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A GENERALIZATION OF KY FAN’S INEQUALITY

TSZ HO CHAN AND PENG GAO

Abstract. Let Pn,r(x) be the generalized weighted means. Let F (x) be a C1 function, y = y(x) an
implicit decreasing function defined by f(x, y) = 0 and 0 < m < M ≤ m′, n ≥ 2, xi ∈ [m, M ], yi ∈
[m′, M ′]. Then for −1 ≤ r ≤ 1, if fx/fy ≤ 1

|F (Pn,1(y))− F (Pn,r(y))

F (Pn,1(x))− F (Pn,r(x))
| <

Maxm′≤ξ≤M′ |F ′(ξ)|
Minm≤η≤M |F ′(η)| · M

m′

A similar result exists for fx/fy ≥ 1. By specifying f(x, y) and F (x), we get various generalizations
of Ky Fan’s inequality. We also present some results on the comparison of P α

n,s(y) − P α
n,r(y) and

P α
n,s(x)− P α

n,r(x) for s ≥ r, α ∈ R.

1. Introduction

Let Pn,r(x) be the generalized weighted means: Pn,r(x) = (
∑n

i=1 ωix
r
i )

1
r , where wi, 1 ≤ i ≤ n

are positive real numbers with
∑n

i=1 wi = 1 and x = (x1, x2, · · · , xn). Here we denote Pn,0(x) as
limr→0+ Pn,r(x). Let f(x, y) be a real function, we write f(x,y) = 0 for y = (y1, y2, · · · , yn) such
that f(xi, yi) = 0, 1 ≤ i ≤ n.

In this paper, we always assume x1 ≤ x2 ≤ · · · ≤ xn and denote x1 = m,xn = M , y1 = M ′, yn =
m′. We also write An = Pn,1(x), Gn = Pn,0(x),Hn = Pn,−1(x), A

′
n = Pn,1(y), G

′
n = Pn,0(y),H

′
n =

Pn,−1(y).
The following inequality, originally due to Ky Fan, was first published in the monograph Inequal-

ities by Beckenbach and Bellman [6, p.5]:

Theorem I. For f(x, y) = x + y − 1, xi ∈ [0, 1/2],

(1.1)
A′n
G′

n

≤ An

Gn

with equality holding if and only if x1 = · · · = xn.

Ky Fan’s inequality has evoked the interest of several mathematicians and many papers appeared
providing new proofs, generalizations and sharpenings of (1.1). We refer the reader to the survey
article[3] and the references therein.

Under the same condition of theorem I, the following additive analogue of (1.1) was proved by
H. Alzer[1]:

Theorem II.

(1.2) A
′
n −G

′
n ≤ An −Gn

with equality holding if and only if x1 = · · · = xn.

Refinements of (1.2), (1.1) were obtained by H.Alzer([4], [5]) in the following two theorems,
respectively:
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Theorem III. Let xi ∈ (0, 1
2 ] (i = 1, 2, · · · , n;n ≥ 2) and m < M ,

(1.3)
m

1−m
<

A′n −G′
n

An −Gn
<

M

1−M

Theorem IV. Let xi ∈ [a, b] (i = 1, 2, · · · , n; 0 < a < b < 1),

(1.4) (
An

Gn
)(

a
1−a

)2 <
A′n
G′

n

< (
An

Gn
)(

b
1−b

)2

Recently, A.M. Mercer obtained the following generalized Ky Fan’s inequality[8]:
Theorem V. For f(x, y) = xp + yp − 1, p ≥ 1, n ≥ 2, xi ∈ [0, 2−(1/p)],

(1.5) Pn,1(x)Pn,0(y) ≥ Pn,1(y)Pn,0(x)

with equality holding if and only if x1 = · · · = xn.
In this paper, we will present the following theorem which will provide essentially a unified

treatment of Theorem I - V and it also gives new extensions of Ky Fan’s inequality:
Theorem 1.1. Let F (x) be a C1 function, y = y(x) an implicit decreasing function defined by
f(x, y) = 0 and 0 < m < M ≤ m′, n ≥ 2. Then for −1 ≤ r ≤ 1, if fx/fy ≤ 1

