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ON THE OSTROWSKI INEQUALITY FOR THE
RIEMANN-STIELTJES INTEGRAL [’ f(t)du(t), WHERE f IS OF
HOLDER TYPE AND u IS OF BOUNDED VARIATION AND
APPLICATIONS

S. S. DRAGOMIR

ABSTRACT. In this paper we point out an Ostrowski type inequality for the
Riemann-Stieltjes integral f; f(t)du(t), where f is of p — H—Holder type on
[a,b], and u is of bounded variation on [a,b] . Applications for the approxima-
tion problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes
sums are also given.

1. INTRODUCTION

In 1938, A. Ostrowski proved the following integral inequality [1, p. 468]:

Theorem 1. Let f : [a,b] — R be continuous on [a,b], differentiable on (a,b),
with its first derwative ' : (a,b) — R bounded on (a,b), that is, ||f'||, =

SUPse (q.0) |f' (t)| < 00. Then
2
1 x — atb
< |3+ (b; ) 1 oe 6= @),

b
(1.1) 'f(w) S el RACL

for all x € [a,b].
The constant i 18 sharp in the sense that it cannot be replaced by a smaller one.
For a different proof than the original one provided by Ostrowski in 1938 as well
as applications for special means (identric mean, logarithmic mean, p—logarithmic
mean, etc.) and in Numerical Analysis for quadrature formulae of Riemann type,
see the recent paper [2].
In [3], the following version of Ostrowski’s inequality for the 1-norm of the first
derivatives has been given.
Theorem 2. Let [ : [a,b] — R be continuous on [a,b], differentiable on (a,b),
with its first derivative f' : (a,b) — R integrable on (a,b), that is, ||f'l|; =
f: |f’ (t)| dt < co. Then

<

1 |I7a7+b| /
YL S £y s

b
(1.2) ’f(x)—b_la [ rwa

for all x € [a,b].
The constant % s sharp.
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2 S. S. DRAGOMIR

Note that the sharpness of the constant % in the class of differentiable mappings
whose derivatives are integrable on (a,b) has been proven in the paper [5].

In [3], the authors applied (1.2) for special means and for quadrature formulae
of Riemann type.

The following natural extension of Theorem 2 has been pointed out by S.S.
Dragomir in [6].
Theorem 3. Let f : [a,b] — R be a mapping of bounded variation on [a,b] and

b
V (f) its total variation on [a,b]. Then

a

‘ a+b ‘

3+ La]?

N I RICCE

1 -
for all x € [a,b]. The constant 5 is sharp.

In [6], the author applied (1.3) for quadrature formulae of Riemann type as well
as for Euler’s Beta mapping.
In this paper we point out some generalizations of (1.3) for the Riemann-Stieltjes

integral fab f(t)du(t) where f is of Holder type and u is of bounded variation.
Applications to the problem of approximating the Riemann-Stieltjes integral in
terms of Riemann-Stieltjes sums are also given.

2. SOME INTEGRAL INEQUALITIES

The following theorem holds.

Theorem 4. Let f : [a,b] — R be a p— H—Hélder type mapping, that is, it satisfies
the condition

(2.1) |f (@)= fWI < Hlz—yl”, forallz,y € [a,b];
where H > 0 and p € (0,1] are given, and u : [a,b] — R is a mapping of bounded

variation on [a,b]. Then we have the inequality

b
2:2) ‘ﬂwm@—mw—/f@ww

rﬁw,

a

a+b
2

b
for all z € [a,b], where \/ (u) denotes the total variation of u on [a,b] . Furthermore,

the constant % is the best possible, for all p € (0,1].

Proof. 1t is well known that if g : [a,b] — R is continuous and v : [a,b] — R is of

bounded variation, then the Riemann-Stieltjes integral f g (t) dv (t) exists and the
following inequality holds:

b
/gmww

b

< sup |g ()| \/ (v).

t€la,b]

(2.3)
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Using this property, we have
b
[ @)= s®yauts
a
b

< sup [f(z) = fOI\ (u).

te(a,b] a

b
(2.4) f(ff)(U(b)—U(a))—/ f(#)du(t)

As f is of p — H—Hoélder type, we have

sup |f () —g(t)] < sup [H|z—t|]
tE[a,b] tE[a,b]

= Hmax{(x —a)’,(b—2)"}

H [max {z —a,b—z}]"
a+0bl]”
ot ] .
Using (2.4), we deduce (2.2).

