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ON THE LUPAŞ-BEESACK-PEČARIĆ INEQUALITY FOR
ISOTONIC LINEAR FUNCTIONALS

S.S. DRAGOMIR

Abstract. Some inequalities related to the Lupaş-Beesack-Pečarić result for

m−Ψ−convex and M −Ψ−convex functions and applications are given.

1. Introduction

Let L be a linear class of real-valued functions g : E → R having the properties
(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R;
(L2) 1 ∈ L, i.e., if f0 (t) = 1, t ∈ E then f0 ∈ L.
An isotonic linear functional A : L → R is a functional satisfying
(A1) A (αf + βg) = αA (f) + βA (g) for all f, g ∈ L and α, β ∈ R.
(A2) If f ∈ L and f ≥ 0, then A (f) ≥ 0.

The mapping A is said to be normalised if
(A3) A (1) = 1.

Isotonic, that is, order-preserving, linear functionals are natural objects in analy-
sis which enjoy a number of convenient properties. Thus, they provide, for example,
Jessen’s inequality, which is a functional form of Jensen’s inequality (see [2] and
[3]).

We recall Jessen’s inequality (see also [9]).
Theorem 1. Let φ : I ⊆ R → R (I is an interval), be a convex function and
f : E → I such that φ◦f , f ∈ L. If A : L → R is an isotonic linear and normalised
functional, then

(1.1) φ (A (f)) ≤ A (φ ◦ f) .

A counterpart of this result was proved by Beesack and Pečarić in [2] for compact
intervals I = [α, β].
Theorem 2. Let φ : [α, β] ⊂ R → R be a convex function and f : E → [α, β] such
that φ ◦ f , f ∈ L. If A : L → R is an isotonic linear and normalised functional,
then

(1.2) A (φ ◦ f) ≤ β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β) .

Remark 1. Note that (1.2) is a generalisation of the inequality

(1.3) A (φ) ≤ b−A (e1)
b− a

φ (a) +
A (e1)− a

b− a
φ (b)
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due to Lupaş [1] (see for example [2, Theorem A]), which assumed E = [a, b], L
satisfies (L1), (L2), A : L → R satisfies (A1), (A2), A (1) = 1, φ is convex on E
and φ ∈ L, e1 ∈ L, where e1 (x) = x, x ∈ [a, b].

The following inequality is well known in the literature as the Hermite-Hadamard
inequality

(1.4) ϕ

(
a + b

2

)
≤ 1

b− a

∫ b

a

ϕ (t) dt ≤ ϕ (a) + ϕ (b)
2

,

provided that ϕ : [a, b] → R is a convex function.
Using Theorem 1 and Theorem 2, we may state the following generalisation of

the Hermite-Hadamard inequality for isotonic linear functionals ([4] and [5]).
Theorem 3. Let φ : [a, b] ⊂ R → R be a convex function and e : E → [a, b] with
e, φ ◦ e ∈ L. If A → R is an isotonic linear and normalised functional, with
A (e) = a+b

2 , then

(1.5) ϕ

(
a + b

2

)
≤ A (φ ◦ e) ≤ ϕ (a) + ϕ (b)

2
.

For other results concerning convex functions and isotonic linear functionals, see
[4] – [9] and the recent monograph [12].

2. The Concepts of m−Ψ−Convex and M −Ψ−Convex Functions

Assume that the mapping Ψ : I ⊆ R → R (I is an interval) is convex on I and
m ∈ R. We shall say that the mapping φ : I → R is m−Ψ− lower convex if φ−mΨ
is a convex mapping on I (see [11]). We may introduce the class of functions

(2.1) L (I,m, Ψ) := {φ : I → R|φ−mΨ is convex on I} .

Similarly, for M ∈ R and Ψ as above, we can introduce the class of M −Ψ−upper
convex functions by

(2.2) U (I, M,Ψ) := {φ : I → R|MΨ− φ is convex on I} .