(1.6) |F (Pn,1(y))− F (Pn,r(y))
F (Pn,1(x))− F (Pn,r(x))

| <
Maxm′≤ξ≤M ′ |F ′(ξ)|
Minm≤η≤M |F ′(η)|

· M

m′

If fx/fy ≥ 1

(1.7)
Minm′≤ξ≤M ′ |F ′(ξ)|
Maxm≤η≤M |F ′(η)|

· m

M ′ < |F (Pn,1(y))− F (Pn,r(y))
F (Pn,1(x))− F (Pn,r(x))

|

provided the denominators on both sides are nonzero.
In section 3, applications to Ky Fan’s inequality will be given by specifying the functions

f(x, y), F (x).
More generally, we can talk about the comparison of Pα

n,s(y)−Pα
n,r(y) and Pα

n,s(x)−Pα
n,r(x) for

real α. The case of A
′α
n −G

′α
n and Aα

n−Gα
n was discussed in [5] and we will give some results related

to the general case in section 4.

2. Proof of Theorem 1.1

Since the proofs of (1.6) and (1.7) are very similar, we only prove (1.6) for r 6= 0 here, the case
r = 0 is also similar. We will consider the case F (x) = x first, We define for 1 ≤ i ≤ n − 1 and
0 < x < xi+1:

xi = (x, · · · , x, xi+1, · · · , xn)
yi = (y, · · · , y, yi+1, · · · , yn)

D(xi) = xn(Pn,1(xi)− Pn,r(xi))− yn(Pn,1(yi)− Pn,r(yi))

g(xi) = xnPn,r(xi)1−r · xr−1 + ynPn,r(yi)1−r · yr−1

and Di(x) = D(xi), gi(x) = g(xi).
We need to show D1(x1) > 0 and differentiation yields

Ω−1
i D′

i(x) = xn(1− Pn,r(xi)1−r · xr−1) + yn
fx

fy
(1− Pn,r(yi)1−r · yr−1)

≤ xn(1− Pn,r(xi)1−r · xr−1) + yn(1− Pn,r(yi)1−r · yr−1)
= xn + yn − gi(x)

where Ωi =
∑i

j=1 ωi.



A GENERALIZATION OF KY FAN’S INEQUALITY 3

Consider

g′i(x) = −(1− r)
n∑

j=i+1

ωj [(
Pn,r(xi)

x
)1−2r ·

xnxr
j

xr+1
− fx

fy
· (Pn,r(yi)

y
)1−2r ·

ynyr
j

yr+1
]

≤ −(1− r)
n∑

j=i+1

ωj [(
Pn,r(xi)

x
)1−2r ·

xnxr
j

xr+1
− (

Pn,r(yi)
y

)1−2r ·
ynyr

j

yr+1
] < 0

The last inequality holds, since when −1 ≤ r ≤ 1
2 , k = i + 1, · · · , n, we have

(
Pn,r(xi)

x
)1−2r ≥ (

Pn,r(yi)
y

)1−2r,
xk

x
>

yk

y
,
xn

yn
· (xj

yj
)r ≥ (

xj

yj
)1+r > (

x

y
)1+r

when 1
2 ≤ r ≤ 1, we have

(
Pn,r(xi)

x
)1−2r ≥ (

xn

x
)1−2r, (

Pn,r(yi)
y

)1−2r ≤ (
yn

y
)1−2r

and (xn
yn

)2−2r · (xj

yj
)r ≥ (xj

yj
)2−2r · (xj

yj
)r = (xj

yj
)2−r > (x

y )2−r.
Thus gi(x) > gi(xi+1) = gi+1(xi+1) ≥ gi+1(xi+2) ≥ · · · ≥ gn−1(xn−1) ≥ gn−1(xn) = xn + yn,

which implies D′
i(x) < 0 for all x ∈ (0, xi+1), so

(2.1) D1(x1) ≥ D1(x2) = D2(x2) ≥ D2(x3) ≥ · · · ≥ Dn−1(xn−1) ≥ Dn−1(xn) = 0

Since Di is strictly decreasing, we conclude from m < M that D1(x1) > 0.
Next, for arbitrary F , by using the mean value theorem, (1.6) is equivalent to