To prove the sharpness of the constant 3 for any p € (0,1], assume that (2.2) holds
with a constant C' > 0, that is,

. HB(b—aH’x

b
(2.5) f (@) (U(b)—U(a))—/ f(t)du(t)
p b
< H[C(b—a)—&-’x—a;b} \/ (),

for all f, p— H—Holder type mappings on [a,b] and u of bounded variation on the
same interval.
Choose f (z) =z? (p € (0,1]), z € [0,1] and u : [0,1] — [0,00) given by
[ o0ifze]0,1)
”(m)_{ lifz =1
As
z) = fWl =" =y’ < |z -yl

1f(
(0,1], it follows that f is of p — H—Hélder type with the

for all z,y € [0,1], p €
constant H = 1.
By using the integration by parts formula for Riemann-Stieltjes integrals, we have:

1 1
[roaun = Foue)- / w(t) df (2)
= 1—-0=1

and

1
\/ (u) =1.
0
Consequently, by (2.5), we get
1
r_ =
2

P
|a:p—1|§[C—|— } , for all z € [0,1].

For x = 0, we get 1 < (C’ + %)p, which implies that C' > %, and the theorem is
completely proved. I
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The following corollaries are natural.
Corollary 1. Let u be as in Theorem 4 and f : [a,b] — R an L—Lipschitzian
mapping on [a,b], that is,
(L) |f () = f(s)| S LJt—s| forallt,s € a,b]
where L > 0 is fized.
Then, for all x € [a,b], we have the inequality

(2.6) O(f,u, a,b)|

where

b
Ofuz.ab) = f @) (w(b) ~u(@) - [ F®)due)

a

is the Ostrowski’s functional associated to f and u as above. The constant % 18 the

best possible.

Remark 1. If u is monotonic on [a,b] and f is of p — H— Hdélder type, then, by

(2.2) we get

(2.7) O(f, u,a,b)|

a+b

< HB(b—aH—’z— H lu (b) — u(a)], @ € [a,0],

and if we assume that [ is L— Lipschitzian, then (2.6) becomes
(2.8) 1©(f, u,a,b)]

1 b
< L [Q(b—a)Jr’:c— a;

} |u(b) —u(a)|, = € [a,b].
Remark 2. If u is K— Lipschitzian, then obviously u is of bounded variation on

b
[a,b] and \/ (u) < L (b—a). Consequently, if f is of p — H—Holder type, then

(2.9) 1©(f, u,a,b)|
1 p
< HK {Q(b—a)—i- - “;b] (b—a), z € [a,b]
and if f is L—Lipschitzian, then
(2.10) O(f, u,a,b)|
_a+b

< LK[;(b—a)—l—‘x H(b—a),xe[a,b].

The following corollary concerning a generalization of the mid-point inequality

holds:

Corollary 2. Let f and u be as defined in Theorem 4. Then we have the generalized
mid-point formula

| =

(2.11) 1T(f,u,a,b)] <

[\

b
p(b_a)p\/(u)7
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where

v(wan) =1 (1) @) @) - [ 1O w0

is the mid point functional associated to f and u as above. In particular, if f is
L— Lipschitzian, then

b
(2.12) IT(f,u,a,b)| < %(b—a)\/(u).

Remark 3. Now, if in (2.11) and (2.12) we assume that u is monotonic, then we
get the midpoint inequalities

(2.13) 0w a, D) < g (b= a)f fu(b) (o)
and

(2.14) T a )] < 5 (b—a)u(b) — u(a)
respectively.

In addition, if in (2.11) and (2.12) we assume that u is K — Lipschitzian, then we
obtain the inequalities

(2.15) T(fwab)] < o (b )™
and
(2.16) Y(f,u, a,b)] < % (b—a)?.