The intersection of these two classes will be called the class of (m,M)−Ψ−convex
functions and will be denoted by (see [11])

(2.3) B (I,m, M, Ψ) := L (I,m, Ψ) ∩ U (I,M,Ψ) .

Remark 2. If Ψ ∈ B (I,m, M, Ψ), then φ − mΨ and MΨ − φ are convex and
then (φ−mΨ) + (MΨ− φ) is also convex which shows that (M −m) Ψ is convex,
implying that M ≥ m (as Ψ is assumed not to be the trivial convex function Ψ(t) =
0, t ∈ I).

The above concepts may be introduced in the general case of a convex subset in
a real linear space, but we do not consider this extension here.

In [10], S.S. Dragomir and N.M. Ionescu introduced the concept of g−convex
dominated mappings, for a mapping f : I → R. We recall this, by saying, for a
given convex function g : I → R, the function f : I → R is g−convex dominated
iff g + f and g − f are convex mappings on I. In [10], the authors pointed out a
number of inequalities for convex dominated functions related to Jensen’s, Fuchs’,
Pečarić’s, Barlow-Marshall-Proschan and Vasić-Mijalković results, etc.

We observe that the concept of g−convex dominated functions can be obtained
as a particular case from (m,M)−Ψ−convex functions by choosing m = −1, M = 1
and Ψ = g.
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The following lemma holds (see also [11]).

Lemma 1. Let Ψ, φ : I ⊆ R → R be differentiable functions on I̊ and Ψ is a convex
function on I̊.

(i) For m ∈ R, the function φ ∈ L
(̊
I,m, Ψ

)
iff

(2.4) m [Ψ (x)−Ψ(y)−Ψ′ (y) (x− y)] ≤ φ (x)− φ (y)− φ′ (y) (x− y)

for all x, y ∈̊I.
(ii) For M ∈ R, the function φ ∈ U

(̊
I,M,Ψ

)
iff

(2.5) φ (x)− φ (y)− φ′ (y) (x− y) ≤ M [Ψ (x)−Ψ(y)−Ψ′ (y) (x− y)]

for all x, y ∈̊I.
(iii) For M,m ∈ R with M ≥ m, the function φ ∈ B

(̊
I,m, M, Ψ

)
iff both (2.4)

and (2.5) hold.

Proof. Follows by the fact that a differentiable mapping h : I → R is convex on I̊
iff h (x)− h (y) ≥ h′ (y) (x− y) for all x, y ∈̊I.

Another elementary fact for twice differentiable functions also holds (see also
[11]).

Lemma 2. Let Ψ, φ : I ⊆ R → R be twice differentiable on I̊ and Ψ is convex on I̊.

(i) For m ∈ R, the function φ ∈ L
(̊
I,m, Ψ

)
iff

(2.6) mΨ′′ (t) ≤ φ′′ (t) for all t ∈ I̊.

(ii) For M ∈ R, the function φ ∈ U
(̊
I,M,Ψ

)
iff

(2.7) φ′′ (t) ≤ MΨ′′ (t) for all t ∈ I̊.

(iii) For M,m ∈ R with M ≥ m, the function φ ∈ B
(̊
I,m, M, Ψ

)
iff both (2.6)

and (2.7) hold.

Proof. Follows by the fact that a twice differentiable function h : I → R is convex
on I̊ iff h′′ (t) ≥ 0 for all t ∈̊I.

We consider the p−logarithmic mean of two positive numbers given by

Lp (a, b) :=


a if b = a,

[
bp+1 − ap+1

(p + 1) (b− a)

] 1
p

if a 6= b

and p ∈ R� {−1, 0}.
The following proposition holds (see also [11]).

