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ON THE OSTROWSKI INEQUALITY FOR THE
RIEMANN-STIELTJES INTEGRAL

∫ b

a
f (t) du (t) , WHERE f IS OF

HÖLDER TYPE AND u IS OF BOUNDED VARIATION AND
APPLICATIONS

S. S. DRAGOMIR

Abstract. In this paper we point out an Ostrowski type inequality for the

Riemann-Stieltjes integral
∫ b

a f (t) du (t) , where f is of p−H−Hölder type on

[a, b] , and u is of bounded variation on [a, b] . Applications for the approxima-
tion problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes
sums are also given.

1. Introduction

In 1938, A. Ostrowski proved the following integral inequality [1, p. 468]:
Theorem 1. Let f : [a, b] → R be continuous on [a, b] , differentiable on (a, b),
with its first derivative f ′ : (a, b) → R bounded on (a, b) , that is, ‖f ′‖∞ :=
supt∈(a,b) |f ′ (t)| < ∞. Then

(1.1)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 ‖f ′‖∞ (b− a) ,

for all x ∈ [a, b] .
The constant 1

4 is sharp in the sense that it cannot be replaced by a smaller one.
For a different proof than the original one provided by Ostrowski in 1938 as well

as applications for special means (identric mean, logarithmic mean, p−logarithmic
mean, etc.) and in Numerical Analysis for quadrature formulae of Riemann type,
see the recent paper [2].

In [3], the following version of Ostrowski’s inequality for the 1-norm of the first
derivatives has been given.
Theorem 2. Let f : [a, b] → R be continuous on [a, b] , differentiable on (a, b),
with its first derivative f ′ : (a, b) → R integrable on (a, b) , that is, ‖f ′‖1 :=∫ b

a
|f ′ (t)| dt < ∞. Then

(1.2)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
2

+

∣∣x− a+b
2

∣∣
b− a

]
‖f ′‖1 ,

for all x ∈ [a, b] .
The constant 1

2 is sharp.
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2 S. S. DRAGOMIR

Note that the sharpness of the constant 1
2 in the class of differentiable mappings

whose derivatives are integrable on (a, b) has been proven in the paper [5].
In [3], the authors applied (1.2) for special means and for quadrature formulae

of Riemann type.
The following natural extension of Theorem 2 has been pointed out by S.S.

Dragomir in [6].

Theorem 3. Let f : [a, b] → R be a mapping of bounded variation on [a, b] and
b∨
a

(f) its total variation on [a, b] . Then

(1.3)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1
2

+

∣∣x− a+b
2

∣∣
b− a

]
b∨
a

(f) ,

for all x ∈ [a, b] . The constant 1
2 is sharp.

In [6], the author applied (1.3) for quadrature formulae of Riemann type as well
as for Euler’s Beta mapping.

In this paper we point out some generalizations of (1.3) for the Riemann-Stieltjes
integral

∫ b

a
f (t) du (t) where f is of Hölder type and u is of bounded variation.

Applications to the problem of approximating the Riemann-Stieltjes integral in
terms of Riemann-Stieltjes sums are also given.

2. Some Integral Inequalities

The following theorem holds.

Theorem 4. Let f : [a, b] → R be a p−H−Hölder type mapping, that is, it satisfies
the condition

(2.1) |f (x)− f (y)| ≤ H |x− y|p , for all x, y ∈ [a, b] ;

where H > 0 and p ∈ (0, 1] are given, and u : [a, b] → R is a mapping of bounded
variation on [a, b] . Then we have the inequality∣∣∣∣∣f (x) (u (b)− u (a))−

∫ b

a

f (t) du (t)

∣∣∣∣∣(2.2)

≤ H

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]p b∨
a

(u) ,

for all x ∈ [a, b] , where
b∨
a

(u) denotes the total variation of u on [a, b] . Furthermore,

the constant 1
2 is the best possible, for all p ∈ (0, 1] .

