m\left(r,\frac{f^{(k)}}{f}\right) + O(1).$$
(6)

From

$$\begin{split} m\left(r,\frac{1}{\varphi f^n}\right) &= T(r,\varphi f^n) - N\left(r,\frac{1}{\varphi f^n}\right) + O(1),\\ m\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}}\right) &= T(r,\varphi f^{n-1}f^{(k)}) - N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}}\right) + O(1), \end{split}$$

and (6), we have

$$T(r,\varphi f^{n}) \leq N\left(r,\frac{1}{\varphi f^{n}}\right) + T(r,\varphi f^{n-1}f^{(k)}) - N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}}\right) + m\left(r,\frac{f^{(k)}}{f}\right) + O(1).$$
(7)

Since $\varphi(z)f^{n-1}(z)f^{(k)} \not\equiv constant$, from the second fundamental theorem,

$$T(r,\varphi f^{n-1}f^{(k)}) < N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}}\right) + N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}-b}\right) + N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}-c}\right) - N_1(r) + S(r,\varphi f^{(k)})$$
(8)

as $r \to +\infty$, where b and c are two non-zero distinct complex numbers and, as usual, $N_1(r)$ is defined as

$$N_1(r) = 2N(r,\varphi f^{n-1}f^{(k)}) - N(r,(\varphi f^{n-1}f^{(k)})') + N\left(r,\frac{1}{(\varphi f^{n-1}f^{(k)})'}\right)$$

Let z_0 be a pole of order $p \ge 1$ of f. Then $f^{n-1}f^{(k)}$ and $(f^{n-1}f^{(k)})'$ have a pole of order k + npand k + np + 1 at z_0 respectively. Thus $2(k + np) - (k + np + 1) = k + np - 1 \ge p$ and

$$N_1(r) \ge N(r, f) + N\left(r, \frac{1}{(\varphi f^{n-1} f^{(k)})'}\right) + S(r, f).$$
(9)

It is clear that $S(r, f^{(k)}) = S(r, f)$ and $m\left(r, \frac{f^{(k)}}{f}\right) = S(r, f)$. Thus by (7), (8) and (9),

$$\begin{split} T(r,\varphi f^n) &< N\left(r,\frac{1}{\varphi f^n}\right) + N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}-b}\right) + N\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}-c}\right) \\ &- N(r,f) - N\left(r,\frac{1}{(\varphi f^{n-1}f^{(k)})'}\right) + S(r,f) \end{split}$$

as $r \to +\infty$. Since $T(r, \varphi) = o(T(r, f))$ as $r \to +\infty$, we have the desired result.

If f is entire, then by Lemma (??), we still have $\varphi f^{n-1} f^{(k)} \neq constant$ for all positive integers $n \neq 2$, (8) and (9). Thus the same argument can be applied and the same result is obtained.

4. Concluding remarks and a conjecture

Remark 2. We expect that our theorem is also valid for the case n = 2 if f(z) is entire.

Remark 3. In [10], Zhang studied the value distribution of $\varphi(z)f(z)f'(z)$ and he obtained the following result: If f(z) is a non-constant meromorphic function and $\varphi(z)$ is a non-zero meromorphic function such that $T(r, \varphi) = S(r, f)$ as $r \to +\infty$, then

$$T(r,f) < \frac{9}{2}\overline{N}(r,f) + \frac{9}{2}\overline{N}\left(r,\frac{1}{\varphi f f' - 1}\right) + S(r,f)$$

as $r \to +\infty$.

Hence, by this remark, we expect the following conjecture would be true.

Conjecture. Let n and k be positive integers. If n = 1 or $n \ge k+3$, f(z) is a non-constant meromorphic function and $\varphi(z)$ is a non-zero meromorphic function such that $T(r, \varphi) = S(r, f)$ as $r \to +\infty$, then

$$T(r,f) < \frac{9}{2}\overline{N}(r,f) + \frac{9}{2}\overline{N}\left(r,\frac{1}{\varphi f^{n-1}f^{(k)}-1}\right) + S(r,f)$$

as $r \to +\infty$.

KIT-WING YU

References

- [1] W. K. Hayman, Meromorphic functions, Oxford, Clarendon Press, 1964.
- [2] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70 (1959), 9-42.
- [3] W. K. Hayman and J. Miles, On the growth of a meromorphic function and its derivatives, Complex Variables 12 (1989), 245-260.
- [4] H. Milloux, Extension d'un théorème de M. R. Nevanlinna et applications, Act. Scient. et Ind. no.888, 1940.
- [5] H. Milloux, Les fonctions méromorphes et leurs dérivées, Paris, 1940.
- [6] K. L. Hiong, Sur la limitation de T(r, f) sans intervention des pôles, Bull. Sci. Math., 80 (1956), 175-190.
- [7] L. Yang, Value distribution theory and its new researches (Chinese), Beijing, 1982.
- [8] H. X. Yi and C. C. Yang, On the uniqueness theory of meromorphic functions (Chinese), Science Press, China, 1996.
- [9] K. W. Yu, A note on the product of a meromorphic function and its derivative, to appear in Kodai Math. J.
- [10] Q. D. Zhang, On the value distribution of $\varphi(z)f(z)f'(z)$ (Chinese), Acta Math. Sinica 37 (1994), 91-97.

UNITED CHRISTIAN COLLEGE, 9 & 11 TONG YAM STREET, TAI HANG TUNG,, SHAMSHUIPO, KOWLOON, HONG KONG, CHINA

 $E\text{-}mail\ address: \texttt{maykw00@alumni.ust.hk}\ \texttt{or}\ \texttt{kitwing@hotmail.com}$