Proposition 1. Let φ : (0,∞) → R be a differentiable mapping.
(i) For m ∈ R, the function φ ∈ L ((0,∞) ,m, (·)p) with p ∈ (−∞, 0) ∪ (1,∞)

iff

(2.8) mp (x− y)
[
Lp−1

p−1 (x, y)− yp−1
]
≤ φ (x)− φ (y)− φ′ (y) (x− y)

for all x, y ∈ (0,∞) .
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(ii) For M ∈ R, the function φ ∈ U ((0,∞) ,M, (·)p) with p ∈ (−∞, 0) ∪ (1,∞)
iff

(2.9) φ (x)− φ (y)− φ′ (y) (x− y) ≤ Mp (x− y)
[
Lp−1

p−1 (x, y)− yp−1
]

for all x, y ∈ (0,∞) .
(iii) For M,m ∈ R with M ≥ m, the function φ ∈ B ((0,∞) ,M, (·)p) with

p ∈ (−∞, 0) ∪ (1,∞) iff both (2.8) and (2.9) hold.

The proof follows by Lemma 1 applied for the convex mapping Ψ (t) = tp,
p ∈ (−∞, 0) ∪ (1,∞) and via some elementary computation. We omit the details.

The following corollary is useful in practice.

Corollary 1. Let φ : (0,∞) → R be a differentiable function.

(i) For m ∈ R, the function φ is m−quadratic-lower convex (i.e., for p = 2) iff

(2.10) m (x− y)2 ≤ φ (x)− φ (y)− φ′ (y) (x− y)

for all x, y ∈ (0,∞).
(ii) For M ∈ R, the function φ is M−quadratic-upper convex iff

(2.11) φ (x)− φ (y)− φ′ (y) (x− y) ≤ M (x− y)2

for all x, y ∈ (0,∞).
(iii) For m,M ∈ R with M ≥ m, the function φ is (m,M)−quadratic convex if

both (2.10) and (2.11) hold.

The following proposition holds (see also [11]).

Proposition 2. Let φ : (0,∞) → R be a twice differentiable function.

(i) For m ∈ R, the function φ ∈ L ((0,∞) ,m, (·)p) with p ∈ (−∞, 0) ∪ (1,∞)
iff

(2.12) p (p− 1) mtp−2 ≤ φ′′ (t) for all t ∈ (0,∞) .

(ii) For M ∈ R, the function φ ∈ U ((0,∞) ,M, (·)p) with p ∈ (−∞, 0) ∪ (1,∞)
iff

(2.13) φ′′ (t) ≤ p (p− 1) Mtp−2 for all t ∈ (0,∞) .

(iii) For m,M ∈ R with M ≥ m, the function φ ∈ B ((0,∞) ,m, M, (·)p) with
p ∈ (−∞, 0) ∪ (1,∞) iff both (2.12) and (2.13) hold.

As can be easily seen, the above proposition offers the practical criterion of
deciding when a twice differentiable mapping is (·)p−lower or (·)p−upper convex
and which weights the constant m and M are.

The following corollary is useful in practice.

Corollary 2. Assume that the mapping φ : (a, b) ⊆ R → R is twice differentiable.

(i) If inf
t∈(a,b)

φ′′ (t) = k > −∞, then φ is k
2−quadratic lower convex on (a, b) ;

(ii) If sup
t∈(a,b)

φ′′ (t) = K < ∞, then φ is K
2 −quadratic upper convex on (a, b) .
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3. Lupaş-Beesack-Pečarić Inequality for m−Ψ−Convex and
M −Ψ−Convex Functions

In [11], S.S. Dragomir proved the following inequality of Jessen’s type for m −
Ψ−convex and M −Ψ−convex functions.
Theorem 4. Let Ψ : I ⊆ R → R be a convex function and f : E → I such that
Ψ ◦ f , f ∈ L and A : L → R be an isotonic linear and normalised functional.

(i) If φ ∈ L (I,m, Ψ) and φ ◦ f ∈ L, then we have the inequality

(3.1) m [A (Ψ ◦ f)−Ψ(A (f))] ≤ A (φ ◦ f)− φ (A (f)) .