Proof. It is well known that if g : [a, b] → R is continuous and v : [a, b] → R is of
bounded variation, then the Riemann-Stieltjes integral

∫ b

a
g (t) dv (t) exists and the

following inequality holds:

(2.3)

∣∣∣∣∣
∫ b

a

g (t) dv (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|g (t)|
b∨
a

(v) .
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Using this property, we have∣∣∣∣∣f (x) (u (b)− u (a))−
∫ b

a

f (t) du (t)

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(f (x)− f (t)) du (t)

∣∣∣∣∣(2.4)

≤ sup
t∈[a,b]

|f (x)− f (t)|
b∨
a

(u) .

As f is of p−H−Hölder type, we have

sup
t∈[a,b]

|f (x)− g (t)| ≤ sup
t∈[a,b]

[H |x− t|p]

= H max {(x− a)p
, (b− x)p}

= H [max {x− a, b− x}]p

= H

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]p

.

Using (2.4) , we deduce (2.2) .
To prove the sharpness of the constant 1

2 for any p ∈ (0, 1] , assume that (2.2) holds
with a constant C > 0, that is,∣∣∣∣∣f (x) (u (b)− u (a))−

∫ b

a

f (t) du (t)

∣∣∣∣∣(2.5)

≤ H

[
C (b− a) +

∣∣∣∣x− a + b

2

∣∣∣∣]p b∨
a

(u) ,

for all f, p−H−Hölder type mappings on [a, b] and u of bounded variation on the
same interval.
Choose f (x) = xp (p ∈ (0, 1]) , x ∈ [0, 1] and u : [0, 1] → [0,∞) given by

u (x) =
{

0 if x ∈ [0, 1)
1 if x = 1 .

As
|f (x)− f (y)| = |xp − yp| ≤ |x− y|p

for all x, y ∈ [0, 1] , p ∈ (0, 1] , it follows that f is of p − H−Hölder type with the
constant H = 1.
By using the integration by parts formula for Riemann-Stieltjes integrals, we have:∫ 1

0

f (t) du (t) = f (t) u (t)]10 −
∫ 1

0

u (t) df (t)

= 1− 0 = 1

and
1∨
0

(u) = 1.

Consequently, by (2.5) , we get

|xp − 1| ≤
[
C +

∣∣∣∣x− 1
2

∣∣∣∣]p

, for all x ∈ [0, 1] .

For x = 0, we get 1 ≤
(
C + 1

2

)p
, which implies that C ≥ 1

2 , and the theorem is
completely proved.



4 S. S. DRAGOMIR

The following corollaries are natural.
Corollary 1. Let u be as in Theorem 4 and f : [a, b] → R an L−Lipschitzian
mapping on [a, b] , that is,

(L) |f (t)− f (s)| ≤ L |t− s| for all t, s ∈ [a, b]

where L > 0 is fixed.
Then, for all x ∈ [a, b] , we have the inequality

|Θ(f, u, a, b)|(2.6)

≤ L

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

(u)

where

Θ(f, u, x, a, b) = f (x) (u (b)− u (a))−
∫ b

a

f (t) du (t)

is the Ostrowski’s functional associated to f and u as above. The constant 1
2 is the

best possible.
Remark 1. If u is monotonic on [a, b] and f is of p − H−Hölder type, then, by
(2.2) we get

|Θ(f, u, a, b)|(2.7)

≤ H

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] |u (b)− u (a)| , x ∈ [a, b] ,

and if we assume that f is L−Lipschitzian, then (2.6) becomes

|Θ(f, u, a, b)|(2.8)

≤ L

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] |u (b)− u (a)| , x ∈ [a, b] .

Remark 2. If u is K−Lipschitzian, then obviously u is of bounded variation on

[a, b] and
b∨
a

(u) ≤ L (b− a) . Consequently, if f is of p−H−Hölder type, then

|Θ(f, u, a, b)|(2.9)

≤ HK

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]p

(b− a) , x ∈ [a, b]

and if f is L−Lipschitzian, then

|Θ(f, u, a, b)|(2.10)

≤ LK

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] (b− a) , x ∈ [a, b] .