F (Pn,1(y))− F (Pn,r(y))
F (Pn,1(x))− F (Pn,r(x))

=
F ′(ξ)
F ′(η)

· Pn,1(y)− Pn,r(y)
Pn,1(x)− Pn,r(x)

where m′ ≤ ξ ≤ M ′,m ≤ η ≤ M . Taking absolute value and applying the result for F (x) = x, we
get the desired inequality (1.6). This completes the proof. 2

3. Consequences of Theorem 1.1

In this section, by choosing different functions f(x, y), F (x), we will give several results of gen-
eralized Ky Fan’s inequality of type (1.6). There are corresponding ones of type (1.7) and we leave
the statements to the reader. To simplify expressions, we define:

(3.1) ∆s,r,α =
Pα

n,s(y)− Pα
n,r(y)

Pα
n,s(x)− Pα

n,r(x)

with

∆s,r,0 = (ln
Pn,s(y)
Pn,r(y)

)/(ln
Pn,s(x)
Pn,r(x)

)

Also in order to include the case of equality for various inequalities in our discussion, we define
0/0 = 1 from now on.

As a generalization of theorem III, we have:
Corollary 3.1. Let f(x, y) = axp + byp − 1, 0 < a ≤ b, p ≥ 1, 0 < m < M ≤ (a + b)−(1/p), n ≥ 2.
For α ≤ 1, let F (x) = lnx, α = 0, or F (x) = xα, otherwise. Then for −1 ≤ r < 1

(3.2) ∆1,r,α < (
M

m′ )
2−α

Proof: This follows from fx/fy ≤ 1,Maxm′≤ξ≤M ′ |F ′(ξ)|/Minm≤η≤M |F ′(η)| ≤ (M/m′)1−α. 2

We remark here in corollary 3.1, the case α = 0 gives Pn,1(y)
Pn,r(y) < (Pn,1(x)

Pn,r(x))
( M

m′ )
2

, which partially

generalizes theorem IV. Also for the case α = 0, by only assuming xi ∈ [0, (a + b)−(1/p)], we get
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Pn,1(y)
Pn,r(y) ≤

Pn,1(x)
Pn,r(x) for −1 ≤ r ≤ 1 with the equality holding if and only if x1 = · · · = xn. This is a

generalization of theorem V.
As a generalization of theorem II, we have:

Corollary 3.2. Let f(x, y) = axp + byp − 1, 0 < a ≤ b, p ≥ 1, xi ∈ [0, (a + b)−
1
p ]. For α ≤ 1, let

F (x) = lnx, α = 0 and F (x) = xα, otherwise. Then for −1 ≤ r ≤ p

(3.3) 0 ≤ ∆1,r,α ≤ 1

with equality holding if and only if x1 = · · · = xn.
Proof: The first inequality is trivial and the second inequality for the case −1 ≤ r ≤ 1 follows
from (3.2) by noticing M/m′ ≤ 1. For 1 ≤ r ≤ p , we will prove the case α = 1 and the general case
follows from the using of the mean value theorem. We define for 1 ≤ i ≤ n− 1 and xn−i < x ≤ M

xi = (x1, · · · , xn−i, x, · · · , x)
yi = (y1, · · · , yn−i, y, · · · , y)

E(xi) = Pn,r(xi)−An(xi)− Pn,r(yi) + An(yi)

and Ei(x) = E(xi).
We need to show E1(xn) ≥ 0, notice first for x1 ≤ · · · ≤ xn

(3.4) Pn,r(x)1−r · xr−1
n + Pn,r(y)1−r · yr−1

n ≥ 2(
Pn,r(x)Pn,r(y)

xnyn
)

1−r
2

and

(3.5)
Pn,r(x)Pn,r(y)

xnyn
= [

n∑
i=1

ω2
i (

xiyi

xnyn
)r +

∑
1≤i<j≤n

ωiωj((
xiyj

xnyn
)r + (

xjyi

xnyn
)r)]

1
r

Since the function x[1b (1− axp)]
1
p is increasing for 0 ≤ xp ≤ 1

2a , we have ( xiyi

xnyn
)r ≤ 1 for all i.