(ii) If φ ∈ U (I,M,Ψ) and φ ◦ f ∈ L, then we have the inequality

(3.2) A (φ ◦ f)− φ (A (f)) ≤ M [A (Ψ ◦ f)−Ψ(A (f))] .

(iii) If φ ∈ B (I,m, M, Ψ) and φ ◦ f ∈ L, then both (3.1) and (3.2) hold.
The following corollary is useful in practice.

Corollary 3. Let Ψ : I ⊆ R → R be a twice differentiable convex function on I̊,
f : E → I such that Ψ ◦ f , f ∈ L and A : L → R be an isotonic linear and
normalised functional.

(i) If φ : I → R is twice differentiable and φ′′ (t) ≥ mΨ′′ (t), t ∈̊I (where m is
a given real number), then (3.1) holds, provided that φ ◦ f ∈ L.

(ii) If φ : I → R is twice differentiable and φ′′ (t) ≤ MΨ′′ (t), t ∈̊I (where M is
a given real number), then (3.2) holds, provided that φ ◦ f ∈ L.

(iii) If φ : I → R is twice differentiable and mΨ′′ (t) ≤ φ′′ (t) ≤ MΨ′′ (t), t ∈̊I,
then both (3.1) and (3.2) hold, provided φ ◦ f ∈ L.

We now prove the following new result.
Theorem 5. Let Ψ : [α, β] ⊂ R → R be a convex function and f : I → [α, β] such
that Ψ ◦ f , f ∈ L and A : L → R is an isotonic linear and normalised functional.

(i) If φ ∈ L (I,m, Ψ) and φ ◦ f ∈ L, then we have the inequality

m

[
β −A (f)

β − α
Ψ(α) +

A (f)− α

β − α
Ψ(β)−A (Ψ ◦ f)

]
(3.3)

≤ β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f) .

(ii) If φ ∈ U (I,M,Ψ) and φ ◦ f ∈ L, then

β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f)(3.4)

≤ M

[
β −A (f)

β − α
Ψ(α) +

A (f)− α

β − α
Ψ(β)−A (Ψ ◦ f)

]
.

(iii) If φ ∈ B (I,m, M, Ψ) and φ ◦ f ∈ L, then both (3.3) and (3.4) hold.

Proof. The proof is as follows.
(i) As φ ∈ L (I, m, Ψ) and φ ◦ f ∈ L, it follows that φ − mΨ is convex and

(φ−mΨ) ◦ f ∈ L.
Applying Lupaş-Beesack-Pečarić’s inequality for the convex function φ −
mΨ, we get

(3.5) A ((φ−mΨ) ◦ f) ≤ β −A (f)
β − α

(φ−mΨ) (α) +
A (f)− α

β − α
(φ−mΨ) (β) .
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However,

A ((φ−mΨ) ◦ f) = A (φ ◦ f)−mA (Ψ ◦ f)

and then, after some simple computation, (3.5) is equivalent to (3.3).
(ii) Goes likewise and we omit the details.

(iii) Follows by (i) and (ii).

The following corollary is useful in practice.
Corollary 4. Let Ψ : I ⊆ R → R be a twice differentiable convex function on I̊,
f : E → I such that Ψ ◦ f , f ∈ L and A : L → R is an isotonic linear and
normalised functional.

(i) If φ : I → R is twice differentiable, φ ◦ f ∈ L and φ′′ (t) ≥ mΨ′′ (t), t ∈̊I
(where m is a given real number), then (3.3) holds.

(ii) If φ : I → R is twice differentiable, φ ◦ f ∈ L and φ′′ (t) ≤ MΨ′′ (t), t ∈̊I
(where m is a given real number), then (3.4) holds.