The following inequalities of “rectangle type” also hold:

Corollary 3. Let f and u be as in Theorem 4. Then we have the generalized “left
rectangle” inequality

b
(2.17) ﬂ@@@—ww—/fwmm

b
<H(®b-a)"\/(u)

and the “right rectangle” inequality

b b
(2.18) f () (u(b) = u(a)) - / FOdu(t)| < Hb-a)"\/ (u).

Remark 4. If we add (2.17) and (2.18), then, by the triangle inequality, we end
up with the following generalized trapezoidal inequality

b
M (u (b) — u(a)) —/a f () du(t)

b

SH(b—a)p\/(u).

a

(2.19)

In what follows, we point out some results for the Riemann integral of a product.
Corollary 4. Let f : [a,b] — R be a p— H— Hélder type mapping and g : [a,b] — R
be continuous on [a,b]. Then we have the inequality

b b
(2.20) |ﬂ@/g@®—/f@g@ﬁ

rﬂmwws

< H[l(ba)Jr‘xa;rb
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for all x € [a,b].

Proof. Define the mapping u : [a,b] — R, u ( f g (8) ds. Then v is differentiable
on (a,b) and u' (t) = g (t). Using the propertles of the Riemann-Stieltjes integral,
we have

/ ft)du(t / ft
and

=/abu’<t>dt=/ab g (8)| dt.

Therefore, by the inequality (2.2), we deduce (2.20). I

Remark 5. The best inequality we can get from (2.20) is that one for which x =

a+b
<— b—a) /|g )| ds.

432, obtaining the midpoint inequality
We now give some examples of weighted Ostrowski inequalities for some of the

((532) s [
most popular weights.

Example 1. (Legendre) If g(t) = 1, and t € [a,b], then we get the following
Ostrowski inequality for Hélder type mappings f : [a,b] — R

(b—a)f /f t)dt

for all x € [a,b], and, in particular, the mid-point inequality

(2.21)

(2.22) ath

<H{ (b—a)+ ‘ ]p(ba)

< H@b-ay".

o-ar (50) - [ roa <

Example 2. (Logarithm) Ifg( )=In(3),t € (0,1], f is of p—Hélder type on
[0,1] and the integral fol f @) In(7)dt is finite, then we have
r

7/0 f()n (1) dt‘ <H B+

for all x € 0,1] and, in particular,

229 #(5) 10 (5) < o

Example 3. (Jacobi) If g(t) = \[ € (0,1], f is as above and the integral
fl f(t) dt is finite, then we have

(2.23)

1
r— =

(2.24) 5

1

P
ol

(2.26) ’f(x)—;/olf\(/?dt‘gHB+x—

for all x € [0,1] and, in particular,

(2.27) ’f (;) _ ,/ It dt‘ < 5 H

Finally, we have the following;:
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Example 4. (Chebychev) If g (t) = ———, t € (—1,1), f is of p—Hélder type on

i
—1,—1) and the integral _1 1O _ gt s finite, then

1 V1-¢2

IRV 0| ‘
2.28 x)— = dt| < H[1+ |z|]?
(229 r -1 [ Aa| <mp

for all x € [-1,1], and in particular,

(2.29) ’f(O)—l/l A0 dt‘ <

T™J_1 V1 —t2 B

3. AN APPROXIMATION FOR THE RIEMANN-STIELTJES INTEGRAL

Consider I, :a=zg < 1 < ... < p_1 < T, = b to be a division of the interval
[a,b], hi :=xiy1—2; (i =0,..,n—1)and v (h) :== max {h;|i = 0,...,n — 1} . Define
the general Riemann-Stieltjes sum

n—1

(3.1) S(fou Lo, €)=Y f (&) (u(i) —u ().

=0

In what follows, we point out some upper bounds for the error approximation of the
Riemann-Stieltjes integral f: f (t) du (t) by its Riemann-Stieltjes sum S (f, u, I,, ) .

Theorem 5. Let u : [a,b] — R be a mapping of bounded variation on [a,b] and
f:la,b] = R ap— H—Hdélder type mapping. Then

b
(3.2) / FO) du(t) =S (f L0 ) + R (fru, 1, E),

where S (f,u, I,,§) is as given in (3.1) and the remainder R (f,u,I,,§) satisfies
the bound

p b

[V

a

Tt T

(33) |R(fou.ln6)| < H{lu(h)+ max -

- 2 i=0,n—1

3

IN

b
Hy ()" \/ (w).