Now for fixed i ≤ j, define
h(x) = 2xr

jy
r
j − yrxr

j − xryr
j

then h′(xi) ≤ rxp−1
i yr−p

i xr
j − rxr−1

i yr
j ≤ 0 since r ≤ p and xi

yi
≤ 1 ≤ yj

xj
. Thus h(xi) = 2xr

jy
r
j −

yr
i x

r
j − xr

i y
r
j ≥ h(xj) = 0,which implies

(3.6) (
xiyj

xnyn
)r + (

xjyi

xnyn
)r ≤ (

xiyj

xjyj
)r + (

xjyi

xjyj
)r = (

xi

xj
)r + (

yi

yj
)r ≤ 2

Back to (3.5), we have:

Pn,r(x)Pn,r(y)
xnyn

= ((
n∑

i=1

ωi
xr

i

xr
n

)(
n∑

i=1

ωi
yr

i

yr
n

))
1
r ≤ (

n∑
i=1

ω2
i +

∑
i<j

2ωiωj)
1
r = 1

In particular this gives(where Ω−1
i =

∑n
k=n−i+1 ωk)

Ω−1
i E′

i(x) = Pn,r(xi)1−r · xr−1 − 1 +
a

b
· xp−1

yp−1
(Pn,r(yi)1−r · yr−1 − 1)

≥ Pn,r(xi)1−r · xr−1 − 1 + Pn,r(yi)1−r · yr−1 − 1 ≥ 0(3.7)

Thus we deduce:

E1(xn) ≥ E1(xn−1) = E2(xn−1) ≥ · · · ≥ En−1(x2) ≥ En−1(x1) = 0

A close look of the proof tells us the equality holds in (3.3) if and only if x1 = · · · = xn and the
proof is completed. 2

As a special case of the above corollary, we have A
′
n − H

′
n ≤ An − Hn for generalized weighted

means, a proof of this for the special case ω1 = · · · = ωn was given in [2].
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We remark here if 0 < b < a, then in general Pn,1(x) − Pn,r(x) and Pn,1(y) − Pn,r(y) are not
comparable. For example, if we let a = 2, b = 1, n = 2, ω1 = ω2, then when x1 = 1

3 , x2 = 1
27 ,

A2 − G2 = A′2 − G′
2; when x1 = 1

3 , x2 = 0, A2 − G2 > A′2 − G′
2 and when x1 = 1

3 , x2 = 1
4 ,

A2 −G2 < A′2 −G′
2.

The classical case of Ky Fan’s inequality corresponds to the choice of f(x, y) = x + y − 1 where
fx/fy = 1. In this case both inequalities (1.6) and (1.7) hold and combinations of previous results
yield:
Corollary 3.3. For f(x, y) = x + y − 1, 0 < m < M ≤ 1

2 , n ≥ 2 then for −1 ≤ r ≤ 1, α ≤ 1

(3.8) (
m

1−m
)2−α < ∆1,r,α < (

M

1−M
)2−α

4. The Comparison of Pα
n,s(y)− Pα

n,r(y) and Pα
n,s(x)− Pα

n,r(x)

In this section, fixing f(x, y) = x+y−1, xi ∈ [0, 1/2], we give some results relating the comparison
of Pα

n,s(y)− Pα
n,r(y) and Pα

n,s(x)− Pα
n,r(x), where s > r, α ∈ R.