(iii) If mΨ′′ (t) ≤ φ′′ (t) ≤ MΨ′′ (t), t ∈̊I, then both (3.3) and (3.4) hold.
Some particular important cases of the above corollary are embodied in the

following propositions.
Proposition 3. Assume that the function φ : I ⊆ R → R is twice differentiable on
I̊.

(i) If inf
t∈̊I

φ′′ (t) = k > −∞, then we have the inequality:

k

2
[
(α + β) A (f)− αβ −A

(
f2
)]

(3.6)

≤ β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f) ,

provided that φ ◦ f, f2, f ∈ L.
(ii) If sup

t∈̊I

φ′′ (t) = K < ∞, then we have the inequality

β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f)(3.7)

≤ K

2
[
(α + β)A (f)− αβ −A

(
f2
)]

.

provided that φ ◦ f, f2, f ∈ L.
(iii) If −∞ < k ≤ φ′′ (t) ≤ K < ∞, t ∈̊I, then both (3.6) and (3.7) hold,

provided that φ ◦ f, f2, f ∈ L.

Proof. The proof is as follows.
(i) Consider the auxiliary mapping h (t) := φ (t)− 1

2kt2. Then h′′ (t) = φ′′ (t)−
k ≥ 0 i.e., h is convex, or, equivalently, φ ∈ L

(
I, 1

2k, (·)2
)
. Applying

Corollary 4, we may state

k

2

[
β −A (f)

β − α
α2 +

A (f)− α

β − α
β2 −A

(
f2
)]

≤ β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f) ,
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which is clearly equivalent to (3.6)
(ii) Goes likewise and we omit the details.

(iii) Follows by (i) and (ii).

Another result is the following one.

Proposition 4. Assume that the mapping φ : [α, β] ⊂ (0,∞) → R is twice
differentiable on (α, β), Let p ∈ (−∞, 0) ∪ (1,∞) and define gp : [α, β] → R,
gp (t) = φ′′ (t) t2−p.

(i) If inf
t∈̊I

gp (t) = γ > −∞, then we have the inequality

γ

p (p− 1)

[
pLp−1

p−1 (α, β)A (f)− αβ (p− 1) Lp−2
p−2 (α, β)−A (fp)

]
(3.8)

≤ β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f) ,

provided that φ ◦ f, fp, f ∈ L.
(ii) If sup

t∈̊I

gp (t) = Γ < ∞, then we have the inequality

β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f)(3.9)

≤ Γ
p (p− 1)

[
pLp−1

p−1 (α, β) A (f)− αβ (p− 1) Lp−2
p−2 (α, β)−A (fp)

]
.

(iii) If −∞ < γ ≤ gp (t) ≤ Γ < ∞, t ∈̊I, then we have both (3.8) and (3.9).

Proof. The proof is as follows.

(i) Consider the auxiliary mapping hp (t) = φ (t)− γ
p(p−1) t

p. Then

h′′p (t) = φ′′ (t)− γtp−2 = tp−2
(
t2−pφ′′ (t)− γ

)
= tp−2 (gp (t)− γ) ≥ 0.

That is, hp is convex, or, equivalently, φ ∈ L
(
I, γ

p(p−1) , (·)
p
)
. Applying

Corollary 4, we may state

γ

p (p− 1)

[
β −A (f)

β − α
αp +

A (f)− α

β − α
βp −A (fp)

]
≤ β −A (f)

β − α
φ (α) +

A (f)− α

β − α
φ (β)−A (φ ◦ f) ,

which is equivalent to (3.8).
(ii) Goes likewise.

(iii) Follows by (i) and (ii).

The following proposition also holds.

Proposition 5. Assume that the mapping φ : [α, β] ⊂ (0,∞) → R is twice differ-
entiable on (α, β). Define l (t) = t2φ′′ (t), t ∈ [α, β].