The following corollary concerning a generalization of the mid-point inequality
holds:
Corollary 2. Let f and u be as defined in Theorem 4. Then we have the generalized
mid-point formula

(2.11) |Υ(f, u, a, b)| ≤ H

2p
(b− a)p

b∨
a

(u) ,
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where

Υ(f, u, a, b) = f

(
a + b

2

)
(u (b)− u (a))−

∫ b

a

f (t) du (t)

is the mid point functional associated to f and u as above. In particular, if f is
L−Lipschitzian, then

(2.12) |Υ(f, u, a, b)| ≤ L

2
(b− a)

b∨
a

(u) .

Remark 3. Now, if in (2.11) and (2.12) we assume that u is monotonic, then we
get the midpoint inequalities

(2.13) |Υ(f, u, a, b)| ≤ H

2p
(b− a)p |u (b)− u (a)|

and

(2.14) |Υ(f, u, a, b)| ≤ L

2
(b− a) |u (b)− u (a)|

respectively.
In addition, if in (2.11) and (2.12) we assume that u is K−Lipschitzian, then we
obtain the inequalities

(2.15) |Υ(f, u, a, b)| ≤ HK

2p
(b− a)p+1

and

(2.16) |Υ(f, u, a, b)| ≤ LK

2
(b− a)2 .

The following inequalities of “rectangle type” also hold:
Corollary 3. Let f and u be as in Theorem 4. Then we have the generalized “left
rectangle” inequality

(2.17)

∣∣∣∣∣f (a) (u (b)− u (a))−
∫ b

a

f (t) du (t)

∣∣∣∣∣ ≤ H (b− a)p
b∨
a

(u)

and the “right rectangle” inequality

(2.18)

∣∣∣∣∣f (b) (u (b)− u (a))−
∫ b

a

f (t) du (t)

∣∣∣∣∣ ≤ H (b− a)p
b∨
a

(u) .

Remark 4. If we add (2.17) and (2.18) , then, by the triangle inequality, we end
up with the following generalized trapezoidal inequality

(2.19)

∣∣∣∣∣f (a) + f (b)
2

(u (b)− u (a))−
∫ b

a

f (t) du (t)

∣∣∣∣∣ ≤ H (b− a)p
b∨
a

(u) .

In what follows, we point out some results for the Riemann integral of a product.
Corollary 4. Let f : [a, b] → R be a p−H−Hölder type mapping and g : [a, b] → R
be continuous on [a, b] . Then we have the inequality∣∣∣∣∣f (x)

∫ b

a

g (s) ds−
∫ b

a

f (t) g (t) dt

∣∣∣∣∣(2.20)

≤ H

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]p ∫ b

a

|g (s)| ds
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for all x ∈ [a, b] .

Proof. Define the mapping u : [a, b] → R, u (t) =
∫ t

a
g (s) ds. Then u is differentiable

on (a, b) and u′ (t) = g (t) . Using the properties of the Riemann-Stieltjes integral,
we have ∫ b

a

f (t) du (t) =
∫ b

a

f (t) g (t) dt

and
b∨
a

(u) =
∫ b

a

|u′ (t)| dt =
∫ b

a

|g (t)| dt.

Therefore, by the inequality (2.2) , we deduce (2.20) .

Remark 5. The best inequality we can get from (2.20) is that one for which x =
a+b
2 , obtaining the midpoint inequality

(2.21)

∣∣∣∣∣f
(

a + b

2

)∫ b

a

g (s) ds−
∫ b

a

f (t) g (t) dt

∣∣∣∣∣ ≤ 1
2p

H (b− a)p
∫ b

a

|g (s)| ds.

We now give some examples of weighted Ostrowski inequalities for some of the
most popular weights.
Example 1. (Legendre) If g (t) = 1, and t ∈ [a, b] , then we get the following
Ostrowski inequality for Hölder type mappings f : [a, b] → R

(2.22)

∣∣∣∣∣(b− a) f (x)−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ H

[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣]p

(b− a)

for all x ∈ [a, b] , and, in particular, the mid-point inequality

(2.23)

∣∣∣∣∣(b− a) f

(
a + b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1
2p

H (b− a)p+1
.

