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Abstract
In this short note, we apply L-Summing Method on some 3-dimensional
multiplication tables to yield some new identities involving Riemann zeta func-
tion.
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Let a;; be an n x n array. The 2-dimensional L—Summing Method is the following

rearrange:
n k k

E aij:E E aumLE apj — gk | -
k=1 \i=1 j=1

1<ij<n
Specially, when a;; = (ij)~°, we yield [2]:
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(s € C).

The base of this array was 2-dimensional multiplication table and since we can
generalize multiplication table to hight dimensional versions [1], we can generalize
L—Summing Method, and we are going to do this generalization in R*. In this case,
L—Summing Elements are 3-dimensional as the following figure:



Figure 1: L—Summing Elements in R3

For start, let proceed on MT?
Easily, we have

nxn

s= 3 ijk:(@)g.

1<i,j,k<n

[1]; ie. let a;x = ijk, in which 1 < 4,5,k < n.

By L—Summing Method; according to above figure, L—Summing Element in this

table is: E(h 4 D 2 o ; '
L= 3k(%) - 31&%) R = 2 R

So, we have the following known identity:

Z 36+ k3 <(n+1)).

Now, suppose s € C and let a;;, = (ijk)~°. It is clear that

n

S= 3 (ijk) = (Z%)?’:@?(s).

1<i,j,k<n
By L—Summing Method we have:
NAORNCIOMN
L
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and we can reform > L = S as follows:
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Note that if ®(s) > 1, then lim,, o (.(s) = ((s). So, for R(s) > 1 we have
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Also, if s =1, then (,(1) = H, = Y_,_; 1, and so, we have
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