Our first result is the following lemma:
Lemma 4.1. Given s > r, if for α0 ∈ R, we have ∆s,r,α0 ≤ (≥)1 with equality holding if and
only if x1 = · · · = xn, then for all α ≤ (≥)α0, ∆s,r,α ≤ (≥)1 with equality holding if and only if
x1 = · · · = xn.
Proof: Let i = s, r,v = x,y, we can assume Pn,i(v) 6= 0. If α0 6= 0, write Pα

n,s(v) − Pα
n,r(v) =

(Pα0
n,s(v))α/α0−(Pα0

n,r(v))α/α0 = α
α0

ξα−α0(Pα0
n,s(v)−Pα0

n,r(v)) with Pn,r(v) < ξ < Pn,s(v), where when
α = 0, we define (Pα0

n,i(v))0/α0 = lnPα0
n,i(v). By taking the quotient, we get the desired result. If

α0 = 0, we write Pα
n,i(v) = eα ln Pn,i(v) and proceed similarly. 2

For any s ≥ r, the above lemma enables us to define a number sup(α)s,r such that ∆s,r,α ≤ 1
holds for all α < sup(α)s,r. A special case of this, sup(α)1,0 = 1 was determined in [5].

The inequality ∆s,r,α ≥ 1 seems unusual but indeed it can happen, even for the case r = 1.
Indeed we have the following theorem:
Theorem 4.1. ∆s,1,α ≥ 1 for α ≥ s ≥ 2; ∆s,1,α ≤ 1 for 1 < s ≤ 2, α ≤ s; ∆1,r,α ≤ 1 for α ≤ r < 0,
in all cases the equality holds if and only if x1 = · · · = xn.
Proof: From lemma 4.1, it suffices to prove the theorem for α = s or r. In this case, for x ∈ [0, 1

2 ],
consider the function f(x) = xt−(1−x)t with f ′′(x) = t(t−1)(xt−2−(1−x)t−2). By considering the
sign f ′′(x) for various t and using corresponding Jensen’s inequality: (

∑
ωif(xi) ≥ (≤)f(

∑
ωixi)

, the above assertions follow. 2
In theorem 4.1, by restricting xi ∈ [m,M ], 0 < m < M ≤ 1

2 , we will get results similar to
corollary 3.3 and we will leave the statements for the reader.

We have omitted the case 0 < r < 1 for theorem 4.1 since we have a stronger result as corollary
3.2. We point out an interesting phenomena here that when s = 2, ∆2,1,α ≥ (≤)1 for α ≥ (≤)2.
We also remark here the proof of (1.1) follows by applying Jensen’s inequality to the function
lnx− ln(1− x) for x ∈ [0, 1

2 ].
Notice Pn,s(x)− Pn,r(x) ≥ Pn,s(y)− Pn,r(y) does not hold for arbitrary real numbers s ≥ r, for

otherwise we will have Pn,s(x)/Pn,r(x) ≥ Pn,s(y)/Pn,r(y) which is not true in general according to
a nice result by J. Chen and Z.Wang[7]:
Theorem VI. For arbitrary n, s > r, xi ∈ (0, 1/2], ∆s,r,0 ≤ 1 holds if and only if |r+s| ≤ 3, 2r/r ≥
2s/s when r > 0, r2r ≤ s2s when s < 0.

By using lemma 4.1 and the above theorem, we get the following theorem:
Theorem 4.2. sup(α)s,r ≥ 0 if |r + s| ≤ 3, 2r/r ≥ 2s/s when r > 0, r2r ≤ s2s when s < 0.
Moreover, sup(α)1,r = 1 for −1 ≤ r ≤ 1 and sup(α)s,1 = s for 1 < s ≤ 2.
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Proof: The first assertion follows from theorem VI and the definition for sup(α)s,r. From corollary
3.2, we know sup(α)1,r ≥ 1 for −1 ≤ r ≤ 1 and when α > 1, let x1 = 1/2, x2 = · · · = xn = ε, and

f(ω1, ε) = (Pα
n,1(x)− Pα

n,r(x))− (Pα
n,1(y)− Pα

n,r(y))

A simple calculation reveals that there exist positive real numbers δ and η such that we have
f(ω1, ε) < 0, if 0 < ω1 < δ and 0 < ε < η and f(ω1, ε) > 0, if 1− δ < ω1 < 1 and 0 < ε < η. Similar
conclusion holds for sup(α)s,1 and this completes the proof. 2
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