Example 2. (Logarithm) If g (t) = ln
(

1
t

)
, t ∈ (0, 1] , f is of p−Hölder type on

[0, 1] and the integral
∫ 1

0
f (t) ln

(
1
t

)
dt is finite, then we have

(2.24)
∣∣∣∣f (x)−

∫ 1

0

f (t) ln
(

1
t

)
dt

∣∣∣∣ ≤ H

[
1
2

+
∣∣∣∣x− 1

2

∣∣∣∣]p

for all x ∈ [0, 1] and, in particular,

(2.25)
∣∣∣∣f (1

2

)
−
∫ 1

0

f (t) ln
(

1
t

)
dt

∣∣∣∣ ≤ 1
2p

H.

Example 3. (Jacobi) If g (t) = 1√
t
, t ∈ (0, 1] , f is as above and the integral∫ 1

0
f(t)√

t
dt is finite, then we have

(2.26)
∣∣∣∣f (x)− 1

2

∫ 1

0

f (t)√
t

dt

∣∣∣∣ ≤ H

[
1
2

+
∣∣∣∣x− 1

2

∣∣∣∣]p

,

for all x ∈ [0, 1] and, in particular,

(2.27)
∣∣∣∣f (1

2

)
− 1

2

∫ 1

0

f (t)√
t

dt

∣∣∣∣ ≤ 1
2p

H.

Finally, we have the following:
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Example 4. (Chebychev) If g (t) = 1√
1−t2

, t ∈ (−1, 1) , f is of p−Hölder type on

(−1,−1) and the integral
∫ 1

−1
f(t)√
1−t2

dt is finite, then

(2.28)
∣∣∣∣f (x)− 1

π

∫ 1

−1

f (t)√
1− t2

dt

∣∣∣∣ ≤ H [1 + |x|]p

for all x ∈ [−1, 1] , and in particular,

(2.29)
∣∣∣∣f (0)− 1

π

∫ 1

−1

f (t)√
1− t2

dt

∣∣∣∣ ≤ H.

3. An Approximation for the Riemann-Stieltjes Integral

Consider In : a = x0 < x1 < ... < xn−1 < xn = b to be a division of the interval
[a, b] , hi := xi+1−xi (i = 0, ..., n− 1) and ν (h) := max {hi|i = 0, ..., n− 1} . Define
the general Riemann-Stieltjes sum

(3.1) S (f, u, In, ξ) :=
n−1∑
i=0

f (ξi) (u (xi+1)− u (xi)) .

In what follows, we point out some upper bounds for the error approximation of the
Riemann-Stieltjes integral

∫ b

a
f (t) du (t) by its Riemann-Stieltjes sum S (f, u, In, ξ) .

Theorem 5. Let u : [a, b] → R be a mapping of bounded variation on [a, b] and
f : [a, b] → R a p−H−Hölder type mapping. Then

(3.2)
∫ b

a

f (t) du (t) = S (f, u, In, ξ) + R (f, u, In, ξ) ,

where S (f, u, In, ξ) is as given in (3.1) and the remainder R (f, u, In, ξ) satisfies
the bound

|R (f, u, In, ξ)| ≤ H

[
1
2
ν (h) + max

i=0,n−1

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p b∨
a

(u)(3.3)

≤ H [ν (h)]p
b∨
a

(u) .

Proof. We apply Theorem 4 on the subintervals [xi, xi+1] (i = 0, ..., n− 1) to obtain∣∣∣∣f (ξi) (u (xi+1)− u (xi))−
∫ xi+1

xi

f (t) du (t)
∣∣∣∣(3.4)

≤ H

[
1
2
hi +

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p xi+1∨
xi

(u) ,

for all i ∈ {0, ..., n− 1} .
Summing over i from 0 to n − 1 and using the generalized triangle inequality, we
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deduce

|R (f, u, In, ξ)| ≤
n−1∑
i=0

∣∣∣∣f (ξi) (u (xi+1)− u (xi))−
∫ xi+1

xi

f (t) du (t)
∣∣∣∣

≤ H
n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p xi+1∨
xi

(u)

≤ H sup
i=0,n−1

[
1
2
hi +

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p n−1∑
i=0

xi+1∨
xi

(u) .