Proof. We apply Theorem 4 on the subintervals [x;, z;+1] (i = 0,...,n — 1) to obtain

(3.4 ]f (€) (o) —u @) - [ £ () du <t>]
< H[;hﬂr f—x?“r\y (u),

for alli € {0,....,.n—1}.
Summing over i from 0 to n — 1 and using the generalized triangle inequality, we
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deduce
n—1 Tit1
RELO < S [FE) ) —u@) - [ ra)
i=0 i
n—1 Tit1
1 T+ Tip b
< — e el
< 1Y g e V@
_ pn—1%Tit1
1 T; + xz+1
< H 7s0up_1 §hl+ & — } Z \/
i=0,n—1 L i=0 x;
However,
1 z; + ziq |]7 1 z; + ziq |7
an [ e~ 220" < L) 22
P e | 2 2 2 2
and
n—1Ti41 b
SV @=\/(u
1=0 z; a

which completely proves the first inequality in (3.3) .
For the second inequality, we observe that

T+ X1 <

&— =3

'hia

N |

for alli € {0,....,.n—1}.
The theorem is thus proved. i

The following corollaries are natural.

Corollary 5. Let u be as in Theorem 5 and f an L— Lipschitzian mapping. Then
we have the formula (3.2) and the remainder R (f,u, I,,£) satisfies the bound

}\b/w)

a

T + Tia

(35)  IR(fu 0.6 ;

IN

L5+ mox e, -

2 i=0,n—1

b

< Hv(h)\/ (u).

Remark 6. If u is monotonic on [a,b], then the error estimate (3.3) becomes

(3.6) |R(f,u, In, €)|

< H[;v(hwi_fgixl 52“%}19'““’)_“(“)'
< H[v )] |u(b) —u(a)l

and (3.5) becomes

(3.7) | B (fsu; 1, €
< oo s e -2 o) )
< Lv(h)|u®) —u(a)|.

Using Remark 2, we can state the following corollary.
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Corollary 6. If u : [a,b] — R is Lipschitzian with the constant K and f :
[a,b] — R is of p— H— Hdlder type, then the formula (3.2) holds and the remainder
R(f,u,I,,§) satisfies the bound

n—1
1 z; +xi |17
. I < HK = oL g,
(3:8) IR (f,uIn€)] < ;[2h1+§ 5 ] hi
n—1
< HKY WY'<HK(b-a)[v(h).
=0

In particular, if we assume that f is L— Lipschitzian, then

(39)  IR(f,u 16| < ,Lthz - e,
n—1
< LKthgLK(b—a)u(h).
=0

The best quadrature formula we can get from Theorem 5 is that one for which
& = L;“ for all 4 € {0,...,n — 1}. Consequently, we can state the following
corollary.

Corollary 7. Let f and u be as in Theorem 5. Then
b
(3.10) | @dute) = Sur (fou 1)+ Ras (1)

where Sy (f,u, I,) is the generalized midpoint formula, that is;

v (fu ) Zf<$’+x”1>( (2is1) — u (1))

and the remainder satisfies the estimate

(3.11) |Ras (fsu, In)] <

b
RUAVAC

a
In particular, if f is L— Lipschitzian, then we have the bound:

b
(3.12) |Ras (f,u, In)| < gv (h) \/ (w)

a

Remark 7. If in (3.11) and (3.12) we assume that u is monotonic, then we get
the inequalities

(313) (R (o, 1) < o [ ()71 (8) — £ (a)
and
(314) (R (0, )| < v (B)1F () — £ (@)].

The case where f is K —Lipschitzian is embodied in the following corollary.



10 S. S. DRAGOMIR

Corollary 8. Let w and f be as in Corollary 6. Then we have the quadrature
formula (3.10) and the remainder satisfies the estimate

n—1

HK HK
(3.15) [Bar (fru, In)| < == z% W< ETH v (h)]".
In particular, if f is L— Lipschitzian, then we have the estimate

n—1
1 , 1
. n S a : S o - .

(3.16) |Rus (f,u, 1) QLK;hZ S LK (b—a)v (h)
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