8 S.S. DRAGOMIR

(i) If inf
t∈(α,β)

l (t) = s > −∞, then we have the inequality

s

[
A (ln f) + ln

[
I

(
1
α

,
1
β

)]
+ 1− A (f)

L (α, β)

]
(3.10)

≤ β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f) ,

provided that φ ◦ f, ln f and f ∈ L, and I (·, ·) denotes the identric mean,
i.e., we recall it

I (u, v) :=


u if v = u,

1
e

(
uu

vv

) 1
u−v , v 6= u.

(ii) If sup
t∈(α,β)

l (t) = S < ∞, then we have the inequality

β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f)(3.11)

≤ S

[
A (ln f) + ln

[
I

(
1
α

,
1
β

)]
+ 1− A (f)

L (α, β)

]
.

(iii) If −∞ < s ≤ l (t) ≤ S < ∞ for t ∈ (α, β), then both (3.10) and (3.11)
hold.

Proof. The proof is as follows.
(i) Define the auxiliary function h (t) = φ (t) + s ln t. Then

h′′ (t) = φ′′ (t)− s

t2
=

1
t2
(
φ′′ (t) t2 − s

)
≥ 0,

showing that h is convex, or, equivalently, φ ∈ L (I, s,− ln (·)). Applying
Corollary 4, we may state that:

s

[
β −A (f)

β − α
· [− ln (α)] +

A (f)− α

β − α
· [− ln (β)] + A (ln f)

]
≤ β −A (f)

β − α
φ (α) +

A (f)− α

β − α
φ (β)−A (φ ◦ f) ,

which is equivalent to (3.10).
(ii) Goes likewise.

(iii) Follows by (i) and (ii).

Finally, the following result also holds.
Proposition 6. Assume that the mapping φ : [α, β] ⊂ (0,∞) → R is twice differ-
entiable on (α, β). Define Ĩ (t) = tφ′′ (t), t ∈ I.

(i) If inf
t∈(α,β)

Ĩ (t) = δ > −∞, then we have the inequality

δ

[
A (f) ln I (α, β)− G2 (α, β)

L (α, β)
+ A (f)−A (f ln f)

]
(3.12)

≤ β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f) ,
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provided that φ ◦ f, f ln f, f ∈ L and G (α, β) =
√

ab is the geometric mean
and L (α, β) is the logarithmic mean, i.e., we recall it

L (α, β) :=


α if β = α,

β−α
ln β−ln α if β 6= α.

(ii) If sup
t∈(α,β)

Ĩ (t) = ∆ < ∞, then we have the inequality

β −A (f)
β − α

φ (α) +
A (f)− α

β − α
φ (β)−A (φ ◦ f)(3.13)

≤ ∆
[
A (f) ln I (α, β)− G2 (α, β)

L (α, β)
+ A (f)−A (f ln f)

]
(iii) If −∞ < δ ≤ Ĩ (t) ≤ ∆ < ∞ for t ∈ (α, β), then both (3.12) and (3.13)

hold.

Proof. The proof is as follows.
(i) Define the auxiliary mapping h (t) = φ (t)− δt ln t, t ∈ (α, β). Then

h′′ (t) = φ′′ (t)− δ

t
=

1
t2
[
φ′′ (t) t− δ

]
=

1
t

[
Ĩ (t)− δ

]
≥ 0

which shows that h is convex or, equivalently, φ ∈ L (I, δ, (·) ln (·)). Apply-
ing Corollary 4, we can write

δ

[
β −A (f)

β − α
· [α lnα] +

A (f)− α

β − α
· [β lnβ]−A (f ln f)

]
≤ β −A (f)

β − α
φ (α) +

A (f)− α

β − α
φ (β)−A (φ ◦ f) ,

which is clearly equivalent to (3.12).
(ii) Goes similarly.

(iii) Follows by (i) and (ii).