However,

sup
i=0,n−1

[
1
2
hi +

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p

≤
[
1
2
ν (h) + sup

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p

and
n−1∑
i=0

xi+1∨
xi

(u) =
b∨
a

(u) ,

which completely proves the first inequality in (3.3) .
For the second inequality, we observe that∣∣∣∣ξi −

xi + xi+1

2

∣∣∣∣ ≤ 1
2
· hi,

for all i ∈ {0, ..., n− 1} .
The theorem is thus proved.

The following corollaries are natural.
Corollary 5. Let u be as in Theorem 5 and f an L−Lipschitzian mapping. Then
we have the formula (3.2) and the remainder R (f, u, In, ξ) satisfies the bound

|R (f, u, In, ξ)| ≤ L

[
1
2
ν (h) + max

i=0,n−1

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣] b∨
a

(u)(3.5)

≤ Hν (h)
b∨
a

(u) .

Remark 6. If u is monotonic on [a, b] , then the error estimate (3.3) becomes

|R (f, u, In, ξ)|(3.6)

≤ H

[
1
2
ν (h) + max

i=0,n−1

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p

|u (b)− u (a)|

≤ H [ν (h)]p |u (b)− u (a)|

and (3.5) becomes

|R (f, u, In, ξ)|(3.7)

≤ L

[
1
2
ν (h) + max

i=0,n−1

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣] |u (b)− u (a)|

≤ Lν (h) |u (b)− u (a)| .

Using Remark 2, we can state the following corollary.
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Corollary 6. If u : [a, b] → R is Lipschitzian with the constant K and f :
[a, b] → R is of p−H−Hölder type, then the formula (3.2) holds and the remainder
R (f, u, In, ξ) satisfies the bound

|R (f, u, In, ξ)| ≤ HK
n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣]p

hi(3.8)

≤ HK
n−1∑
i=0

hp+1
i ≤ HK (b− a) [ν (h)]p .

In particular, if we assume that f is L−Lipschitzian, then

|R (f, u, In, ξ)| ≤ 1
2
LK

n−1∑
i=0

h2
i + LK

n−1∑
i=0

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣hi(3.9)

≤ LK
n−1∑
i=0

h2
i ≤ LK (b− a) ν (h) .

The best quadrature formula we can get from Theorem 5 is that one for which
ξi = xi+xi+1

2 for all i ∈ {0, ..., n− 1} . Consequently, we can state the following
corollary.

Corollary 7. Let f and u be as in Theorem 5. Then

(3.10)
∫ b

a

f (t) du (t) = SM (f, u, In) + RM (f, u, In)

where SM (f, u, In) is the generalized midpoint formula, that is;

SM (f, u, In) :=
n−1∑
i=0

f

(
xi + xi+1

2

)
(u (xi+1)− u (xi))

and the remainder satisfies the estimate

(3.11) |RM (f, u, In)| ≤ H

2p
[ν (h)]p

b∨
a

(u) .

In particular, if f is L−Lipschitzian, then we have the bound:

(3.12) |RM (f, u, In)| ≤ H

2
ν (h)

b∨
a

(u) .

Remark 7. If in (3.11) and (3.12) we assume that u is monotonic, then we get
the inequalities

(3.13) |RM (f, u, In)| ≤ H

2p
[ν (h)]p |f (b)− f (a)|

and

(3.14) |RM (f, u, In)| ≤ H

2
ν (h) |f (b)− f (a)| .

The case where f is K−Lipschitzian is embodied in the following corollary.
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Corollary 8. Let u and f be as in Corollary 6. Then we have the quadrature
formula (3.10) and the remainder satisfies the estimate

(3.15) |RM (f, u, In)| ≤ HK

2p

n−1∑
i=0

hp+1
i ≤ HK

2p
[ν (h)]p .

In particular, if f is L−Lipschitzian, then we have the estimate

(3.16) |RM (f, u, In)| ≤ 1
2
LK

n−1∑
i=0

h2
i ≤

1
2
LK (b− a) ν (h) .
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