4. Applications for Hermite-Hadamard Inequalities

a) Assume that φ : [a, b] ⊂ R → R is a twice differentiable function satisfying the
condition −∞ < k ≤ φ′′ (t) ≤ K < ∞ for t ∈ (a, b). If in Propostion 3 we choose
A (f) := 1

b−a

∫ b

a
f (t) dt, f = e, i.e., e (x) = x, x ∈ [a, b] and take into account that

A
(
f2
)

=
b2 + ab + a2

3
,

then we may state the inequality (see also [12, p. 40])

(4.1)
k (b− a)2

12
≤ φ (b) + φ (a)

2
− 1

b− a

∫ b

a

φ (x) dx ≤ K (b− a)2

12
.

b) Now, if we assume that φ : [a, b] ⊂ (0,∞) → R is twice differentiable on (a, b)
and −∞ < γ ≤ t2−pφ′′ (t) ≤ Γ < ∞, t ∈ (a, b), p ∈ (−∞, 0)∪(1,∞), then, applying



10 S.S. DRAGOMIR

Proposition 4 for integrals, we may state the inequality

γ

p (p− 1)

[
pLp−1

p−1 (a, b) A (a, b)− (p− 1) G2 (a, b) Lp−2
p−2 (a, b)− Lp

p (a, b)
]

(4.2)

≤ φ (b) + φ (a)
2

− 1
b− a

∫ b

a

φ (x) dx

≤ Γ
p (p− 1)

[
pLp−1

p−1 (a, b) A (a, b)− (p− 1) G2 (a, b) Lp−2
p−2 (a, b)− Lp

p (a, b)
]
.

c) Suppose that the twice differentiable function φ : [a, b] ⊂ (0,∞) → R satisfies
the condition −∞ < s ≤ t2φ′′ (t) ≤ S < ∞. Then by Proposition 5 applied for the
integral functional, we may state the following inequality

s ln

 I (a, b) I
(

1
a , 1

b

)
exp

(
A(a,b)−L(a,b)

L(a,b)

)
 ≤ φ (b) + φ (a)

2
− 1

b− a

∫ b

a

φ (x) dx(4.3)

≤ S ln

 I (a, b) I
(

1
a , 1

b

)
exp

(
A(a,b)−L(a,b)

L(a,b)

)


or, equivalently, I (a, b) I
(

1
a , 1

b

)
exp

(
A(a,b)−L(a,b)

L(a,b)

)
s

≤
exp

[
φ(b)+φ(a)

2

]
exp

[
1

b−a

∫ b

a
φ (x) dx

](4.4)

≤

 I (a, b) I
(

1
a , 1

b

)
exp

(
A(a,b)−L(a,b)

L(a,b)

)
S

.

d) Finally, if we assume that the twice differentiable function φ : [a, b] ⊂ (0,∞) → R
satisfies the condition −∞ < δ ≤ tφ′′ (t) ≤ 1 < ∞, then by Proposition 6 applied
for the integral functional, we may state the following inequality:

δA (a, b) ln

[(
I (a, b)√
I (a2, b2)

)
· exp

(
L (a, b) A (a, b)−G2 (a, b)

L (a, b)A (a, b)

)]
(4.5)

≤ φ (b) + φ (a)
2

− 1
b− a

∫ b

a

φ (x) dx

≤ ∆A (a, b) ln

[(
I (a, b)√
I (a2, b2)

)
· exp

(
L (a, b) A (a, b)−G2 (a, b)

L (a, b) A (a, b)

)]
,

or, equivalently,

(4.6)

[(
I (a, b)√
I (a2, b2)

)
· exp

(
L (a, b) A (a, b)−G2 (a, b)

L (a, b) A (a, b)

)]δA(a,b)
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≤
exp

[
φ(b)+φ(a)

2

]
exp

[
1

b−a

∫ b

a
φ (x) dx

]
≤

[(
I (a, b)√
I (a2, b2)

)
· exp

(
L (a, b) A (a, b)−G2 (a, b)

L (a, b) A (a, b)

)]∆A(a,b)

.
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